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Abstract

We present the self-consistent implementation of current-dependent (hybrid) meta

generalized gradient approximation (mGGA) density functionals using London atomic

orbitals. A previously proposed generalized kinetic energy density is utilized to implement

mGGAs in the framework of Kohn–Sham current density-functional theory (KS-CDFT).

A unique feature of the non-perturbative implementation of these functionals is the

ability to seamlessly explore a wide range of magnetic fields up to 1 a.u. (∼ 235000T)

in strength. CDFT functionals based on the TPSS and B98 forms are investigated

and their performance is assessed by comparison with accurate coupled-cluster singles

doubles and perturbative triples (CCSD(T)) data. In the weak field regime magnetic

properties such as magnetizabilities and nuclear magnetic resonance shielding constants

show modest but systematic improvements over generalized gradient approximations

(GGA). However, in strong field regime the mGGA based forms lead to a significantly

improved description of the recently proposed perpendicular paramagnetic bonding

mechanism, comparing well with CCSD(T) data. In contrast to functionals based on the

vorticity these forms are found to be numerically stable and their accuracy at high field

suggests the extension of mGGAs to CDFT via the generalized kinetic energy density

should provide a useful starting point for further development of CDFT approximations.
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1 Introduction

The foundations of current density-functional theory (CDFT) and its Kohn–Sham (KS)

implementation were established in the late 1980s with the seminal works of Vignale, Rasolt

and Geldart,1–3 where it was recognized that the exchange–correlation functionals must

depend not only on the electronic density, ρ, but also the paramagnetic current density jp in

the presence of an electromagnetic field. Since these early works a large number of theoretical

investigations of CDFT have been presented. The foundations of CDFT have sometimes been

viewed as controversial. Most recently, Pan and Sahni4–6 suggested that the physical current

density j, rather than jp, aught to be the fundamental variable in a CDFT and attempted

to establish a Hohenberg–Kohn like theorem for this physically appealing alternative choice

of variable. Unfortunately, the derivation of this theorem has been shown to be in error.7,8

Furthermore, the work of Tellgren et al.7 showed how CDFT may be brought into Lieb’s

convex-conjugate formulation of density-functional theory (DFT),9 further strengthening

its foundations and lending key insight into the more complex relationship between the key

densities and potentials in the theory. In particular, it is highlighted that the lack of a

Hohenberg–Kohn theorem is not an impediment to a viable CDFT. Recent theoretical works

by Lieb and Schrader10 and Tellgren et al.11 have also addressed the issue of N -representability

in CDFT.

Despite the theoretical progress in CDFT very few practical implementations of theory

have been presented. Most practical studies have either presented calculations based on fixed

densities (typically computed at the Hartree–Fock or standard KS level), or have attempted

to include CDFT contributions in linear-response calculations. In the context of response

theory, implementations have been presented for magnetic properties by Lee et al.12 and for

excitation energies at the meta-generalized-gradient-approximation (mGGA) level by Bates

and Furche.13 Very few fully self-consistent implementations of CDFT capable of treating

systems beyond the linear-response regime have been presented. For two-dimensional systems,

Vignale14 has presented a self-consistent implementation of CDFT for Wigner crystals. Ferconi
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and Vignale15 have also studied two-dimensional quantum dots in magnetic fields, using a

self-consistent CDFT implementation. For three dimensional molecular systems, we are only

aware of the work by Pittalis et al.16,17 in the context of the optimized-effective-potential

method, the work of Zhu and Trickey18 for atomic systems and our own implementation19

for general atomic and molecular species.

A number of challenges arise when implementing quantum chemical methods for molecules

in magnetic fields. The London program20 has been specifically designed to address these

and is utilized throughout the present work. In particular, London atomic orbitals21–23 are

employed to ensure gauge-origin invariant results. For CDFT, additional challenges arise

since new forms are required for the exchange–correlation functional. Relatively few practical

forms for CDFT functionals have been suggested in the literature.

In the present work, we examine the use of mGGAs and hybrid mGGAs for the exchange–

correlation energy in the presence of magnetic fields. Functionals in this class depend on

the orbital-dependent kinetic energy density in the absence of a magnetic field. However,

as has been noted in the literature,13,24,25 this key quantity is not gauge invariant and so

some modification is required for use in a magnetic field. One approach is to replace the

kinetic energy density by a generalized form including the paramagnetic current density.

This quantity naturally arises in the expansion of the spherically averaged exchange hole,

as derived by Dobson.26 Becke has already suggested the use of this approach to produce

a current dependent generalization of the Becke–Roussel27 functional. Recently, Bates and

Furche13 have also explored a similar generalization of the Tao–Perdew–Staroverov–Scuseria

(TPSS) functional28 to calculate excitation energies via response theory.

We will consider current dependent extensions of the B98,29 TPSS28 and TPSS(h)30

functionals. The use of a modified current-dependent kinetic energy density is denoted by

a prefix ‘c’ throughout the remainder of this work. The non-perturbative nature of the

implementation in the London program allows for testing of these functionals in both

weak and strong field regimes. The availability of accurate ab initio methodologies in the
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London program provides a unique opportunity for the assessment and testing of CDFT

functionals at field strengths up to about 1 a.u. In the present work, we make use of the recent

implementation by Stopkowicz et al.31 of coupled-cluster (CC) methods with single, double

and perturbative triple excitations [CCSD(T)] for benchmarking the CDFT approximations.

In Section 2, we review the simple generalization of mGGA functionals to the CDFT

framework due to Dobson and Becke; details specific to the functionals considered in this

work are collected in the Appendix. In Section 3, we outline some computational details

of our calculations. Section 4 summarizes our findings, assessing the quality of the CDFT

approximations by comparison with CCSD(T) data; first, in Section 4.1, we explore the

performance of mGGA functionals for calculating molecular properties in the weak field

regime accessible via linear response theory; next, in Section 4.2, the high-field regime is

explored by considering the recently proposed perpendicular paramagnetic bonding. The

interpretation of this bonding mechanism in the Kohn–Sham CDFT (KS-CDFT) framework

is discussed in Section 5. Finally, concluding remarks and directions for future work are given

in Section 6.

2 Theory

In this work, we consider the calculation of energies and molecular properties in the presence

of a static uniform external magnetic field, B, which may be represented in terms of the

vector potential

A(r) =
1

2
B× (r−RG), (1)

where RG is an arbitrary gauge origin. The London program makes use of London atomic

orbitals21–23 to ensure that computed energies and molecular properties are invariant with

respect to choice of the gauge origin. These basis functions take the form

ωµ(rK ,B,RG) = exp

[
i

2
B× (RG −RK) · r

]
χµ(rK) (2)
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where χµ(rK) is a standard Gaussian-type orbital centered at positionRK . These perturbation-

dependent basis functions are used to expand the KS molecular orbitals.

The KS approach to DFT can be extended to CDFT by searching for a non-interacting

system of electrons with the same charge and current densities as the physical interacting

system: (ρs(r), jp,s(r)) = (ρ(r), jp(r)). For pure (orbital independent) exchange–correlation

functionals, the KS equations can be written as

[
1

2
p2 +

1

2
{p,As}+ us + s · [∇×As]

]
ϕp = εpϕp (3)

where the KS potentials (us,As) are defined as

us = vext +
1

2
A2

ext + vJ + vxc, As = Aext + Axc. (4)

where (vext,Aext) are the physical potentials, (vxc,Axc) are the exchange–correlation potentials

vxc(r) =
δExc[ρ, jp]

δρ(r)
, Axc(r) =

δExc[ρ, jp]

δjp(r)
, (5)

and vJ is the Coulomb potential.

A central question that immediately arises in CDFT is how the exchange–correlation

functional must be modified to include current effects. Whilst the paramagnetic current

density is a valid quantity on which to base the universal density functional, it can also be

shown that the exchange–correlation component must be independently gauge invariant.2

This places a significant constraint on the manner in which this quantity may enter any

approximate CDFT functional. In contrast to standard DFT, relatively few CDFT functionals

have been proposed. The majority of these are based on the vorticity

ν(r) = ∇×
(
jp(r)

ρ(r)

)
, (6)
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with

Axc =
1

ρ
∇× δExc[ρ,ν]

δν
(7)

as proposed by Vignale, Rasolt and Geldart (VRG).3 The original VRG form for the

exchange–correlation energy was parameterized using Monte Carlo simulations of the high-

density limit.1 A number of re-parameterizations for this form have been suggested based on

accurate calculations in the high-density regime.12,32–34 Higuchi and Higuchi35 (HH) have

also presented a vorticity dependent form, derived to obey known exact relations for the

CDFT exchange–correlation functional.

Whilst the vorticity is a theoretically convenient choice to ensure the gauge invariance

of the exchange–correlation energy, it has been observed that in practical self-consistent

calculations it can lead to significant numerical stability issues .18,19 How severe these issues

are depends on the exact parameterization of the functional form, however, in all cases some

degree of numerical regularization is required to ensure that the self-consistent field solution

of the KS equations can be obtained. Furthermore, molecular properties computed by such

calculations exhibit an un-acceptably strong dependence on the regularization parameters –

with no obvious convergence towards a single value. Clearly. this raises questions as to how

appropriate such forms are for use in quantum chemical calculations.

Most practical mGGAs make use of the kinetic energy density

τσ =
occ∑
i

∇ϕ∗iσ · ∇ϕiσ, (8)

in their construction, where ϕi are the occupied KS orbitals and σ is the electron spin index.

This term is gauge dependent and an unmodified mGGA type functional form therefore cannot

be used to describe a system with a non-zero magnetic vector potential. To resolve this issue,

the gauge independence of the exchange–correlation functional must be restored. A natural

modification, which can be applied to any mGGA dependent on the kinetic energy density

τ(r), arises in the work of Dobson,26,36 who generalized the expansion of the exchange-hole
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to include the case of non-zero current densities.

The spherically averaged exchange hole at zero field can be modeled using a Taylor

expansion37 and is commonly considered27,29,38 up to the quadratic term:

Qσ =
1

6

[
∇2ρσ − 2τσ +

(∇ρσ)2

2ρσ

]
. (9)

This expansion can be generalized to non-zero field and the curvature term becomes26,27,36

Qσ =
1

6

[
∇2ρσ − 2τσ +

(∇ρσ)2

2ρσ
+

2 |jpσ|2

ρσ

]
, (10)

where jpσ is the paramagnetic current density

jpσ = − i
2

occ∑
i

[ϕ∗iσ∇ϕiσ − ϕiσ∇ϕ∗iσ] . (11)

Comparing Eqs. (9) and (10) it is possible to identify a correction to the conventional τ(r)

that is gauge invariant and may be utilized in mGGA functionals,

τσ → τ̃σ = τσ −
|jpσ|2

ρσ
. (12)

The use of Eq. (12) has been put forward many times in the literature. Becke suggested its use

in the Becke–Roussel model27 to generate a current dependent analogue of this functional. He

also suggested that this quantity could be used to define a current-dependent inhomogeneity

parameter in the more empirical B98 functional.29 It has also been suggested for use to

generalize the TPSS functional28 by Tao.25 Recently Bates and Furche13 considered the

application of the resulting cTPSS functional in the calculation of excitation energies via

response theory.

In the present work, we consider the application of mGGA functionals with the modification

in Eq. (12) to calculate magnetic properties in the weak and strong field regimes in a non-
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perturbative manner. For an mGGA functional hat depends on the current only through the

kinetic energy density, the exchange–correlation functional may be written as

Exc[ρ, jp, τ ] =

∫
fxc
(
ρ(r),∇ρ(r), jp(r), τ(r)

)
dr =

∫
gxc
(
ρ(r),∇ρ(r), τ̃(r)

)
dr (13)

and the KS eigenvalue problem takes the form (disregarding spin dependence)

[
1

2
p · (1 + ηxc)p +

1

2
{p,Aext + Axc}+ us

]
ϕp = εpϕp, (14)

with

ηxc =
∂fxc
∂τ

=
∂gxc
∂τ̃

, (15)

Axc =
∂fxc
∂jp

= −2ηxc
jp
ρ
. (16)

Unlike for the VRG functional, the vector potential Axc is now gauge dependent. However,

the gauge dependence of Axc cancels against the gauge dependence of the ηxc-dependent

modification to the canonical kinetic energy. The generalization to spin-resolved densities is

straightforward.

We consider here three mGGA functionals, cB98, cTPSS and cTPSS(h), where the prefix

‘c’ denotes the use of the modified τ̃σ in Eq. (12). The Appendix gives some details of the

respective functional forms, showing how these modifications enter.

3 Computational Details

Unless otherwise indicated all calculations in this work use the un-contracted, Cartesian,

aug-cc-pCVTZ basis set.39,40 All DFT calculations have been performed using the London20

program. This code utilizes the XCFun library41 for the evaluation of the density functionals

and their derivatives. The modifications of Eq. (12) and the functionals cB98 and cTPSS
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have been added to the XCFun library. In addition we investigate the use of a hybrid form of

cTPSS, denoted cTPSS(h), based on the TPSS(h) functional of Ref.42 The quality of the

CDFT functionals cB98, cTPSS and cTPSS(h) is assessed by comparison with CCSD(T)

data. For comparison Hartree–Fock (HF), local density approximation (LDA), Perdew-Burke-

Ernzerhof (PBE),43 and Keal-Tozer-3 (KT3)44 density-functional results are also presented.

The latter is of particular interest since it is specifically designed for the calculation of nuclear

magnetic resonance (NMR) shielding constants.

The performance of these approximations will be considered in two regimes; the weak field

regime accessible by linear response calculations and the strong field regime only accessible

via non-perturbative calculations. In the weak field regime we will consider the calculation of

molecular magnetizabilities and NMR shielding constants for the 26 small molecules in Table 1.

Errors for these quantities are presented relative to the benchmark data of Ref.45 Results

are also compared with those including corrections from the Tao-Perdew parameterization33

of the Vignale-Rasolt-Geldart functional,2 taken from Ref.19 In the strong field regime we

consider the prediction of perpendicular paramagnetic bonding46 in a field strength of 1 a.u.

perpendicular to the internuclear axes of H2, He2, HeNe and Ne2. These non-perturbative

calculations are assessed against CCSD(T) results computed using the implementation of

Ref.31 in the London program.

Table 1: The test set of molecules for which accurate benchmark CCSD(T) data from Ref.45
was available.

HF CO N2 H2O HCN HOF LiH
NH3 H2CO CH4 C2H4 AlF CH3F C3H4

FCCH FCN H2S HCP HFCO H2C2O LiF
N2O OCS H4C2O PN SO2
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4 Results

4.1 The weak field regime: magnetic properties

We commence by considering the molecular magnetizabilities and NMR shielding constants

of the 26 small molecules in Table 1. The magnetizability tensor elements, ξα,β, are defined as

ξα,β =
∂2E(B)

∂Bα∂Bβ

∣∣∣∣
B=0

(17)

where α and β label Cartesian components of the tensor and magnetic field. The NMR

shielding tensor for a given nucleus K is defined by

σK;α,β =
∂2E(B,MK)

∂Bα∂MK,β

∣∣∣∣
B=0,MK=0

(18)

where MK is the nuclear magnetic moment of nucleus K. These properties can be accessed

non-perturbatively in the London program by explicit calculation of the energy in the

presence of the perturbing fields. Details of this procedure are given in Ref.19 Here we

compute the properties in the same manner, facilitating a comparison with previous results.

Given that for many density-functional approximations these singlet second order magnetic

response properties can be accessed by standard linear response methods in a variety of

programs, this approach may seem cumbersome. However, it should be noted that the

implementation of the new CDFT approaches in this framework is much more straightforward,

requiring only an implementation of the functional and the derivatives required for construction

of the KS matrix. More importantly, as we will see in Section 4.2, this non-perturbative

approach allows us to seamlessly explore the behaviour of new approximations in much

stronger fields – inaccessible via linear response theory. This means that London provides a

powerful test bed for new CDFT functionals.

To quantify the accuracy of the DFT approaches for the calculation of these properties

we compare our results with the CCSD(T) benchmark values of Ref.45 Specifically, we use
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the values at the CCSD(T)/aug-cc-pCV[TQ]Z level – which have been extrapolated to the

basis set limit using the procedure of Refs.45,47

Table 2: The mean error (ME), mean absolute error (MAE), and standard deviation (SD) of
magnetic properties relative to the CCSD(T) benchmark data of Refs.45,47 See also Figs. 1
and 2.

Magnetizability NMR Shielding
(10−30JT−2) (ppm)

ME MAE SD ME MAE SD
HF -3.06 6.35 7.29 -15.18 21.40 40.97
LDA 5.01 9.18 10.86 -24.81 24.85 30.00
PBE 6.75 8.81 9.03 -19.66 19.78 21.46
PBE+VRG(TP) 7.85 9.61 9.44 -20.33 20.46 22.43
KT3 8.18 8.95 7.83 -6.53 8.94 13.13
KT3+VRG(TP) 9.18 9.83 8.19 -7.45 9.18 13.37
B97-2 5.46 5.84 5.96 -16.34 16.48 20.60
cB98 0.52 4.84 6.58 -12.44 12.66 17.79
cTPSS 7.13 7.51 6.76 -14.14 14.35 15.61
cTPSS(h) 6.41 6.51 6.00 -14.33 14.52 16.68

The errors in the calculated magnetizabilities and NMR shielding constants are summarized

in Table 2 and presented graphically in Figures 1 and 2 as box-whisker plots. In these plots

individual points represent the errors for each system relative to the reference values, the

upper and lower fences of the whiskers denote the maximum positive and negative errors

respectively and the coloured boxes enclose errors between the 25% and 75% quantiles. Mean

and median errors are marked in the plots by horizontal black and white lines, respectively.

Grey diamonds are used to represent the confidence intervals.

For the molecular magnetizabilities it is clear from the error measures in Table 2 and

their representation in Figure 1 that none of the functionals offers high accuracy. The GGA

functionals PBE and KT3 in particular do not offer significant improvements over LDA.

Whilst their minimum and maximum errors are slightly improved, the mean errors actually

deteriorate. Similar observations were made in Ref.47 for these type of functionals. The

B97-2 functional gives slightly reduced errors, which is consistent with previous conclusions47

that for magnetizabilities the inclusion of HF exchange may be beneficial. At the GGA level
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the underlying functionals are already gauge invariant but do not depend explicitly on the

paramagnetic current density. To introduce this dependence the VRG functional may be

added. In our earlier work19 we found that this correction can be numerically problematic

and that the most stable parameterization of this functional to date is that put forward by

Tao and Perdew,33 denoted VRG(TP). For comparison we include here the PBE+VRG(TP)

and KT3+VRG(TP) results. It is clear that the inclusion of the VRG(TP) correction actually

worsens the agreement of the results with CCSD(T) reference data. At the mGGA level the

inclusion of current is mandatory to ensure the exchange–correlation evaluation is gauge

independent.

Here we investigate the cB98, cTPSS and cTPSS(h) functionals, the TPSS and TPSS(h)

forms are similar in performance to PBE – offering marginal improvements on some error

measures, with TPSS(h) performing slightly better than TPSS. The cB98 form gives the

best performance of all the functionals considered. It is noteworthy that in the mGGA class

the mean errors reduce as more HF exchange is included in the functional – with cTPSS,

cTPSS(h) and cB98 containing 0%, 10% and 19.85% HF exchange respectively. This suggests

that the treatment of exchange may be the dominant factor in the errors. Since the treatment

of long-range exchange is not rectified in the transition from GGA to mGGA type functionals

(and only partially corrected by a global admixture), then it may be that this factor far out

weighs any improvements due to the inclusion of current effects.

It is worth emphasizing that in the course of our investigation we found that the im-

plementation of the mGGA functionals including a generalized kinetic energy density was

straightforward. In particular we found that no special care was required with respect to

numerics compared with standard functionals and that in practical use the functionals are

robust and self-consistent calculations using these functionals converge without significant

difficulty. This sharply contrasts the behaviour for the VRG functionals as investigated in

Refs.18,19

The results for NMR shielding constants are presented in Figure 2. Here we see LDA
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Figure 1: Box-whisker plot of errors in (C)DFT molecular magnetizabilities relative to the
extrapolated CCSD(T) values of Ref.47 All calculations use the aug-cc-pCVTZ basis set. See
the text for further details.
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is poor as expected. In addition KT3, which was designed for these properties, is the best

performing functional – significantly improving over the standard PBE GGA functional and

the B97-2 hybrid functional. In this case we see the addition of the VRG(TP) correction to

PBE and KT3 has little effect, very slightly deteriorating the results. The mGGA results

for cB98, cTPSS and cTPSS(h) are intermediate between PBE and KT3 – offering small

systematic improvements over PBE. Again B98 produces the best results of the mGGA

functionals.
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Figure 2: Box-whisker plot of errors in (C)DFT NMR shielding constants relative to the
extrapolated CCSD(T) values of Ref.45 All calculations use the aug-cc-pCVTZ basis set. See
the text for further details.

On the whole the quality of the mGGA results at modest field strengths may be regarded

as disappointing. The overall errors suggest that mGGAs may offer modest improvements
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over conventional GGA functionals such as PBE – though they cannot compete with GGAs

tailored to specific properties. This is broadly consistent with findings by Bates and Furche

for the calculation of excitation energies using cTPSS.13 Since current corrections are known

to be relatively small it is important that the underlying functional should be relatively

accurate. For the mGGAs considered here there are known weaknesses (for example in the

treatment of long-range exchange) that may obscure the effect of the current dependence. For

the case of NMR shielding constants a more detailed analysis of the significance of current

effects and how these interplay with errors in a range of density functionals is presented in

Ref.48 We will now examine how these functionals perform when the magnetic field becomes

much higher and has a stronger effect on the electronic structure.

4.2 The strong field regime: paramagnetic bonding

One approach to explore whether or not the inclusion of current effects via the modified

kinetic energy density of Eq. (12) is physically reasonable is to increase the strength of the

magnetic field. Lange et. al.46 have recently performed full configuration-interaction (FCI)

calculations at high field that have uncovered a new mechanism for chemical bonding in

the presence of a strong magnetic field. This new bonding has been termed perpendicular

paramagnetic bonding and occurs at field strengths similar to those found on some white

dwarf stars. Since this work Murdin et al.49 have shown that phosphorus and selenium doped

silicon semiconductors can produce a viable laboratory analogue of free hydrogen49 and

helium50 in strong magnetic fields. The description of these types of systems via quantum

chemistry will require less computationally demanding approaches – and CDFT is one strong

candidate for the simulation of these systems.

To investigate the performance of cB98, cTPSS and cTPSS(h) in strong magnetic fields

potential energy profiles were calculated for H2, He2, NeHe and Ne2. In particular, we consider

the 3Σ+
u (1σg1σ

∗
u) state of H2 and the lowest 1Σ+

g states of He2, HeNe and Ne2. Each of these

states is repulsive or weakly dispersion bound in the absence of a magnetic field but become
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more strongly bound when a field is applied. We note that only the 3Σ+
u (1σg1σ

∗
u) of H2 is an

overall ground state in the presence of the field. These states were compared against results

from accurate CCSD(T) potential energy curves calculated using a recent non-perturbative

implementation by Stopkowicz et al31 in the London program. For comparison we have also

generated similar profiles with standard LDA and GGA density functionals as well as with

HF theory. The calculated potential energy curves for H2, He2, NeHe and Ne2 are shown in

Figures 3, 4, 5 and 6, respectively. Equilibrium bond lengths and dissociation energies were

determined numerically and are presented in Table 3.

Table 3: Dissociation energies and equilibrium bond lengths for H2 and rare gas dimers in a 1
a.u. magnetic field perpendicular to the internuclear axis.

Re / a0 De / mEh

H2 He2 NeHe Ne2 H2 He2 NeHe Ne2
HF 2.709 3.296 3.543 3.773 2.333 0.218 0.482 0.978
LDA 2.377 2.550 2.846 3.062 14.807 8.231 11.817 19.730
PBE 2.515 2.810 3.080 3.294 5.976 2.463 3.938 7.128
KT3 2.512 2.852 3.121 3.342 4.628 2.661 3.937 6.527
cB98 2.636 3.203 3.472 3.676 1.324 1.011 1.514 2.050
cTPSS 2.567 2.864 3.124 3.346 5.250 1.307 2.344 4.577
cTPSSh 2.562 2.879 3.154 3.379 5.258 1.245 2.130 3.990
CCSD(T) 2.584 2.977 3.248 3.487 4.551 1.259 2.217 4.016
FCIa 2.584 2.975 - - 4.551 1.271 - -

a The He2 FCI calculations use the aug-cc-pVTZ basis set.

The 3Σ+
u (1σg1σ

∗
u) state of the H2 molecule in a perpendicular field was examined at

the FCI level by Lange et al.46 The potential energy curves for this state are shown in

Figure 3. HF strongly under-binds this state in comparison with the FCI data. In contrast

LDA strongly over-binds, a tendency which is largely corrected by the PBE functional and

further improved by the cTPSS and cTPSS(h) models. These trends are reflected in the

equilibrium bond lengths and dissociation energies in Table 3. Although not highly accurate

the cTPSS and cTPSS(h) models give a reasonable qualitative description of the potential

energy curve. The empirically parameterized KT3 functional is interesting because it gives

simultaneously a reasonable estimate of both the equilibrium bond length and dissociation
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energy. However, at intermediate separation an unphysical barrier is observed. For B98 an

even more pronounced barrier is present and the potential energy curve is generally even less

accurate than Hartree–Fock theory. This may suggest that heavily parameterized functional

forms, determined to perform well at zero field, may not be the best candidates for use in

strong-field CDFT studies.
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Figure 3: Potential energy curve for the 3Σ+
u (1σg1σ

∗
u) state of the H2 molecule in a magnetic

field of 1 a.u. perpendicular to the bonding axis for a variety of methods with the aug-cc-
pCVTZ basis set.

Examining the potential energy curves for He2 in Figure 4 we see that HF tends to under-

bind with a bond length of 3.30 a0 compared with the CCSD(T) value of 2.98 a0. Similarly

the HF dissociation energy of 0.218 mEh is much smaller than the corresponding CCSD(T)

value of 1.259 mEh. For this small system we were able to compare the CCSD(T) results with

FCI values (calculated in the slightly smaller aug-cc-pVTZ basis), as expected the agreement

is excellent – the corresponding potential energy curves are essentially indistinguishable

on the scale of Figure 4. For LDA we see a strong tendency to over-bind giving much
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too short Re values and much too large estimates of De. The GGA functionals PBE and

KT3 show considerable improvement over LDA, however, they still strongly over-bind. The

improvement for the mGGA functionals is striking – in particular TPSS and TPSS(h) give a

good qualitative description of the potential energy curve. The corresponding Re and De

values indicate that there still remains a tendency towards over binding but this is greatly

reduced.
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Figure 4: Potential energy curve for the lowest 1Σ+
g state of He2 in a magnetic field of 1 a.u.

perpendicular to the bonding axis for a variety of methods with the aug-cc-pCVTZ basis set.

The cB98 functional tends to show more significant under binding. Here we note that the

arguments used in the construction of cB98 and cTPSS are rather different. In particular,

cB98 is an empirically parameterized functional (see the Appendix), whereas cTPSS is

constructed based on the satisfaction of known exact conditions. In this work we have

used the parameters determined in Ref.29 to define the cB98 form. These parameters were

determined at zero field and from post-LDA calculations – as a result they may not be
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optimal for fully self-consistent calculations in the presence of a magnetic field. On the other

hand the cTPSS functional is designed to satisfy selected constraints at zero field and it could

be argued that in the presence of a field both the B98 and TPSS based functionals are open

to further optimization, though this is beyond the scope of the present work.

The stability of the mGGA functionals is particularly evident in the strong field regime

when one compares the present results for He2 with those for the VRG-based estimates in

Figure 7 of Ref.19 The VRG approaches led to very difficult SCF convergence and complex

potential energy curves with a strong unphysical over binding. The mGGAs considered

here are un-problematic in practical application and yield results surprisingly close to the

CCSD(T) estimates.

Similar qualitative trends are observed for the NeHe and NeNe dimers in Figures 5 and 6.

Again LDA and GGA functionals are not sufficiently accurate for practical use and the

mGGA functionals provide a large improvement. The cTPSS and cTPSS(h) results remain

impressive – with cTPSS(h) being consistently slightly more accurate than cTPSS. This trend

is reflected in both the potential energy curves and the Re and De values in Table 3.

5 Interpretation of paramagnetic bonding in the KS-CDFT

framework

The mGGA CDFT functionals offer a computationally cheap correlated method for the

examination of the exotic bonding mechanisms observed in a strong magnetic field. In

many areas of chemistry the nature of bonding, chemical reactions, spectra, and properties

of molecular species are interpreted qualitatively in terms of orbital interactions. We now

consider the extent to which information from KS-CDFT calculations can aid in simple

interpretation of the perpendicular paramagnetic bonding interactions.

We begin by considering a molecular orbital analysis of the perpendicular paramagnetic

bonding. KS-CDFT calculations provide a simple set of canonical molecular orbitals, which

20
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Figure 5: Potential energy curve for the lowest 1Σ+
g state of the NeHe dimer in a magnetic field

of 1 a.u. perpendicular to the bonding axis for a variety of methods with the aug-cc-pCVTZ
basis set.

can be used to construct the electronic density via

ρ(r) =
∑
i

|ϕi(r)ϕ∗i (r)|2 =
∑
γζ

ωγ(r)Dγζω
∗
ζ (r) (19)

Here we note that the occupied KS orbitals ϕi(r) can be complex in the presence of a magnetic

field. In the second equality the density is expressed in terms of the one-particle density matrix

Dγζ and the basis functions ωγ(r). We will commence by considering how the molecular

orbital energies associated with H2 and the rare gas dimers change upon application of a

magnetic field as the perpendicular paramagnetic bonding in Section 5.1 evolves. Since the

orbitals themselves can be complex in the presence of a field we then proceed in Section 5.2

to analyze the bonding in terms of the changes in electronic density of Eq. (19) as a function

of field, which is naturally a real observable quantity.
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Figure 6: Potential energy curve for the lowest 1Σ+
g state of Ne2 in a magnetic field of 1 a.u.

perpendicular to the bonding axis for a variety of methods with the aug-cc-pCVTZ basis set.

5.1 KS-CDFT molecular orbital analysis

KS molecular orbitals have been widely used as an interpretive aid in chemical applications

throughout the literature. The KS orbitals are defined to minimize the non-interacting

kinetic energy and yield the physical electronic density via Eq. (19). They also have

appealing properties; for example the highest occupied MO energy is minus the first ionization

potential (IP)51,52 and the remaining orbital energies can be interpreted as Koopman’s type

approximations to higher IPs.53 The extent to which these properties hold for general practical

approximations has been a subject of debate in the literature,54,55 as has the interpretation

of KS virtual orbitals56 owing to the role of the integer discontinuity,51 which is missing from

common approximations. However, from a practical standpoint it is widely accepted that

interpretations based on occupied KS orbitals (to which we limit the following discussion)

are theoretically justified and their utility has been borne out in many practical applications.
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We now consider how the KS orbital energies change upon application of a perpendicular

magnetic field of 1 a.u. Given that the cTPSS based models seem to be the most reliable of

those studied in the present work we consider how the orbital energies from this functional

change in Figures 7 and 8 for H2 and He2, respectively. For the H2 molecule in the 3Σ+
u (1σg1σ

∗
u)

state we consider the energy of the occupied σg and σ∗u orbitals change upon bonding. In

particular, we plot orbital energies in the absence of a field and in a perpendicular field of 1

a.u. relative to those of the atomic orbitals in the same field. We have plotted the orbital

energies at an internuclear separation Re = 2.564 a.u. consistent with the cTPSS equilibrium

bond length in the presence of a field.

We see that in the absence of a field the singly occupied σg orbital is stabilized by 1.33

mEh, whilst the singly occupied σ∗u is destabilized by 1.30 mEh relative to the 1s hydrogen

orbitals. This is consistent with a net bond order of zero and a repulsive profile for the

corresponding potential energy curve. In the perpendicular field of 1 a.u. we see that, relative

to the hydrogen 1s orbital in the same field, the σg orbital is stabilized by 63.21 mEh, whilst

the σ∗u orbital is destabilized by 34.97 mEh. This greater stabilization of the σg orbital leads

to a net bonding interaction, consistent with the analysis of Ref.46 This illustrates that the

KS orbitals can be a useful tool in rationalizing this exotic bonding phenomenon.

A similar analysis can be carried out for the lowest 1Σ+
g state of He2 and is presented in

Figure 8. In this plot we have separated the spin down and spin up orbitals and defined their

energies relative to atomic orbitals of the same spin in the same field. Defined in this way

the offset between the orbitals of different spin due to the Zeeman interaction is removed

from the plot. Again the energies correspond to the cTPSS He2 equilibrium internuclear

separation Re = 2.864 a.u. in the presence of a perpendicular field. In the absence of a field

we see that again the relative stabilization of σg and destabilization of σ∗u are approximately

compensatory, whilst in the presence of a field the σg orbital is more stabilized than the σ∗u

orbital is destabilized. It is also clear that the extra stabilization of the σg orbital of ∼ 8

mEh is considerably less than the ∼ 28 mEh observed for H2. This is consistent with the
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strength of binding exhibited for these species in Figures 3 and 4 as well as in Table 3.

Similar orbital energy diagrams may be constructed for the HeNe and NeNe systems,

however, they become significantly more complex due to large differences between the orbital

energies in HeNe and the splitting of the p-orbitals in NeNe. We therefore consider an

alternative visualization of the bonding effects in these systems based on the charge and

(physical) current density differences.

5.2 Electron density analysis

For each of the species He2, HeNe and Ne2, we have performed calculations of the electronic

density and current density in the presence of varying perpendicular magnetic fields (B⊥)

using the cTPSS functional at the corresponding equilibrium geometries. Here we consider

the density change ∆ρB⊥(r) for each system relative to the isolated atoms in the same field,

∆ρB⊥(r) = ρDimer
B⊥

(r)−
Natoms∑
i=1

ρiB⊥
(r) (20)

This difference density allows for a visualization of the nature of the paramagnetic bonding

in these systems. In a similar manner one can consider the (gauge invariant) physical current

density difference ∆j

∆jB⊥(r) = jDimer
B⊥

(r)−
Natoms∑
i=1

jiB⊥
(r) (21)

In Figure 9 we present plots of the density differences in Eqs. (20) and (21) for each of

the species with B⊥ = 1.0 a.u. The shading of the contours represents the buildup (red)

or depletion of the charge density (blue), relative to two non-interacting atoms in the same

field. In all three cases there is a clear build up of density between the atoms consistent with

bonding. The charge density difference is elongated along the field, above and below the

plane of the plots. The streamlines show the vector field associated with the current density

difference. Paratropic circulations are clearly visible over the centre of the bonds where

charge density accumulates, and diatropic circulations are visible in regions where the charge
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density is depleted. We have confirmed that for higher fields the alignment between para- /

dia-tropic circulations and charge accumulation / depletion becomes more pronounced.

This picture of the perpendicular paramagnetic bonding suggests that as the charge density

is elongated along the field the constituent atoms may approach one another more closely.

As they do so they experience a greater nuclear-nuclear repulsion, which may be screened

by a rearrangement of the charge density towards the bond centre. This rearrangement is

accompanied by consistent para- and dia-tropic current circulations. The cTPSS functional

used in this work provides a simple, computationally cheap, route to perform analysis of the

bonding encountered in the strong field regime.

6 Conclusion

In this work we have implemented a previously detailed25,26,36 modification to the kinetic

energy density term in mGGA functionals to perform non-perturbative cDFT calculations

in a stable, gauge invariant manner using the London program.20 The modified mGGA

functionals cB98, cTPSS and cTPSS(h) show a level of accuracy in predicting weak field

magnetic properties that is competitive with existing GGA functionals without any additional

fitting. The functionals cTPSS and cTPSS(h) show excellent prediction of perpendicular

paramagnetic bonding behaviour, suggesting that the modification of the kinetic energy

density is a viable route for the incorporation of current effects in standard mGGA density-

functionals. In contrast to vorticity dependent forms previously studied18,19 the functionals

exhibited excellent numerical stability in the finite field setting without the need for delicate

numerical regularizations.

Whilst the mGGA results show considerable promise in the high field regime, their

performance in the weak field regime is perhaps disappointing – leading to only modest

improvements of conventional GGA forms. To some extent this may be due to the fact that

mGGAs contain many of the shortcomings associated with GGA forms. For example, the
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functionals still have potentials with incorrect asymptotic behaviour – particularly for the

exchange contribution. Since the current effects at weak field are not dominant but rather

add small corrections to the predominantly Coulombic exchange and correlation interactions

then it may be necessary to further improve the underlying functional forms before the true

impact of the current terms can be assessed in this regime.

We expect that this approach to include current dependence should play a central role in

the future development of new CDFT functionals and many avenues are open for development.

Obvious possibilities include the generalization of range-separated mGGA functionals57,58 to

obtain a better balance of errors between exchange, correlation and current contributions and

the re-parameterization of functionals either empirically or via the consideration of alternative

exact conditions in their construction. In the latter category we note that the presence of a

magnetic field causes compression of the electronic density in two dimensions perpendicular

to the field and elongation along it. As a result non-uniform coordinate scaling relations may

be one example of conditions that may provide a powerful tool in further development. The

London program20 provides a powerful platform for this work since CDFT approaches can

be calibrated against accurate ab initio data for a range of field strengths, where experimental

data may be scarce. In the future we hope that these relatively inexpensive CDFT approaches

may then be applied to the study of larger systems such as those in Refs.49,50

Appendix

A meta-GGAs in CDFT

We present the key working equations defining the B98 and TPSS functionals, indicating

how the modified τ̃σ of Eq. (12) enters each functional.
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A.1 cB98

The B98 functional29 has a general construction that is similar to the popular B97 func-

tional form,59 however, instead of using reduced spin-density gradients it makes use of an

inhomogeneity parameter qσ

qσ =
(Qσ −QUEG

σ )

|QUEG
σ |

(22)

where the exchange hole curvature for the uniform electron gas takes the simple form

QUEG
σ = −1

5
(6π2)2/3ρ5/3σ (23)

and Qσ is defined in Eq. (9). This inhomogeneity factor, qσ, controls the enhancement or

attenuation of the exchange and correlation energy over the uniform gas values.

The exchange component of the functional takes the form

Ex,σ =

∫
eUEGx,σ (ρσ)gx,σ(qσ)dr (24)

and the opposite- and same-spin components of the correlation energy take the forms

Ec,αβ =

∫
eUEGc,αβ (ρα, ρβ)gc,αβ(qavg)dr (25)

Ec,σσ =

∫
eUEGc,σσ (ρσ)fSCCσ gc,σσ(qσ)dr. (26)

The functions gx,σ(qσ), gc,αβ(qavg) and gc,σσ(qσ) are dimensionless inhomogeneity correction

factors depending on qσ and qavg = 1
2
(qα + qβ). In addition the same-spin correlation energy

contains a self-correlation correction (SCC) factor

fSCCσ =

[
τσ −

1

4

(∇ρσ)2

ρσ

]
/τσ (27)

This factor varies between 0 and 1 and vanishes in one-orbital regions, ensuring the functional
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is self-correlation free. For convenience in deriving fitted forms for the inhomogeneity

correction factors g, Becke proposed the following transformation to a finite interval,

w =
γq√

1 + γ2q2
(28)

where γ is a parameter to be determined and separate transformations are carried out

for the exchange, opposite-spin correlation and like-spin correlation respectively using the

appropriate definitions of q as in Eqs (24)–(25). Based on calculations of atomic exchange–

correlation energies Becke proposed the values γx,σ = 0.11, γc,αβ = 0.14 and γc,σσ = 0.16. The

inhomogeneity corrections g were then determined by fitting a power series expansion of the

form

g =
m∑
i=0

ciw
i (29)

with m = 2 chosen to prevent unphysical over-fitting. This fitting was carried out using

the G2 thermochemical dataset and basis set free, post-LSDA, calculations. The optimal

parameters can be found in Ref. 29.

Here we use this parameterization directly but note that in future these parameters

could be re-optimized based on self-consistent data. In addition an amount of Hartree–

Fock exchange is included with weight cx = 0.1985. The resulting B98 functional therefore

possesses a high degree of non-locality and may be classified as a hybrid mGGA functional

with dependence not only on τ but also on the laplacian of the density ∇2ρ.

The original definition of B98 utilized the zero-field exchange hole curvature of Eq. (9)

in its definition. However, it was noted29 that this form can be readily extended to include

current effects via Eq. (10) and it is this avenue that we explore in the present work. Unless

otherwise stated we employ this modified form throughout and denote it as cB98.
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A.2 cTPSS

One of the most widely used meta-GGA functionals is due to Tao, Perdew, Staroverov and

Scuseria (TPSS).28 This functional is designed to satisfy exact constraints without empirical

parameters and as such is an interesting candidate to study in the context of generalization to

finite magnetic field strengths where much less is known about the performance of approximate

functionals. In this functional the ratio

z = 2τW/τ, τ =
∑
σ

τσ, τw =
1

8

|∇ρ|2

ρ
(30)

plays a key role as a dimensionless inhomogeneity parameter, along with

p =
|∇ρ|2

4(3π2)2/3ρ8/3
= s2 (31)

Note that throughout this work we use the definition of τ in Eq. (8), which does not include

the factor of 1/2 commonly employed. The exchange functional then takes the form

Ex[ρ] =

∫
ρεUEGx (ρ)Fx(p, z) (32)

where the precise details of the form chosen for the enhancement factor Fx(p, z) can be found

in Ref. 28. The correlation energy takes the form

Ec[ρα, ρβ,∇ρα,∇ρβ, τ ] =∫
ρεrevPKZB

c (ρα, ρβ,∇ρα,∇ρβ, τ)

×
[
1 + dεrevPKZB

c (ρα, ρβ,∇ρα,∇ρβ, τ)(τW/τ)3
]

dr (33)

where d = 2.8 hartree−1.

Using the replacement in Eq. (12) leads to modifications in the exchange contribution via

z in Eq. (30) and in the correlation energy as shown in Eq. (33). This modified form is noted
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cTPSS and is consistent with that used in the response implementation of Ref.13
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Figure 7: Relative orbital energies for the occupied σg and σ∗u CDFT molecular orbitals
for H2 relative to the atomic 1s orbitals, with (blue) and without (red) a field of 1.0 a.u.
perpendicular to the interatomic axis.
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Figure 8: Relative orbital energies for the occupied σg and σ∗u CDFT molecular orbitals
for He2 relative to the atomic 1s orbitals, with (blue) and without (red) a field of 1.0 a.u.
perpendicular to the interatomic axis.
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Figure 9: ∆ρB⊥(r) (coloured contours) and ∆jB⊥(r) (streamlines) for the rare gas dimers He2
(left), HeNe (middle) and Ne2 (right) in a B⊥ = 1.0 a.u. magnetic field. The internuclear
axis is aligned with the z-axis and the plots are show in the yz-plane intersecting the atomic
positions.
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