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Abstract—This paper is concerned with low cost mechanisms 

that can increase reliability of machine to machine and machine 

to cloud communications in increasingly complex manufacturing 

environments that can be disconnection and fault prone. We 

explore a distributed and cooperative sensing framework that 

supports localized real time predictive analytics of connectivity 

patterns and detection of a range of faults together with issuing 

of notifications and responding on demand queries. We show that 

our Fault and Disconnection Aware Smart Sensing (FDASS) 

framework achieves significantly higher packet delivery ratios 

and lower communication delays in the face nodes and network 

unreliability when compared to the state of art and benchmark 

approaches. 

Keywords — Opportunistic Networks, Ad hoc networks, Self-

organized networks. 

I.  INTRODUCTION 

When breakdown occurs (or is about to occur) in a 
complex manufacturing plant, rapid fault identification (or 
prediction), repair and recovery is crucial for avoiding large 
losses. Today’s manufacturing environments typically rely on 
either sensing aimed at monitoring of simple manufacturing 
processes with infrequently changing conditions or on non-
real-time cloud data mining for modelling and prediction of 
various events [9][10]. Many application-specific monitoring 
techniques and prototype systems have been proposed and  
developed such as multi-sensor approach to drill wear 
monitoring [4], a neural network-based multi-sensor system 
for monitoring the conditions of cutting tools [5][6], multi-
sensor based monitoring of gear tooth fatigue for predictive 
diagnostics [7] and neural networks with multiple feature sets 
extracted from sensor networks for tool wear monitoring of 
turning [8]. Newly emerging work in [9] describes current best 
practices that extend simple on-line diagnostics provided by 
the equipment manufacturers for rapid diagnosis after failure. 
[9] proposes an analytical approach for similarity-based 
prediction of manufacturing system performance where the 
authors compare similarity of the most recent performance 
signatures with the known degradation patterns available in 
the historical records. However these techniques have inherent 
limitations as they do not they do not consider that the 
underlying end to end network connectivity may vary 
dramatically. Such solutions may miss on events and data that 
do not get delivered to the cloud due to network 
disconnections and thus result in incomplete diagnosis [11]. 

We argue that enabling continuous resource and data 
monitoring with limited maintenance and deployment cost 
should constitute an integral part of any reliability mechanism. 
This paper describes the design and implementation of fault 
and disconnection aware smart sensing (FDASS) framework 
that enables continuous monitoring of data and resources. 
FDASS enables 1) fully distributed predictive analytics for 
detection and identification of a range of different faults and 
network disconnections that are implicit in highly automated 
plants, 2) multipath adaptive routing between sensors, 
machines and the cloud, and 3) storing of rich historical data 
in the cloud, issuing notifications and supporting on demand 
queries. We perform extensive experiments with 1250 raw 
heterogeneous sensors, 9 gateways that can aggregate and 
process sensor data, a cloud backend and three different kinds 
of mobile nodes that can store and query data on demand. We 
simulate a arrange of different faults divided in three 
categories to show that FDASS is successful at minimising 
negative impact of faults and disconnections in the plant and 
that it outperforms competing protocols across multiple 
metrics. In our previous work [18] we have shown the 
usefulness and feasibility of real time analytics in large 
complex systems (e.g. 540 nodes over multiple months). 
However, in this paper, the scale of the network and frequency 
of updates are considerably higher, resources lower, and it is a 
highly challenging problem to investigate how self-
organization can improve the reliability of such fault and 
disconnection prone complex dynamic sensors networks that 
are integral part of these systems.  

II. RELATED WORK 

This section briefly reviews most recent advances in data 
forwarding (with and without replication) in disconnection 
prone networks. Recent work in disconnection tolerant 
networks was concerned with buffer management 
[19][22][24][14], replication management [18][14] and 
distribution [15][22][18]. [15] is a benchmark quota based 
routing protocol with replication that aims to forward more 
copies of a message to nodes that are core to the network but it 
does not check how fault prone these nodes are. [18] proposed 
and examined several combined connectivity and resource 
heuristics in order to detect congested parts of the network and 
move the traffic away towards less congested parts. While it 
increased packet delivery and lowered delays, it did not 
consider the possibility of faulty nodes. None of this work has 



considered the environment that we consider here which has 
high data rates, requires low delay and requires high precision. 

[20] propose mechanism of resource pooling by harnessing 
multipath-capable end systems. In our work, the nodes benefit 
from pooling the store and forward capacity in in the  network. 
More specifically, if traffic is spread across the resources of 
some faulty nodes and their neighbours, then traffic should 
identify quickly the affected regions, move away, provide 
notifications and utilise available and reliable parts of the 
network. Our FDASS combines heuristic function is at the 
core of our adaptive forwarding protocol that is dynamic and 
flexible as it operates as fault prediction and detection protocol 
we well as congestion aware protocol.  

There is a body of work on Passive Clustering (PC) in ad 
hoc network relying on formation of clusters (e.g. [9][21]). 
Approaches that require proactive exchange of control 
messages to maintain the virtual infrastructure are less optimal 
for our scenario than passive clustering techniques (PC) due to 
limited resources. In PC the first node to broadcast its state is 
assumed to be a cluster head. All other nodes within its range 
become either gateways (that links multiple cluster together) 
or ordinary nodes. The node can become a gateway when it 
has sufficient resources. In our paper we use a variant of this 
technique when the contention among sensors is very high 
after a disconnection of fault has been discovered. 

III. FAULT AND DISCONNECTION AWARE SMART SENSING  

We propose an intelligent framework that can improve 
reliability of the manufacturing plant in the face of varying 
network connectivity and non-uniform distribution of different 
types of faults in the network. Fault and Disconnection Aware 
Smart Sensing framework (FDASS) is able to detect and 
identify misperforming nodes in a fully distributed fashion in 
order to isolate them, reroute the traffic away from them and 
notify the sinks about the type, location and time of the 
failures. FDASS builds on and extends multi-path transport 
approaches such as [14][1][2][18][17] to combine fault 
analytics  layer with the complex network topology and 
resources analytics layer into a complex heterogeneous 
networks for manufacturing environments as shown in Figure 
1. 

Fig. 1. Multilayer design of FDASS 

FDASS works as a local adaptive fault-aware forwarding 
and replication protocol that diverts the load from its static 
path at times of faults and congestion, and directs it via a 

different path that avoids the faulty nodes and regions. In 
Section IV we show it decreases the load on highly central 
nodes while managing to have high success ratios and not 
introducing significant end-to-end delays. FDASS adaptively 
decides on the optimal number of replicas to forward in order 
to increase reliability of the system. We briefly describe the 
analytics that FDASS performs across multiple metrics below. 

Retentiveness [18] refers to the node’s available storage 
for the new packets that are sent to them. Retentiveness is 
important because of potentially very limited node buffer sizes 
in complex sensor networks and the possibility of faults. 
Retentiveness is calculated as an exponentially weighted 
moving average of a node’s remaining buffer storage as 
below. 
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Receptiveness (Rec) [18] is complementary to 
Retentiveness and refers to the node’s ability to receive 
packets and forward them on. This is important as increasing 
in-network delays is an indication of a possible fault or 
congestion. Formula 2 shows Receptiveness is the total current 
message delay, calculated as the sum of differences between 
the current time (Tnow) and the time each message was 
received (Mreceived). 
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Fault Rate and Congesting Rate (FR and CR) refer to 
measures of how fast a node is likely to become faulty and 
congest respectively. These are core to this proposal and help 
ensure its reliability and stability. Fault Rate signal indicates 
the likelihood of the nodes getting faulty and causing 
inaccurate information and disconnections. Each node that has 
sufficient resources keeps track of the percentage of time it 
has been faulty (T%f (X)) in Formula 3a, and the average time 
between its faults reoccurring (TFe(X)) in Formula 3.  
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We described congestion rate (CR(X)) in [18] and showed 
how it indicates the likelihood of traffic spikes that can cause 
the message to be dropped in. In FDASS, each node keeps 
track of it its congestion rate to avoid congesting individual 
nodes and regions of the network.  

We define Region (Reg) as a network consisting of a 
single node together with the nodes that are its n-hop 
dynamic/changing neighbours. FDASS dynamically 
aggregates retentiveness, receptiveness, fault rate and 
congesting rate (Regret, Regrec, RegFR, Regcr) for each 
Region to form dynamical regional perspective of the network. 
FDASS uses EWMA to aggregate fault and resource analytics 
information for each node (α is typically 0.05). 
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The aggregate FDASS heuristics that integrates both node 
and regional resource analytics is given below. 
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Without loss of generality, we consider three types of 
faults in manufacturing environments that FDASS is able to 
detect, isolate and send notifications about: ABFR refers to 
nodes reporting with abnormal frequencies (e.g. nodes 
reporting slower or faster than normal). This can be caused by 
calibration failures, poor lighting, part reflectivity, and 
unknown failure. ABSV refers to nodes reporting abnormal 
sensor values (e.g. sensors values outside one standard 
deviation of the average readings). This can be caused by 
sensor failure, inadequate sensing capability, ineffective 
maintenance, noise. NRES refers to nodes being unreachable 
and non-responsive. This can be caused by collisions, wear, 
contamination, moisture ingress. 

FDASS stores fault profiles that are tuples of four fault 
attributes: fault-category, fault-location, fault-time-interval, 
fault-summary-vector. Nodes exchange their knowledge about 
the detected faults with other nodes so that they can learn 
faster about multiple different faults occurring across te 
network so that they can faster decide on the appropriate 
action to be taken in order to minimise the negative impact of 
the faults. Different types of faults can have different degrees 
of severity that may require different responses and 
mechanisms. FDASS continuously monitors the behaviour of 
the network and reported sensor data in order to provide fast 
detection of faults and perform suitable action. For example, if 
the neighbouring nodes calculate deviation from the expected 
value (ABSV Fault) that one node is reporting, FDASS will 
promptly change the route to avoid that node, discard its data 
and notify the local network The architectural overview of 
FDASS is given in Figure 2 and its pseudo code is given in 
Figure 3. 

 

Fig. 2. FDASS Architectural Overview 

 FDASS uses Eigen Vector and EigenTrust [12] to 
represent nodes’ agreements or disagreements over potentially 
faulty nodes. The trust value of a potentially faulty nodes is 
resolved as the weighted sum of multiple nodes’ observations 
of the node divided by the total number of nodes as: 
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where Ti is observation of the node i for the trust value of a 
faulty node m, and wi is the weight of this observing node i. 
The minimum required number of sampling nodes is 3, has 
been experimentally determined to achieve best trade-off 
between accuracy of fault awareness and delays imposed. 
FDASS identifies and uses nodes that have both high 
centrality and reputation to increase both reliability and 
accelerate reputation convergence. However, we assume that 
even the highly important and central nodes can get faulty and 
the potentially detrimental effects that this can have on the 
manufacturing plant (e.g. in terms of very low delivery ratios).  

Fig. 3. FDASS pseudocode 

With FDASS we show that the failure of such significant 
nodes gets discovered very quickly, so the losses get 
minimized and the faulty nodes get isolated. Each node holds 
N neighbour trust records where N is limited by the node’s 
memory and computational power. Nodes with higher trust 
values and centrality hold higher number of trust  records 
about other nodes. Nodes use expiration timer to achieve 
trade-offs between responsiveness, stability, and resource 
efficiency. FDASS performs deviation test to ensure the 
consistency between different nodes’ point of view on the 
same node as described in [13],[16]. 

 

Pseudo code FDASS  

 
List Faulty = {} 

For each Neighbour do: 

    If Faulty.Contains(Neighnour) Then: 

        Skip 

    End If 

    Monitor(Neighbour.Faults) 

    ExchangeRepuation(Neighbor) 

    ExchangeFaultInfo(Neighbor) 

    If ( Neighbour.isFaulty) Then: 

          Reputation.Resolve(Neighbour) { 

          Faulty.add(Neighbour) 

          Exchange,ReputationResolved(Neighbour) 

          Exchange.FaultData(Neighbour) 

          Skip 

    End If 

    Monitor(Neighbour.Congestions) 

    Monitor(Neighbour.Connectivity) 

    CalcCongHeur (Neighbour.Cong) 

    CalcConnHeur(Neighbour.Conn) 

    FDASSHeur=exchFDASSHeurInfo(Neighbour) 

    FDASS.Insert(Neighbour) 

End For 

For Each node in FDASS do: 

    Neighbour.local.FDASSregion.form() 

    FDASSreg.ForwRate =CalcFrwRate(FDASScluster) 

    FDASSreg.ReplRate = CalcRplRate(Neighbour) 

    FDASSreg.Sent = TransmitData(FDASSreg,   

FDASSreg.FrwRate, FDASScluster.RplRate) 

End For 
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IV. EVALUATION METHODOLOGY AND RESULTS 

A. Example Scnario  

Consider a complex heterogeneous cyber physical  
network architecture that drives a range of processes of a large 
factory  plant. We assume that there are three types of mobile 
units on the shop floor with different capabilities and different 
range of sensors:  automated guided vehicles (AGV), Floor 
Engineers (FE) and Assembly Lines (AL).  

AGV is a sink with moderately large storage (50MB) and 
high processing power that can forward the data to the cloud 
or to the Sensor gateways by exploiting its physical mobility 
as well as issues queries about state of different regions of the 
plant that is within its range. Sensor gateways have storage 
between 250 and 500MB. Floor engineer (FE) is assumed to 
carry an electronic inspection unit (a tablet or,  a smartphone) 
that can send in situ queries to nearby nodes to enquire about 
their status and also store and process limited amount of data. 
We consider five cells with 250 heterogeneous sensors and 5 
assembly lines  each. The sensors generate a reading every 
second with an average size varying between 1KB and 1MB. 
Each assembly line contains static sensors attached to the line 
that can gather data from one end of the assembly line and 
carry them to the other end of the assembly line. Each sensor 
cell can be connected via a RF, 802.11 Ethernet, Zigbee, or 
802.15.4/6LoWPAN  link to its default processing and 
aggregating gateways and can exchange on-demand data with 
them. All gateways can communicate with each other and the 
Clouds. They utilize wireless (or wired) links. We assume 
typical speeds of 15-20m/s for Assembly line, 2m/s-5m/s for 
the Floor Engineer and 7-10m/s for AGV. The communication 
range of sensors is assumed to be 50m for RF and 100m for 
wireless Ethernet. 

B. Experiment set up and comparison with benchmark and 

state of the art protocols 

We analyse the influence of changing numbers and 
distribution of faulty nodes in the face of increasing 
percentage of faulty nodes with the following steps of 
increase: 10%, 20%, 30%, 40%, 50% and 60%. More 
specifically, we incrementally expand the cells that are 
affected by faults by increasing the probability of fault 
occurring in each cell. For example in the early stage of the 
experiment, faults occur in a single cell only, then the faults 
expand to a neighbouring cell, and this process continues until 
the faults may occur throughout all cells. We argue that this 
choice of scenarios allows us to test our protocol in a range of 
different scenarios applicable to the real world scenarios such 
as faults that can propagate via Assembly Line or processes in 
which one faulty cell controls another cell. We show that self-
organised sensing and self-cooperation in FDASS is essential 
for high levels of reliability and scalability. Assumption of 
non-adaptive topologies can be damaging as they results in 

high levels of faulty nodes not being detected in time or not at 
all. We carry out comparative performance evaluation of 
FDASS, state of the art cloud that performs similarity based 
time series prediction of faults as in [9], and benchmark 
hierarchical approaches that report to the cloud but do not 
perform automated fault detection and analysis. All of our 
experiments are conducted in the ONE simulator[3]. 

C. Results 

1) Failure Detection 
Figure 4 shows that local failure detection rate in FDASS 

is always 100%. With the cloud approach some packets get 
dropped due to congestion or disconnection when the fault is 
being reported, thus some faults do not get identified 
accurately; with increased congestion levels the detection rate 
goes down to 42%. 

Traditional hierarchical approaches do not detect faults as 
they do not incorporate fault analysis and prediction. This 
shows that FDASS local processing and management is more 
effective than offloading and subsequent processing in a 
centralised manner. 

Fig. 4. Failure Detection Rates 

Figure 5 shows that delays for local fault discovery in 
FDASS of all three types of faults are very low (under 1 
second). This means that there is a very small additional delay 
imposed by nodes coordination of their views on the faults 
even in the face of high congestion. Reporting the faults over 
unstable paths for the cloud approach takes increasingly long 
time (ranging from above 2 sec to 14 sec) as the congestion 
increases. Benchmark hierarchical approaches impose no 
reporting fault delays as they do not identify any faults. 

 



Fig. 5. Failure Detection Reporting Delays 

2) Failure Analysis  
We show analyses of three different types of failure 

detection for different congestion levels in the face of non-
uniform failure distribution across the whole network. Figure 
6 show the number of failure types detected. As the congestion 
levels and fault probability increases, increasing numbers of 
faults occur and are being detected by neighbouring nodes.  

ABFR ranges from 2 through 108 to 168 for low, medium 
and high congestion levels respectively. ABSV ranges from 4 
through 113 to 173 for low, medium and high congestion 
levels respectively. NRES ranges from 4 through 132 to 214 
for low, medium and high congestion levels respectively. 

Fig. 6. Failure types detection 

Figure 7 shows the failure impact different types of nodes 
have on the network performance. We observe that individual 
sensor failures have very little impact while the effects of 
aaggregating and processing gateways is much more 
significant. In all cases FDASS outperforms Hierarchical 
benchmark approach. We observe that FDASS loses on 
average 10 times less packets compared to the hierarchical 
approach. For example FDASS aggregating gateway loses 
from 3428 to 240949 packets for the first and forth congestion 
levels respectively while Hierarchical aggregating gateway 
loses from 150000 to 600000 for low and medium congestion 
levels respectively. 

Fig. 7. Node failure effect 

3) Performance Statistics 
Figure 8 and Figure 9 show the comparative performance 

of FDASS and hierarchical protocols when supporting 
interacting communication with the mobile nodes Assembly 
Line, Floor Engineer and AGV, e.g. uploading on demand 
data and answering queries.: 

Fig. 8. Success rates with congestions levels increasing 

The highest success ratio is shown for the interactive 
communication with AssemblyLine over FDASS (ranging 
between 95% and 58%). This is followed by the interactive 
communication with the Cloud over FDASS communication 
(ranging between 82% and 48%). Hierarchical (non fault 
aware and non congestion aware) communication with 
AssemblyLine and the Cloud perform more than two times 
worse than FDASS. AssemblyLine over FDASS has the best 
performance because it is very well connected with all sensor 
nodes and can receive packets directly from them even in 
cases of aggregating gateway faults or congestions. Interactive 
communication between AGV over FDASS has the lowest 
performance of all intelligent protocols and even lower that 
some of the hierarchical protocols; this is due to the short 
periods of connectivity with the AGV separated by long 
periods of isolation as the AGV moves across the plant. 

 



 

Fig. 9. Delays with congestion levels increasing 

Figure 9 shows that interactive FDASS communication 
with the three sinks have slightly higher delays (around 5% on 
average) compared to the corresponding hierarchical 
protocols; this is due to the extra time taken to reroute the 
packets away from faulty or congested nodes. These delays 
are however negligible compared to the added benefit of 
increased success ratio of interactive on demand 
communication. 

V. CONCLUSIONS 

In this work we proposed FDASS framework that manages 
to detect and avoid faulty nodes in the disconnection prone 
heterogeneous sensor networks. Our approach was to unify 
adaptive forwarding and replication into a common fault 
aware and congestion aware framework that decreases the 
load on the network and offloads the traffic to the parts of the 
network that are more reliable and less congested. We achieve 
this by using a local based implicit heuristic based on fault and 
resource analytics that extends the previous work on static 
hierarchical architectures. Node fault rate and profiles 
heuristics allow identification and isolation of faulty nodes 
while node resource driven heuristics allows FDASS to adapt 
to heterogeneous nature of the sensor network. Network 
driven heuristics allows tolerance to disconnections and 
adaptation to congesting rates.  

FDASS significantly outperforms cloud and hierarchical 
communication approaches across several criteria. FDASS has 
significantly higher success ratios of detecting different kinds 
of faults compared to the cloud approach that missed almost 
50% of the faults at times of high congestion in the network 
and in the face of distributed faulty nodes.  This is due to the 
cloud not receiving full and timely information from the parts 
of the network that are unreliable.  

As part of our future work, we plan to test FDASS in a 
heterogeneous sensor network testbed comprising of multiple 
single-board computers (Raspeberry PI) and various sensors 
(temperature, magnetic, acceleration, cameras etc.) in a setup 
that closely resembles real world application scenarios. 
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