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Abstract

Suppose that in symmetric aggregative games, in which payoffs depend only on a

player’s strategy and on an aggregate of all players’ strategies, players have conjectures

about the reaction of the aggregate to marginal changes in their strategy. The players

play a conjectural variation equilibrium, which determines their fitness payoffs. The

paper shows that only consistent conjectures can be evolutionarily stable in an infinite

population, where a conjecture is consistent if it is equal to the marginal change in the

aggregate determined by the actual best responses. In the finite population case, only

zero conjectures representing aggregate-taking behavior can be evolutionarily stable.
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1 Introduction

This paper shows that in symmetric aggregative games there is a link between certain

properties of conjectures and the evolutionary success of those conjectures. An aggregative

game is a game in which the payoff of a player depends only on the player’s own strategy

and on an aggregate of the strategies of all players. A typical example of an aggregative

game is the Cournot oligopoly; aggregative games were analyzed e.g. in Corchón (1994)

and more recently in Cornes and Hartley (2012) and Acemoglu and Jensen (2013), where

further examples of such games are discussed.

Conjectures, also called conjectural variations, describe players’ beliefs about the reac-

tion of other players to a change in a player’s strategy. Theoretically, they allow for an

extended range of behaviors (see Figuières et al., 2004, for a book-length discussion of the

theory of conjectures and for further references).1 In aggregative games, conjectures can be

seen as beliefs about the reaction of the aggregate. Such beliefs determine players’ strategies

via a (conjectural variations) equilibrium, in which each player’s strategy is a best response

given the player’s conjecture about the reaction of the aggregate to a deviation.

Generally, players with different conjectures will play different strategies in equilibrium

and thus get different payoffs. If there is an evolutionary process selecting players on the

basis of these payoffs, then some conjectures will perform better than others. Suppose that

in a large (infinite) population agents are randomly matched to play a given finite-player

aggregative game. This paper shows that in well-behaved games the evolutionarily stable

constant conjectures must be consistent at equilibrium: the beliefs about the reaction to

a (small) deviation from equilibrium coincide with the marginal change in the aggregate,

derived from the players’ best response functions. On the other hand, evolutionary stability

for finite populations (where all players interact in the same game) selects zero conjectural

variations: players believe that the aggregate does not change if their strategy changes. Such

behavior is akin to the price-taking behavior in the standard perfect competition model (as

noted e.g. in Kamien and Schwartz, 1983).

Players with consistent conjecture correctly anticipate the reaction of the aggregate.

Nevertheless, it is not obvious why they should get a higher payoff in evolutionary terms,

since other players may adjust their behavior to such a conjecture. A consistent conjecture,

however, does not have a detrimental strategic effect; indeed, consistency takes this strategic

effect into account. In a finite population, relative payoffs are important in evolutionary

terms. In symmetric games, the effect of the aggregate is the same on any player and thus

1Conjectural variations are also used in empirical industrial organization (see e.g. Belleflamme and Peitz,

2010, pp. 70-71, and references there) and in policy analysis (see a report for the former main competition

authority in the UK, Office of Fair Trading, 2011).
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cancels out from the relative payoff evaluation. Players with zero conjectures behave as if

the aggregate does not change thus mimicking the condition for maximizing relative payoffs.

The results generalize and combine several previous observations in the literature about

evolutionary justifications of conjectures. For the infinite population case, Dixon and

Somma (2003) and Müller and Normann (2005) showed that consistent conjectures have

evolutionary foundations in certain duopoly games, while Possajennikov (2009) generalized

the result to arbitrary well-behaved two-player games. Reddy Rachapalli and Kulshreshtha

(2013) obtained the same result in a linear-quadratic oligopoly model. The present paper

extends the result to arbitrary well-behaved n-player aggregative games. For the finite

population case Possajennikov (2003) and Alós-Ferrer and Ania (2005) provided evolution-

ary background for aggregate-taking behavior in aggregative games. The present paper

shows that this result can be reinterpreted via conjectures, since aggregate-taking behavior

is equivalent to zero conjectural variation about the change in the aggregate.2

2 Aggregative Games and Conjectures

A symmetric aggregative game on the real line is given by G = (N,X, u), where N =

{1, . . . , n} is the set of players, X ⊂ R is the strategy set, common across players, and

u(xi, A) = ui(xi, A) : X × R → R is the payoff function for each player i. Here, A =

g(x1, . . . , xn) : Xn → R is the aggregate of players’ strategies, such that for any permutation

π on the set of players g(π(x1), . . . , π(xn)) = g(x1, . . . , xn). The game is assumed to be well

behaved: the set X is convex and the functions u and g are twice continuously differentiable.

A player i’s conjecture ri = (dA/dxi)
e ∈ R, where R is a convex subset of the real line

R, is a number representing the player’s belief, or expectation, about the change in the

aggregate in response to a marginal change in the player’s own strategy. It is assumed that

players entertain constant conjectures: ri does not vary with x1, . . . , xn.

Given the conjecture ri, player i maximizes the payoff u(xi, A). If the solution of the

player’s maximization problem is interior, then the first-order condition ∂u/∂xi(xi, A) +

∂u/∂A(xi, A) · (dA/dxi)e = 0 holds. Thus

Fi(xi, A; ri) :=
∂u

∂xi
(xi, A) +

∂u

∂A
(xi, A) · ri = 0. (1)

For each player i, it is assumed that the optimal choice is determined by this equation.

Suppose that all n players have some conjectures. If each player’s solution of the payoff

maximization problem is interior, then a (conjectural variations) equilibrium is characterized

2Müller and Normann (2007) showed that in a duopoly, finite population evolutionary stability indeed

leads to a result that would be obtained with zero conjectures about the aggregate.
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by the following equations:

F1(x1, A; r1) = 0

· · · (2)

Fn(xn, A; rn) = 0

A− g(x1, . . . , xn) = 0.

Definition 1 Strategy vector x∗ = (x∗1(r), . . . , x∗n(r)), together with the value of the aggre-

gate A∗ = A∗(r) = g(x∗1(r), . . . , x∗n(r)), is a conjectural variation equilibrium (CVE) for a

conjecture vector r = (r1, . . . , rn) if x∗, A∗ satisfy the system of equations (2) for this r.

In general a CVE may not exist or there may be multiple equilibria. An equilibrium selection

assigns for each vector r a unique equilibrium. It is assumed in the sequel that a locally

well behaved (i.e. differentiable) equilibrium selection x∗(r), A∗(r) exists for the relevant

values of conjectures. In a symmetric game, if conjectures are symmetric (ri = rj for all

i, j), then, whenever a CVE exists, there exists a symmetric CVE with x∗i (r) = x∗j (r) for

all i, j. The equilibrium selection is assumed to select this symmetric CVE.

Certain values of conjectures represent well-known solution concepts. In a standard

Nash equilibrium analysis, the actions of the other players are fixed, thus ri = (dA/dxi)
e =

∂g/∂xi. The current setting allows for many more conjectures, some of which turn out to

be relevant in terms of evolution. For example, a player with zero conjectural variation

ri = (dA/dxi)
e = 0 believes that a change in his or her own action does not affect the

aggregate (aggregate-taking behavior, Possajennikov, 2003, and Alós-Ferrer and Ania, 2005).

To define a (symmetric) consistent conjecture, suppose that players’ conjectures are

ri = rj for all i, j and imagine that player i’s strategy xi is fixed (the definition is based

on the definition for the Cournot oligopoly context in Perry, 1982, which generalized the

definitions for duopoly in Laitner, 1980, and Bresnahan, 1981). The remaining n−1 players

play a CVE of the reduced game with player i’s strategy fixed at xi. Then there are n

equations characterizing the CVE of the reduced game:

Fj(xj , A; rj) = 0, j 6= i (3)

A− g(x1, . . . , xn) = 0.

For various xi, this system implicitly defines reaction functions of the other players x∗∗j (xi)

and A∗∗(xi) = g(x∗∗1 (xi), . . . , xi, . . . , x
∗∗
n (xi)). It is assumed that the selection of the reaction

functions is such that for a symmetric conjecture vector r and a corresponding symmetric

CVE x∗, A∗, if xi = x∗i , then x∗∗j (x∗i ) = x∗j for all j 6= i and A∗∗(x∗i ) = A∗, since x∗j , A
∗ are

then a solution of system (3). For a symmetric r with ri = rC for all i define
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Definition 2 Conjecture rC is consistent if for any i

rC =
dA∗∗

dxi
(x∗i ) =

dg

dxi
(x∗∗1 (x∗i ), . . . , x

∗
i , . . . , x

∗∗
n (x∗i )),

where x∗∗j (xi), A
∗∗(xi) is a differentiable selection of reaction functions with x∗∗j (x∗i ) = x∗j

for j 6= i, A∗∗(x∗i ) = A∗, where (x∗1, . . . , x
∗
n), A∗ is a symmetric CVE for r.

The definition means that a conjecture is consistent if the belief about the change in the

aggregate is equal to the actual marginal change that would arise from the (reduced game)

reactions of the other players to a deviation by one player from the CVE profile x∗.

The consistency concept addresses some of the shortcomings inherent in arbitrary con-

jectures, but it does so only partially. It is a static concept, not looking at further reactions

to the first reaction to a deviation, and it can be argued that even this first reaction is not

properly modeled (see e.g. Makowski, 1987). However, as was shown for two-player games

(Dixon and Somma, 2003, and Müller and Normann, 2005, for specific symmetric duopoly

contexts and Possajennikov, 2009, more generally) and in a linear-quadratic oligopoly con-

text (Reddy Rachapalli and Kulshreshtha, 2013), it turns out that consistent conjectures

have an evolutionary foundation also in the general context of n-player aggregative games.

3 Evolutionary Stability of Conjectures

3.1 Evolutionary stability in an infinite population

Imagine that players are endowed with some conjectures. The previous section characterized

players’ (interior) CVE strategies. Substituting the equilibrium strategies into the payoff

function, the payoff of player i is u(x∗i (r), A∗(r)).

Consider the following interpretation of the choice of conjecture for a player. There is a

large (infinite) population of agents that are randomly matched to play the game G. Each

of the agents is endowed with a conjecture and they play a CVE. Agents with different

conjectures will get different payoffs in this CVE. An evolutionary interpretation is that the

agents that get a higher payoff are more likely to survive or to reproduce. It is assumed

here that conjectures (player’s beliefs) evolve much slower than players’ choices of strategies:

belief is a player’s innate characteristic that changes only slowly, while the player’s strategy

can be quickly adapted to the opponents’ choices.3

More precisely, consider a population of agents, all with the same conjecture rES . Sup-

pose that some agents with a different conjecture r′ 6= rES appear. In a random matching

3A good overview of this ‘indirect evolution approach’ can be found in Heifetz et al. (2007); see references

there for applications of the approach.
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process, an agent can end up playing the game against k players with conjecture rES and

n− k players with conjecture r′, with higher k more likely than lower k if the proportion of

players with conjecture r′ is small. Adapting the definition of evolutionary stability orig-

inated in Maynard Smith and Price (1973), let x∗i (r; k), A∗(r; k) denote the equilibrium

selection if player i has conjecture r, k players have conjecture rES and n − k − 1 players

have conjecture r′. Then for a symmetric conjecture vector r with ri = rES for all i

Definition 3 Conjecture rES is evolutionarily stable if

u(x∗i (r
ES ;n− 1), A∗(rES ;n− 1)) ≥ u(x∗i (r

′;n− 1), A∗(r′;n− 1)) (4)

for any r′ 6= rES, and there exists k∗ ∈ {0, . . . , n−1} such that if for all k ∈ {k∗+1, . . . , n−1}
it holds that u(x∗i (r

ES ; k), A∗(rES ; k)) = u(x∗i (r
′; k), A∗(r′; k)) then

u(x∗i (r
ES ; k∗), A∗(rES ; k∗)) > u(x∗i (r

′; k∗), A∗(r′; k∗)), (5)

where x∗(r), A∗(r) is a differentiable CVE selection.

The first condition of the definition considers the most likely situation of being matched

with n− 1 agents having conjecture rES , and requires an agent with the conjecture rES to

get a (weakly) better payoff than an agent with another conjecture. If payoffs of the two

conjectures are the same in this situation, then the second condition requires an agent with

conjecture rES to have a higher payoff in the most likely situation in which the conjectures

lead to different payoffs. The conditions ensure that an agent with conjecture rES has a

higher expected payoff than an agent with conjecture r′ 6= rES under random matching in

an infinite population if the proportion of agents with conjecture r′ is arbitrarily small.

From condition (4) of the definition, rES maximizes u(x∗i (ri;n − 1), A∗(ri;n − 1)) as a

function of ri. A necessary condition for an interior maximum is du/dri = 0 at rES , or4

∂u

∂xi

∂x∗i
∂ri

+
∂u

∂A

∂A∗

∂ri
= 0. (6)

If ∂u/∂A 6= 0 and ∂x∗i /∂ri 6= 0, the left hand side can be rewritten as

∂u/∂xi
∂u/∂A

+
∂A∗/∂ri
∂x∗i /∂ri

= 0.

From equation (1), −(∂u/∂xi)/(∂u/∂A) = ri at the solution of player i’s maximization

problem. Thus if rES is an evolutionarily stable conjecture, then

rES =
∂A∗/∂ri
∂x∗i /∂ri

.

4In the sequel, the arguments of the derivatives are omitted to save space. It is understood that the

appropriate derivatives are evaluated at r = (rES , . . . , rES) and at CVE x∗(r), A∗(r).
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If one treats ∂ri as a small change in ri, it can be canceled from the above expression.

Then rES = ∂A∗/∂x∗i . Recall that a conjecture is consistent if ri = dA∗∗/dxi at a CVE, and

that at a CVE, A∗∗ = A∗. Therefore there seems to be a relationship between evolutionary

stability of a conjecture and its consistency.5 Using the implicit function theorem, the

sufficient conditions for this relationship are made precise in the following proposition.

Proposition 1 Suppose that at conjecture profile r with ri = rES for all i, where rES is

an evolutionarily stable conjecture, the following regularity conditions hold:

(i) There exists a solution x∗(r), A∗(r) of system (2);

(ii) ∂u/∂A 6= 0 at x∗(r), A∗(r);

(iii)
∏n

i=1
∂Fi
∂xi

+
∑n

i=1
∂g
∂xi

∂Fi
∂A

∏
j 6=i

∂Fj

∂xj
6= 0 at r and x∗(r), A∗(r);

(iv)
∏

j 6=i
∂Fj

∂xj
+
∑

j 6=i
∂g
∂xj

∂Fj

∂A

∏
k 6=i,k 6=j

∂Fk
∂xk
6= 0 at r and x∗(r), A∗(r).

Then ri is a consistent conjecture.

The formal proof of the proposition is in Appendix A.1.

Thus only consistent conjectures can (generically) be evolutionarily stable. The propo-

sition describes what happens if an interior evolutionarily stable conjecture exists but it

does not guarantee that a conjecture satisfying the first-order condition (6) is evolutionarily

stable. Appropriate assumptions on the concavity of functions can ensure that the first-

order condition (6) is sufficient for evolutionary stability. In such a case the converse result

also holds: a consistent conjecture is evolutionarily stable. Section 4 provides an example

in which the consistency of a conjecture indeed implies its evolutionary stability.

If the choice of conjectures is interpreted as a conscious choice of a player instead of the

product of evolution, then the result means that only choosing a consistent conjecture can

be a Nash equilibrium of the conjecture choice game (Dixon and Somma, 2003, note this

result in the linear-quadratic Cournot duopoly context). With suitable modifications of the

definition of consistency and evolutionary stability to allow for heterogeneous conjectures,

only choosing a consistent conjecture can actually be a best response against any conjectures

of the other players.

5Itaya and Dasgupta (1995) note the relationship between consistent conjectures and the ones that

maximize a player’s indirect payoff ui(x
∗
i (ri, rj), A

∗(ri, rj)) in the context of a two-player public good game,

which can also be interpreted as an aggregative game.
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3.2 Evolutionary stability in a finite population

Suppose now that the population is finite of size n and all agents participate in the same

interaction. For this case, Schaffer (1988) introduced a finite-population evolutionary stabil-

ity concept. The concept again starts with all agents having the same conjecture rfES and

considers the appearance of (a small proportion of) agents using a different conjecture r′.

Adapted to the present context of symmetric aggregative games, for a symmetric conjecture

vector r with ri = rfES for all i

Definition 4 Conjecture rfES is finite-population evolutionarily stable (fES) if,

u(x∗i (r
fES ;n− 2), A∗(rfES ;n− 2)) ≥ u(x∗i (r

′;n− 1), A∗(r′;n− 1)) (7)

for any r′ 6= rfES, and there exists k∗ ∈ {0, . . . , n−1} such that if for all k ∈ {k∗+1, . . . , n−
1} it holds that u(x∗i (r

fES ; k − 1), A∗(rfES ; k − 1)) = u(x∗i (r
′; k), A∗(r′; k)) then

u(x∗i (r
fES ; k∗ − 1), A∗(rfES ; k∗ − 1)) > u(x∗i (r

′; k∗), A∗(r′; k∗)), (8)

where x∗(r), A∗(r) is a differentiable CVE selection.

The idea of the definition is that if one player has a conjecture r′ 6= rfES , then that

player will get a payoff not higher than the players who keep conjecture rfES . In this

situation, the player with conjecture r′ faces n− 1 opponents having conjecture rfES while

a player with conjecture rfES has 1 opponent with conjecture r′ and n− 2 opponents with

conjecture rfES . If the payoffs of the players with different conjectures are the same, then

situations with 2, 3, . . . players with conjecture r′ are considered sequentially until, for rfES

to be evolutionarily stable, a situation is found in which conjecture rfES brings a strictly

higher payoff than conjecture r′.6

Schaffer (1988) shows that condition (7) of the definition means that an fES strategy

maximizes relative payoff ui − uj . In the current symmetric context, an fES conjecture

rfES can be characterized as a solution of the problem

max
r1

u1(x
∗
1(r1, r

fES
−1 ), A∗(r1, r

fES
−1 ))− un(x∗n(r1, r

fES
−1 ), A∗(r1, r

fES
−1 )),

where rfES
−1 = (rfES , . . . , rfES). The first-order condition of this maximization problem is

∂u1
∂x1

∂x∗1
∂r1

+
∂u1
∂A

∂A∗

∂r1
− ∂un
∂xn

∂x∗n
∂r1
− ∂un
∂A

∂A∗

∂r1
= 0, (9)

6Schaffer (1988)’s original definition considered various degrees of stability depending on k∗ and requiring

equation (8) to hold for all k ∈ {k∗ + 1, . . . , n − 1}. The present definition is closer in spirit to the one for

evolutionary stability in infinite population used in the previous section.

8



at the (interior) solution r1 = rfES . At a symmetric equilibrium with x∗1 = x∗n corresponding

to the symmetric conjecture vector rfES , ∂u1/∂x1 = ∂un/∂xn and ∂u1/∂A = ∂un/∂A.

Equation (9) reduces to
∂u

∂x1

(
∂x∗1
∂r1
− ∂x∗n
∂r1

)
= 0. (10)

From the system of equations (2), the change in r1 affects only the equilibrium equation

(and thus the reaction function) for player 1, thus it represents a movement along the re-

action function of the other players. That ∂x∗1/∂r1 − ∂x∗n/∂r1 = 0 means that the reaction

function of the different players locally coincide (this is most clear if there are two players:

∂x∗1/∂r1− ∂x∗2/∂r1 = 0 means that the slope of the reaction function of player 2 at equilib-

rium is 1 since both x∗1 and x∗2 move by the same amount if r1 changes; by symmetry the

slope of player 1’s reaction function is also 1). This (rather specific) case can be excluded

by additional conditions.7 Then ∂u/∂x1 = 0 and equation (1) imply that rfES = 0.

Proposition 2 Suppose that at conjecture profile r with ri = rfES for all i, where rfES

is a finite-population evolutionarily stable conjecture, the regularity conditions (i)-(iii) of

Proposition 1 hold and the following additional conditions are satisfied:

(v) ∂Fi
∂xi
6= 0 at r and x∗(r), A∗(r);

(vi) ∂Fi
∂xi

+ n ∂g
∂xi

∂Fi
∂A 6= 0 at r and x∗(r), A∗(r).

Then rfES = 0.

The proof of the proposition is in Appendix A.2.

The result is related to the result in Possajennikov (2003), where the coincidence of

the first-order conditions for aggregate-taking and finite-population evolutionarily stable

behaviors is shown. In the current setting, a zero conjectural variation ri = 0 means

aggregate-taking behavior: player i believes that the aggregate does not change if the player

changes his or her strategy. That the finite-population evolutionarily stable conjecture

rfES = 0 is then another manifestation of the connection between aggregate-taking and

finite-population evolutionarily stable behaviors.

4 Example: linear-quadratic aggregative games

Consider the following game with n players. Player i chooses xi ∈ X ⊂ R+. Suppose that

the payoff function is

u(xi, A) = axi −
c

2
x2i + bxiA,

7The conditions exclude, for example, the game of ‘matching the average’ with payoff function ui(xi, A) =

−(xi −A/n)2 with A = x1 + . . . + xn, in which any symmetric profile x∗ is a CVE for many conjectures.
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where A = x1 + . . . + xn is the aggregate, a, c > 0 and b 6= 0. Proposition 1 shows that

only consistent conjectures can be evolutionarily stable in an infinite population. Hence the

search for evolutionarily stable conjectures can be restricted to consistent ones.

Suppose that each player has some conjecture ri = (dA/dxi)
e. The necessary conditions

for profit maximization at an interior solution for each player are a−cxi+brixi+bA = 0 for

i = 1, . . . , n. These equations characterize a CVE if the second-order conditions −c+2bri <

0 are satisfied, which holds for ri < c/(2b) if b > 0 and for ri > c/(2b) if b < 0.

To find consistent conjectures, suppose that the players other than player i all have the

same conjecture rC . The necessary conditions for profit maximization for each of these

n − 1 players are a − cxj + bCxj + bA = 0. Adding up these first-order conditions gives

(n− 1)a− c(A− xi) + brC(A− xi) + (n− 1)bA = 0. Therefore

A∗∗ =
c− brC

c− brC − (n− 1)b
xi +

(n− 1)a

c− brC − (n− 1)b
.

A symmetric consistent conjecture is then characterized by

rC =
dA∗∗

dxi
=

c− brC

c− brC − (n− 1)b
. (11)

If b > 0, this quadratic equation can have zero, one, or two solutions for rC satisfying

the second-order condition rC < c/(2b). The case b < 0 is simpler. If b < 0, equation (11)

has one root between 0 and 1, thus satisfying the second-order condition rC > c/(2b). For

the other root, rC < c/b < c/(2b), violating the second-order condition. Thus for any n > 1

there is a unique symmetric consistent rC ∈ (0, 1).

The case b < 0 presents a typical economic example of an aggregative game, the linear-

quadratic Cournot oligopoly. Players are firms, they choose production quantities qi, the

total production is Q = q1 + . . . + qn, the inverse demand function is P (Q) = a + bQ and

the cost function is C(qi) = c
2q

2
i . For this setting, Dixon and Somma (2003) and Müller

and Normann (2005) showed that consistent conjectures are the only evolutionarily stable

ones for n = 2 and Reddy Rachapalli and Kulshreshtha (2013) extended the result to the

n-player case. The results in the present paper allow to simplify the analysis by focusing

on consistent conjectures as the unique candidate for evolutionarily stable conjectures. The

results are also valid for demand-cost specifications other than linear-quadratic and, in

addition, allow considering finite-population evolutionary stability of conjectures.

For a finite population, Proposition 2 shows that only the conjecture r = 0 can be

evolutionarily stable. Consider the relative payoff maximization problem

max
r1

(a+ bA∗(r1, r−1))(x
∗
1(r1, r−1)−x∗n(r1, r−1))−

c

2
((x∗1(r1, r−1))

2− (x∗n(r1, r−1))
2) (12)
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where the conjectures of n− 1 players are r−1 = (0, . . . , 0).

The equilibrium values of A∗, x∗1 and x∗i are found from the conditions a + bA∗ − (c −
br1)x

∗
1 = 0 and n− 1 conditions a+ bA∗ − cx∗i = 0 for i 6= 1. The last conditions add up to

(n− 1)a− (c− (n− 1)b)A∗ + cx∗1 = 0. Then

b
∂A∗

∂r1
+ −(c− br1)

∂x∗1
∂r1

+ bx∗1 = 0

−(c− (n− 1)b)
∂A∗

∂r1
+ c

∂x∗1
∂r1

= 0.

Let D = bc − (c − br1)(c − (n − 1)b). Since r1 > c/(2b) > c/b, D < 0. Then ∂A∗/∂r1 =

(1/D)(−bx∗1)c < 0 and ∂x∗1/∂r1 = (1/D)(−bx∗1)(c − (n − 1)b) < 0 at an interior x∗1. Note

also that since x∗n = (1/(n− 1))(A∗ − x∗1), ∂x∗n/∂r1 = (1/D)(−b2x∗1) > 0.

The first order condition for maximizing function (12) is

(a+ bA∗)

(
∂x∗1
∂r1
− ∂x∗n
∂r1

)
+ b

∂A∗

∂r1
(x∗1 − x∗n)− cx∗1

∂x∗1
∂r1

+ cx∗n
∂x∗n
∂r1

= 0.

From the equilibrium equations, a + bA∗ − cx∗1 = −br1x∗1 and a + bA∗ − cx∗n = 0 thus the

condition becomes b(∂A∗/∂r1)(x
∗
1 − x∗n)− bx∗1r1(∂x∗1/∂r1) = 0. If r1 > 0, then x∗1 < x∗n and

thus both terms on the left-hand side are negative. Similarly, if r1 < 0, then x∗1 > x∗n and

thus both terms are positive. Thus the only solution of the first order condition is rfES = 0,

and the signs of the terms imply that the function is strictly maximized at rfES = 0.

Summarizing the results,

Proposition 3 In the linear-quadratic game with b < 0 (including Cournot oligopoly),

(i) the consistent conjecture rC ∈ (0, 1) satisfying rC = c−brC
c−brC−(n−1)b is the unique evolu-

tionarily stable conjecture for an infinite population;

(ii) the aggregate-taking conjecture r = 0 is the unique finite-population evolutionarily

stable conjecture.

Note that zero conjectures about the aggregate, which characterize aggregate-taking behav-

ior, mean competitive (Walrasian) equilibrium for any number n of firms in this setting.

5 Conclusion

Evolutionary stability means that a player with a different conjecture would get a lower

payoff than a player with the currently prevailing conjecture. If players in an infinite

population are randomly matched in groups of n to play a given game, only consistent

conjecture can be evolutionarily stable. A consistent conjecture correctly anticipates the

11



strategic reaction of other players and thus leads to the best payoff. This intuition should

work more generally; however, with many players and many conjectures the dimensionality

of the analysis increases considerably. Concentrating on aggregative games allows precise

statements regarding the relationship between consistency and evolutionary stability.

Focusing on aggregative games also allows linking evolutionary stability in finite popu-

lations with a particular conjecture r = 0 representing aggregate-taking behavior. A zero

conjecture in symmetric aggregative games commits a player to a behavior that maximizes

the difference between the player’s payoffs and the payoff of another player. If evolution

selects players on the basis of relative payoffs, as it does in a finite population, such a

behavior (and therefore the associated zero conjecture) can be evolutionarily stable.

The results are illustrated on the example of aggregative game that includes linear-

quadratic Cournot oligopoly. In such a game (with b < 0) the converse results also hold:

the consistent conjecture is evolutionarily stable and the zero conjecture leading to the

aggregate-taking behavior (which means price-taking behavior in the oligopoly context) is

finite-population evolutionarily stable.

A Proofs

A.1 Proof of Proposition 1

To simplify notation and because of symmetry, consider i = 1. From the system of equations

(2), at its solution x∗(r), A∗(r),

∂F1

∂x1

∂x∗1
∂r1

+ 0 + . . . + 0 +
∂F1

∂A

∂A∗

∂r1
= −∂F1

∂r1

0 +
∂F2

∂x2

∂x∗2
∂r1

+ . . . + 0 +
∂F2

∂A

∂A∗

∂r1
= 0

· · · · · · · · · · · · · · · · · ·

0 + 0 + . . . +
∂Fn

∂xn

∂x∗n
∂r1

+
∂Fn

∂A

∂A∗

∂r1
= 0

− ∂g

∂x1

∂x∗1
∂r1

− ∂g

∂x2

∂x∗2
∂r1

− . . . − ∂g

∂xn

∂x∗n
∂r1

+
∂A∗

∂r1
= 0.

Let

D =



∂F1
∂x1

0 . . . 0 ∂F1
∂A

0 ∂F2
∂x2

. . . 0 ∂F2
∂A

... · · · . . . · · ·
...

0 0 . . . ∂Fn
∂xn

∂Fn
∂A

− ∂g
∂x1

− ∂g
∂x2

. . . − ∂g
∂xn

1


.
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Then

|D| =
n∏

i=1

∂Fi

∂xi
+

n∑
i=1

∂g

∂xi

∂Fi

∂A

∏
j 6=i

∂Fj

∂xj
.

Condition (iii) of the proposition means that |D| 6= 0. By Cramer’s rule,

∂x∗1
∂r1

=
1

|D|

∣∣∣∣∣∣∣∣∣∣∣∣∣

−∂F1
∂r1

0 . . . 0 ∂F1
∂A

0 ∂F2
∂x2

. . . 0 ∂F2
∂A

... · · · . . . · · ·
...

0 0 . . . ∂Fn
∂xn

∂Fn
∂A

0 − ∂g
∂x2

. . . − ∂g
∂xn

1

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

1

|D|

(
−∂F1

∂r1

)
|D−1|,

where

D−1 =


∂F2
∂x2

. . . 0 ∂F2
∂A

· · · . . . · · ·
...

0 . . . ∂Fn
∂xn

∂Fn
∂A

− ∂g
∂x2

. . . − ∂g
∂xn

1


and thus

|D−1| =
n∏

i=2

∂Fi

∂xi
+

n∑
i=2

∂g

∂xi

∂Fi

∂A

∏
j 6=i,j 6=1

∂Fj

∂xj
.

Also,

∂A∗

∂r1
=

1

|D|

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂F1
∂x1

0 . . . 0 −∂F1
∂r1

0 ∂F2
∂x2

. . . 0 0
...

. . .
. . .

. . .
...

0 0 . . . ∂Fn
∂xn

0

− ∂g
∂x1

− ∂g
∂x2

. . . − ∂g
∂xn

0

∣∣∣∣∣∣∣∣∣∣∣∣∣
= − 1

|D|
∂F1

∂r1

∂g

∂x1

∏
i 6=1

∂Fi

∂xi
.

Therefore,

∂A∗/∂r1
∂x∗1/∂r1

=
−∂F1

∂r1
∂f
∂x1

∏
i 6=1

∂Fi
∂xi(

−∂F1
∂r1

)(∏n
i=2

∂Fi
∂xi

+
∑n

i=2
∂g
∂xi

∂Fi
∂A

∏
j 6=i,j 6=1

∂Fj

∂xj

) =
1

|D−1|
∂g

∂x1

∏
i 6=1

∂Fi

∂xi
, (13)

where condition (iv) guarantees that |D−1| 6= 0 and condition (ii) that ∂F1/∂r1 6= 0 (from

equation (1) ∂F1/∂r1 = ∂u/∂A 6= 0).

The reaction of the aggregate to independent changes in the strategy of player 1 is found

13



from system (3). Using again the implicit function theorem, dA∗∗/dx1 can be found from

∂F2

∂x2

dx∗∗2
dx1

+ . . . + 0 +
∂F2

∂A

dA∗∗

dx1
= 0

· · · · · · · · · · · · · · ·

0 + . . . +
∂Fn

∂xn

dx∗∗n
dx1

+
∂Fn

∂A

dA∗∗

dx1
= 0

− ∂g

∂x2

dx∗∗2
dx1

− . . . − ∂g

∂xn

dx∗∗n
dx1

+
dA∗∗

dx1
=

∂g

∂x1
.

Then

dA∗∗

dx1
=

1

|D−1|

∣∣∣∣∣∣∣∣∣∣

∂F2
∂x2

. . . 0 0
...

. . .
. . .

...

0 . . . ∂Fn
∂xn

0

− ∂g
∂x2

. . . − ∂g
∂xn

∂g
∂x1

∣∣∣∣∣∣∣∣∣∣
=

1

|D−1|
∂g

∂x1

∏
i 6=1

∂Fi

∂xi
. (14)

Comparing equations (13) and (14), it holds that

dA∗∗

dx1
=
∂A∗/∂r1
∂x∗1/∂r1

.

Thus if rES is an evolutionarily stable conjecture, then

rES = −∂u/∂x1
∂u/∂A

=
∂A∗/∂r1
∂x∗1/∂r1

=
dA∗∗

dx1
,

i.e. rES is consistent.

A.2 Proof of Proposition 2

Recall from the proof of Proposition 1 that

∂x∗1
∂r1

=
1

|D|

(
−∂F1

∂r1

) n∏
i=2

∂Fi

∂xi
+

n∑
i=2

∂g

∂xi

∂Fi

∂A

∏
j 6=i,j 6=1

∂Fj

∂xj


in equilibrium. From system (2),

∂x∗n
∂r1

=
1

|D|

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂F1
∂x1

0 . . . −∂F1
∂r1

∂F1
∂A

0 ∂F2
∂x2

. . . 0 ∂F2
∂A

...
. . .

. . .
. . .

...

0 0 . . . 0 ∂Fn
∂A

− ∂g
∂x1

− ∂g
∂x2

. . . 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

1

|D|
∂F1

∂r1

∂g

∂x1

∂Fn

∂A

∏
j 6=n,j 6=1

∂Fj

∂xj
.

Simplifying the expressions above,

∂x∗1
∂r1
− ∂x∗n
∂r1

=
−∂F1/∂r1 · (∂F1/∂x1)

n−2

|D|

(
∂F1

∂x1
+ n

∂g

∂x1

∂F1

∂A

)
.
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Conditions (v) and (vi) of the proposition imply that ∂x∗1/∂r1 − ∂x∗n/∂r1 6= 0 (condition

(ii) of Proposition 1, ∂u/∂A 6= 0, implies ∂Fi/∂ri 6= 0).

From equation (10), if ∂x∗1/∂r1 − ∂x∗n/∂r1 6= 0, then the necessary condition for finite

population evolutionary stability is ∂u/∂x1 = 0. But recall that a necessary condition for

player 1 to play a strategy x∗1 that is a part of a CVE is given by equation (1), (∂u/∂x1) +

(∂u/∂A)r1 = 0. If ∂u/∂A 6= 0, then the only way to satisfy the two conditions is r1 = 0.
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