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Abstract:

This paper describes an experimental study of an enhancement of pre-formed
foamed concrete, 1300-1900 kg/m3, by utilising two types of additives, silica
fume and fly ash, to partially replace Portland cement and fine sand. It focuses
on consistency, mechanical and thermal properties as well as presenting a
comparison with normal weight, lightweight and foamed concretes from the
literature. In addition to conventional foamed concrete mixes (FC), foamed
concrete mixes with high flowability and strength (FCa) were also
manufactured in this study. The FC mixes had 28-day compressive strengths
from 6 to 23 MPa and corresponding thermal conductivities in the dry state
from 0.475 to 0.951 W/mK, whereas for the same density range, the FCa
mixes gave 19-47 MPa and 0.498-0.962 W/mK, respectively. Compared to
other studies on foamed concrete, the results from the mixes investigated in
this study showed higher strengths (for a given density), higher tensile to

compressive strength ratios and higher moduli of elasticity.

Keywords: Foamed concrete; Fly ash; Silica Fume; Mechanical properties; Thermal

conductivity.
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1. Introduction:

In construction projects, the main use of lightweight concrete is to reduce the
dead load of concrete structures resulting in reduction in the size of columns,
beams, foundations and other load bearing elements [1]. Cellular (aerated)
concrete is a lightweight material composed of cementitious mortar
surrounding disconnected bubbles which are a result of either physical or
chemical processes during which either air is introduced into the mortar
mixture or gas is formed within it [2]. Although aerated concrete is known as
an insulation material, its structural features are also of considerable interest
[3].

Indeed, the future need for construction materials which are light, durable,
economic and environmentally sustainable has been identified by many groups
around the world [4]. With the possibility of producing a wide range of
densities (400-1600) kg/m?3 and also of achieving a strength of at least 25
MPa, foamed concrete has the potential to fulfil these requirements and it is
now widely used in the construction industry [4, 5]. Furthermore, with foamed
concrete, sustainability can be enhanced because no coarse aggregate is
required in its manufacturing and there is also the possibility of partially or
fully replacing fine aggregate with recycled or secondary materials [6].

The most available supplementary cementing materials are silica fume, a by-
product of the reduction of high-purity quartz with coal in electric furnaces in
the production of silicon and ferrosilicon alloys, and fly ash, a by-product of
the burning of coal in thermal power stations [7-10]. Fly ash has the potential
to enhance properties by reducing heat of hydration and giving the material
good thermal insulation [4], while silica fume is usually added to improve
cement paste/aggregate bonds [11]. However, in a study of the effect of
mineral admixtures in lightweight concrete with high strength and workability,
Chen [8] investigated both rheological (improving the workability) and
strength (deceasing the early-age strength) properties, and recommended
that fly ash (FA) should not be added to lightweight concrete on its own. In
relation to silica fume (SF), he found that it significantly improved early-age
strength and increased the bonding of the concrete mixtures, but that it
caused rapid reduction in the workability. Bearing these conflicting finding in

mind, both FA (as a fine aggregate replacement) and SF (as a cement
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replacement) were investigated in this study. The ultimate aim was to push
back the limits of foamed concrete achieving strengths suitable for semi-
structural or structural purposes but with enhanced strength/weight ratio and
excellent thermal properties. For this purpose, properties of enhanced foamed
concrete will be compared to normal weight, lightweight and foamed concretes

produced in other studies.

2. Experimental details
2.1 Materials

Combinations of the following constituent materials were used to produce

foamed concrete in this study.

e Portland cement CEM I-52,5 N (3.15 S.G.) conforming to BS EN 197-
1:2011 [12].

e Natural fine aggregate (sand) (2.65 S.G.) conforming to BS 882:1992
[13] with additional sieving to remove particles greater than 2.36 mm,
to help improve the flow characteristics and stability of the final product
[4, 14].

e Fresh, clean and drinkable water

e Foam: the quality of foam is critical to the stability of foamed concrete
and will affect the strength and stiffness of the final product; therefore,
good quality foam (45 kg/m?3) was produced by blending the foaming
agent, EABASSOC (1.05 S.G.), water and compressed air in
predetermined proportions (45 g water to 0.8 ml foaming agent) in a
foam generator, STONFOAMM-4.,

e Superplasticizer: MIGHTY 21 EG made by Kao Chemical GmbH of
density (1.1 g/cm?3), was used as a water-reducing agent to maintain
sufficient workability of the premixed mortar (without foam) and to
produce a high strength foamed concrete with low water/binder ratio. In
addition, this superplasticizer has been proved to be compatible with
the EABASSOC foaming agent [15].

e Silica fume: Elkem Microsilica (2.2 S.G., 92% SiO2, mean particle size
0.15 pym and specific surface 20 m?/g) made by Elkem A Bluestar

Company was used to fill the space between cement particles making
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the cement matrix denser and stronger, to gain early age strength and
to improve cement/aggregate bonds.

e Fly Ash: to gain high strength and achieve more uniform distribution of
air voids, CEMEX fly ash-class S (2.09 S.G.) conforming to BS EN 405-
1:2005 [16], was used instead of part of the fine sand in the production

of foamed concrete.

2.2 Mix proportions

In this study, mix proportioning began with the selection of the unit weight
(wet density), the cement content and the water to cement ratio. The mix was
then proportioned by the method of absolute volumes.

It has been reported that mix proportions of concrete should be chosen
according to particular requirements such as strength, shrinkage, thermal
conductivity etc. For this reason and based on the best findings from the
literature, the constituent materials selected for this project have been chosen
to produce foamed concrete with relatively high strength and good thermal
properties.

Ruiwen [15] stated that based on previous studies, (Indian concrete Journal,
1989; ACI, 1993; Valore, 1954), cement content in conventional foamed
concrete with or without sand should be between 250 and 500 kg/m3; in this
project, to produce foamed concrete with high strength it was chosen to be
500 kg/m3.

The stability, the state of the mix at a density ratio (measured fresh density
divided by design density) close to unity, and consistency, spreadability and
flowability measurements, of foamed concrete are affected by the volume of
foam and water-solid ratio [17, 18]. Therefore, in this study for each mix the
water/binder ratio required to produce a stable mix (density ratio close to
unity) was determined by trials while the required foam volume was
determined from the mix design.

It is accepted that to achieve the target flow value, the proper dosage of
superplasticizer should be determined by trial and error. Noting that in this
study there is no target flow value but there is a target density which is

affected by water content and foam volume, therefore a single dosage of
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superplasticizer (1.5%) was obtained from trials and adopted for all relevant
mixes.

It has been well documented that the use of silica fume as a partial
replacement of cement in combination with superplasticizer provides a
significant increase in the strength and decrease in the permeability of
concrete [19], and proportions up to 10% by mass of cement have been
reported [18]. Moreover and according to Giaccio, et al. [20], when silica fume
is used (usually no more than 10% of cement weight), there is no reduction in
the fracture energy. In addition, based on the Taguchi method, Tanyildizi [21]
concluded that at 20°C the optimum for both compressive and flexural
strength is 10% silica fume by mass; therefore, where used in this project,
silica fume has been added to the mix at 10% of the cement weight.

Nambiar and Ramamurthy [22] stated that, in foamed concrete, because fly
ash is a reactive material, replacement of sand with fly ash leads to increased
strength. On the other hand, this will also lead to increased water absorption.
In addition, according to Ramamurthy et al. [18], mixes with fly ash exhibit
higher carbonation than those with sand. Furthermore, using sand may lead to
improved shear capacity between its particles and the paste resulting in higher
tensile strength. For these reasons and to make the lightest mix (1300 kg/m3)
suitable for structural purposes, in addition to adding silica fume and
superplasticizer, fly ash replacement was limited to 20% by weight of fine
sand (Table 1), giving a strength of over 17 MPa (see section 3.1) and
thereby bringing it into the range where it may be considered a structural
concrete [23]. To enable sensible comparisons, this ratio was also adopted for
the 1600 and 1900 kg/m3 mixes with additives (FCa6 and FCa9), see Table

).
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2.3 Production

To produce foamed concrete, the equipment used in this study comprised: an
ordinary mixer for mixing the raw materials, a foam generator (STONEFOAM-
4) running on a 12 Vdc (40-50 A) battery for generating stable foam by
blending a foaming agent, EABASSOC (1.05 S.G.), water and compressed air
of predetermined proportions (45 g water to 0.8 ml foaming agent) in it, and
moulds for casting the specimens. In this study, six differently proportioned
mixes were designed and divided into two groups, conventional mixes (FC)
and mixes with additives (FCa), each one at three densities, 1300 (FC3 and
FCa3), 1600 (FC6 and FCa6) and 1900 (FC9 and FCa9) kg/m?3. In moulding the
specimens [12 cubes (100x100x100 mm), 6 prisms (100x100x500mm), 2
cylinders (150x300mm) and 1 slab (305x305x50mm) for each mix], the
foamed concrete mix was placed in two approximately equal layers. The sides
of the moulds were lightly tapped after placing each layer until the surface of
the layer had subsided approximately to level [24]. After filling the moulds,
the surfaces of the specimens were levelled by using a trowel. All specimens
were covered with thick nylon to prevent evaporation. All specimens were
removed from moulds after 24 hours. After de-moulding, the specimens were
sealed-cured (wrapped in cling film) and stored at 20°C until testing. Note

that sealed-curing reflects a typical industry practice for foamed concrete [4].

3. Results and discussion

3.1 Effect of additives

As explained above, to develop the selected foamed concrete mixes,
comprising superplasticizer, silica fume and fly ash at specified ratios were
added to a proportion of the mixes. To identify the effect of additives,
individually or together, on the strength, a preliminary experimental
programme was carried out at the lowest material density (1300 kg/m?3), see
Table 1. The results are shown in Fig. (1), where it may be seen that adding
silica fume (FC3s) or fly ash (FC3f) individually improved the 28-day
compressive strength by about 10% and 60% respectively. In addition, the
use of superplasticizer (FC3p) improved the compressive strength by 115%

(at 28-day); this increased to 125% with combined of silica fume and
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superplasticizer (FC3s+p). However, the further addition of fly ash (FCa3),
helped in achieving a great increase in strength (215%) making even this

lightest mix potentially suitable for structural purposes.

3.2 Consistency

The consistency of both the base mix and foamed concrete was quantified by
measuring the spread diameter of a cylinder of material of initial diameter 75
mm and 150 mm height (Fig. 2) [17, 25]. The spreadability variation with mix
density before and after addition of foam is illustrated in Fig. 3. It seems that
for the three densities adopted, the spreadability of base and foamed concrete
mixes was 200-250 mm and 140-180 mm, respectively, for the conventional
mixes (FC) while it was 400-450 mm and 290-350 mm, respectively, for the
mixes with additives (FCa). It is evident that for a given mix, the spreadability
reduces when the foam is added and for the selected mixes it also reduces
with a reduction in design density; similar behaviour has been reported in the
literature [17, 26]. Nambiar and Ramamurthy [26] suggested that the reason
for this may be that the adhesion between the bubbles and solid particles in
the mixture increases the stability of the paste resulting in reduced
spreadability, noting that there are more bubbles at the lower densities, see
Fig. 4.

3.3 Mechanical Properties
e Compressive strength

Compressive strength testing was carried out on 100 mm cubes in accordance
with BS EN 12390-3:2002 [27] and in each case the results quoted are the
average of three specimens. As expected [4, 26, 28], the compressive
strength of foamed concrete decreases dramatically with a reduction in
density, as shown in Fig. 5. As illustrated in Fig. 6, the use of additives (silica
fume (SF), fly ash (FA) and superplasticizer) greatly improved compressive
strength development at all test ages. This is because of the reduction in
water content due to use of a superplasticizer and the pozzolanic
characteristics of both SF and FA, leading to an improved aggregate-matrix
bond associated with the formation of a less porous interfacial zone and a

better interlock between the paste and the aggregate [19], (see Fig. 7.a,b).
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In addition, using FA as filler may help in achieving more uniform distribution
of air-voids by providing uniform coating on each bubble thereby preventing
merging of bubbles leading to an increase in strength [18, 29], (Fig. 7.c,d).

In general, it is reported that foamed concrete with fly ash as filler has a
higher strength to density ratio for all densities [26]. A comparison of strength
to density ratios between FC and FCa mixes, at 28 days, with foamed concrete
mixes from the literature [4, 26, 30] is shown in Fig. 8. Based on this
comparison, it would appear that the FCa mixes showed higher strength to
density ratios than any of the foamed concrete mixes in other studies
produced by using sand and/or fly ash as a filler material. Overall, except for
mixes FC3 and FC6, the results suggest that the remaining mixes are all
potentially suitable for use as a lightweight concrete for semi-structural or
structural purposes since their densities to not exceed 2000 kg/m?3 and their

28-day compressive strengths are in excess of 17 MPa [1, 23].

o Tensile (flexural and splitting) strength
The structural properties of concrete such as shear resistance, bond strength
and resistance to cracking depend on the tensile strength; the higher the
tensile strength the better the structural properties [31]. Flexural strength
testing (two-point loading) was conducted on two 100x100x500 mm prisms
at ages of 7,14 and 28 days to determine the modulus of rupture (f;) in
accordance with BS EN 12390-5: 2000 [32]. Splitting tensile strength (fsp)
testing was also undertaken, in accordance with BS1881-117: 1983 [33] and
in each case the mean of three tested values at each test age was recorded.
The averaged values of f- and fsp are summarized in Table 3. Those at 28
days are compared with corresponding 28-day compressive strengths in
Figures 9 and 10, respectively. Note that in Fig. 9 the FC, LWC and NWC
graphs were plotted from equations £=0.31(f.)%%, £=0.46(f.)¥° and
fr=0.438(f'<)%? respectively [31, 34, 35]), and that in Fig. 10 the LWC and
NWC graphs were plotted from equations fs=0.28(fc)%%° and fs=0.2(fc)%’
respectively [31, 36]. It can be seen from the two figures that, for a given 28-
day compressive strength, the conventional mixes (FC) produced higher
indirect tensile strengths, flexural and splitting, than those with additives

(FCa). The reason for this may be the improved shear capacity between the
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sand particles and the paste phase [4] noting that, for a given density, the
sand content is lower in the mixes with additives (FCa). However, fsp/fcu ratios
for both FC and FCa mixes were slightly higher than those reported in most
other studies [4, 34, 36], while, the tensile (f- or fsp)/compressive strength
(fe) ratios of both FC and FCa mixes were slightly lower than those
investigated by Babu [31], likely to be because of the presence of lightweight
aggregate in these mixes which may lead to improved its tensile strength. As
illustrated in Fig. 11, at an age of 28 days, f- values of about 16-23 % and
11-15 % of f.. were observed for FC and FCa mixes respectively, while the

ranges for fsp were about 10-14 % and 7-9 % of fe..

e Modulus of elasticity

The static modulus of elasticity (Es) of the mixtures was determined using 150
x 300 mm cylinder specimens. Two specimens were tested for each mix at an
age of 28 days in accordance with BS 1881-121: 1983 [37]. Each specimen
was fitted with four potentiometers at different quadrants to measure the axial
deformation. Es was determined from the slope of the stress-strain
compression curves. The relationship with corresponding 28-day sealed-cured
cube compressive strengths is given in Fig. 12. Note that the FC-FA, FC-Sand,
LWC and NWC graphs were plotted from equations E.=0.99(fw)%%,
Ec=0.42(fcu)18, Ec=1.7%x10(Y)?(fcu)%-33 and Ec=11.71(fc)%33-8.355
respectively [4, 38, 39]. It can be seen that for a given compressive strength,
the FCa mixes exhibited lower E-values than the FC mixes, while the Es for
NWC was higher than for both FC and FCa. The same behaviour was observed
by Jones and McCarthy [4] leading then to conclude that a direct substitution
of foamed concrete for the same compressive strength grade of normal
concrete will not in reality give similar structural performance.

The dynamic modulus of elasticity (Eq) was measured according to BS 1881-
203: 1986 [40] using a CNS Farnell PUNDIT, Portable Ultrasonic Non-
destructive Digital Indicating Tester. The relationships between the static (Es)
and dynamic (Eq4) moduli of elasticity for both FC and FCa mixes are shown in
Fig.13. In this study (as in many others), the Eq appears higher than the E;
(secant) in all selected mixes. The reason for this is usually ascribed to the use

of a 100% non-destructive approach for determining Eq which provides very
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small applied stress and hence there is neither micro crack formation nor

creep during the test [41].

3.4 Thermal conductivity

Two classes of method are normally used to measure the thermal conductivity
of building materials; steady-state methods, in which the temperature across
a sample does not change with time, and transient methods, in which a
measurement is performed during the process of heating up [42].

In this study the Heat Flow Meter (HFM) method, introduced in ISO 8301:1996
[43], was adopted to determine the thermal conductivity of all selected mixes.
In the HFM technique, the specimen (305x305x50 mm) is placed between a
hot plate and the HFM which is attached to a cold plate. A Thermal
Conductivity of Building and Insulating Materials Unit (B480) was used for this
test. The results of thermal conductivity for both dry (A4 - oven-dried at 105°C
until constant weight) and saturated (As - immersed in water for 7 days) states
are shown in Table 4. As expected, for a given mix, it was found that the
higher the density the higher the thermal conductivity, and that thermal
conductivity increases with increased moisture (As>Aq), since air has lower
thermal conductivity than water. However, despite the fact that adding fly ash
instead of sand leads to an increase in the foam content compared with
conventional mixes (FC), the thermal conductivity in the dry state of mixes
with additives (FCa) is slightly higher than that for conventional mixes, (Fig.
14). The reason for this is that in the case of foamed concrete, its thermal
conductivity depends not only on the air volumetric fraction but also on the
thermal conductivity of the solid materials (mortar or cement paste) which is
made denser by the physical and chemical contribution of the additives (SF
and FA) as well as having less porosity owing to reduced W/C ratio with the
addition of a superplasticizer, Fig. 15. In addition, the pore structure of a
material plays a dominant role in controlling its thermal conductivity, and it is
noted that adding fly ash may lead to a more uniform voids distribution
resulting in reduced connectivity and consequent increase in thermal
conductivity. In contrast, in the saturated state and for a given density, the

results illustrate that compared to conventional mixes (FC), the thermal

10
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conductivities were slightly lower for FCa mixes. This is because the water
absorption of FCa mixes is less than that for FC mixes leading to the water
content being lower, which results in reduced thermal conductivity. In other
words, the water absorption in foamed concrete is mainly influenced by the
paste phase which is denser in the case of FCa mixes, and not all artificial
pores take part in water absorption since they are not interconnected [18],
(Fig. 7-¢).

In concrete construction, it is not only beneficial to reduce the thermal
conductivity of a material, but also to increase its structural efficiency (fc /A).
Fig. 14 illustrates that, for all mixes, there is an increase in the (fw /A4) ratio
with increase of density while, for the same density, this ratio increases with
the presence of additives. These increases are gained as a result of
improvements in the cementitious matrix due to reducing the foam, for the
selected mixes, and/or reducing the W/C ratio by adding a water reducer and
the incorporation of high quality pozzolana (SF and FA), for a given density. A
comparison of thermal conductivity and (f« /A) for the selected mixes with
other mixes (NWC, LWC and FC) from the literature [30, 42] is shown
schematically in Fig. 16.

11
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4. Conclusion

From the tests presented in this paper, the following conclusions can be

drawn:

The mineral admixtures (SF and FA) and superplasticizer combination
provides improvement in both the workability and the strength properties of
foamed concrete.

The results for mixes investigated in this study showed higher compressive
strength to density ratios compared to foamed concrete mixes from other
studies produced by using sand and/or fly ash as a filler material.

While indirect tensile, flexural and splitting strengths were significantly
higher for FCa mixes than FC mixes, the tensile/compressive ratios were
higher for FC mixes.

Similarly, while FCa mixes gave higher Es than FC mixes for a given density,
they exhibited lower E-values for a given compressive strength. Es for NWC
was also higher than both at a given compressive strength.

Due to their making the cement paste denser and less porous, addition of
additives and superplasticizer leads to slightly increased thermal
conductivity in the dry state. However, owing to reduced water absorption,
the thermal conductivity in the saturated state was slightly lower for FCa

mixes than FC mixes.

12
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Figures Captions

Fig. 1. Effect of used additives on the compressive strength of 1300 kg/m3
mix.

Fig. 2. Test of the spreadability of the base mix and foamed concrete.

Fig. 3. Variation of spreadability with density of the base and foamed concrete
mixes.

Fig. 4. Air voids in foamed concrete: (a) 1300 kg/m?3 density (b) 1900 kg/m3
density.
Fig. 5. 28 day compressive strength density variation for FC and FCa mixes.

Fig. 6. Development of 100mm cube sealed-cured compressive strength.

Fig. 7. Scanning Electron Microscopy images of 1300 kg/m?3 foamed concrete
(a, b and c) with additives (FCa3), (d) conventional.

Fig. 8. Strength to density ratios for different foamed concrete mixes.

Fig. 9. Relationship between flexural strength and 28 day compressive
strength of foamed, LW and NW concretes.

Fig. 10. Relationship between splitting tensile strength and 28 day
compressive strength of foamed, LW and NW concretes.

Fig. 11. The ratios of tensile strength (fr and fsp) to compressive strength of
the selected mixes at 28 day.

Fig. 12. Relationship between E-values and 28 day compressive strength of
foamed, LWC and NWC concretes.

Fig. 13. Relationship between static and dynamic modulus of elasticity at 28
day of foamed concrete mixes.

Fig. 14. The variation of (Ad) and (fcu /Ad) for the selected mixes.

Fig. 15. Microstructure of two 1600 kg/m?3 foamed concrete (a) Conventional,
FC6 (b) with additives, FCa6.

Fig. 16. The comparison of (Ad) and (fcu /Ad) for the selected mixes with
other mixes (NWC, LWC and FC) [29,41]..
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Tablel. Mix proportions of 1300 kg/m?3 foamed concrete mixes.

Mixes

FC3 FC3s FC3f FC3p FC3p+s FCa3
Target density (kg/m?) 1300 1300 1300 | 1300 1900 1300
Cement content (kg/m?3) 500 450 500 500 450 450
Silica Fume (kg/m?3) - 50 - - 50 50
W/b ratio* 0.475 0.475 0.475 0.3 0.3 0.3
Superplasticizer (kg/m?) - - - 7.5 7.5 7.5
Water content (kg/m?) 237.5 | 237.5 | 237.5 150 150 150
Sand content (kg/m?3) 562 562 450 625 625 500
Fly Ash (kg/m®) - - 112 - - 125
Foam (kg/m3) 19.1 19.1 19.1 19.1 19.1 19.1
Foam (m?3) 0.424 0.424 0.424 0.424 0.424 0.424

Table2. Mix proportions of selected foamed concrete mixes.
Mixes

FC3 FCa3 FC6 FCa6 FC9O FCa9
Target density (kg/m*?) 1300 1300 1600 | 1600 1900 1900
Cement content (kg/m?) 500 450 500 450 500 450
Silica Fume (kg/m?3) - 50 - 50 . 50
W/b ratio* 0.475 0.3 0.5 0.325 0.525 0.35
Superplasticizer (kg/m?) - 7.5 - 7.5 - 7.5
Water content (kg/m?) 237.5 150 249.9 | 162.5 | 262.5 175
Sand content (kg/m?3) 562 514 850 744 1137.5 974
Fly Ash (kg/m?3) - 128.5 - 186 - 243.5
Foam (kg/m3) 19.1 19.1 13.3 13.3 7.5 7.5
Foaming agent (kg/m3) 0.35 0.35 0.24 0.24 0.14 0.14
Foam (m?®) 0.424 0.424 0.295 0.295 0.166 0.166

16

*w/b ratios required to achieve a density ratio of unity for the selected mixes
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Fig. 1. Effect of used additives on the compressive strength of 1300 kg/m3 mix.
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Fig. 2. Test of the spreadability of the base mix and foamed concrete.
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Table 3. Flexural strength and prism splitting tensile strength results

Test Age (day)
. 7 14 28
Mixes Density fsp Density fsp Density fsp
(kg/m) | PR | vy | ggma) | TTMPA | wpa) | (kgzme) | TFIMPR) | (vipa)
FC3 1280 1.2 0.65 1295 13 0.75 1285 1.4 0.85
FCa3 1320 2.1 0.85 1323 2.6 1.35 1316 2.8 1.65
FC6 1615 2.3 0.9 1620 2.7 1.5 1625 2.9 1.8
FCab 1605 3.4 1.7 1620 3.8 2.35 1630 4.1 2.65
FC9 1870 2.9 1.5 1880 3.2 2.15 1865 3.7 2.35
FCa9 1870 4.1 2.5 1875 4.5 3.1 1880 5.3 3.5
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645
646 Table 4. The results of thermal conductivity for both of dry and saturated
647  states

648
Mixes FC3 FCa3 FC6 FCab FC9 FCa9
D 0.475 0.498 0.775 0.789 0.951 0.962
A (W/mK) al
Saturated 0.635 0.599 1.08 0.986 1.185 1.112
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