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Abstract: The fatigue behaviour of a 9Cr power plant steel at a temperature of 600 oC was studied by uniaxial fatigue 

tests and microstructural analysis using electron microscopy. A continuum damage mechanics apporach was coupled to 

the constitutive equations of the Chaboche elasto-visco-plastic model to describe the fatigue behaviour of the 9Cr power 

plant steel at 600 oC. A stress partition method is introduced to understand the fatigue softening behaviour, and used to 

give an initial estimate of the material constants in the Chaboche model. Further optimisation procedures with plastic 

strain range dependency of the material constants were introduced in the optimisation procedure in order to accurately 

predict the material behaviour, especially after damage initiation. An ABAQUS UMAT subroutine was coded to allow the 

full life cyclic softening behaviour of a power plant component to be accurately predicted in a finite element calculation. 

The multiaxial capability of the coding is validated against notched bar test data. 

Keywords: Cyclic plasticity; Chaboche visco-plasticity model; Continuum damage mechanics; UMAT subroutine 

 

Nomenclature 

𝝈 Stress tensor  D Damage  𝑓𝑦 yield function 

𝜺 Strain tensor  Δ Range      𝑝 Accumulated plastic strain 

𝑿 Kinematic hardening tensor    𝑅 Isotropic hardening   

𝒏 Normal direction  𝐸 Young’s modulus 𝑁𝑓 Number of cycles to failure 

𝝈̃ Effective stress tensor 𝜎𝑦 Yield stress  𝐿 Life portion 

I Identity matrix  t  Time   𝜎𝑣 Viscous stress 

𝑱̃𝒆  Effective elastic Jacobian matrix    U Displacement    

𝐺 Shear Modulus  𝜌 Dislocation density 𝑣 Poisson’s ratio 
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1. Introduction 
Martensitic steel P91 is widely used in power generation plants for steam piping systems, which may be subject to long 

term steady and cyclic loading conditions at high temperatures. Due to the intermittent nature of renewable energy 

generation, conventional power plants are now subject to a higher frequency of thermo-mechanical cycling, demanded by 

‘flexible’ operation. Due to this reason, the study of visco-plasticity behaviour of advanced power plant steels has become 

increasingly important. The aim of this study is to simulate the full life low cycle fatigue behaviour of a P91 steel at high 

temperature, and to investigate the physical evidence behind the stress and strain evolution. 

Plastic and creep deformation were analysed separately historically. Starting from 1970, the flow rules for plastic and 

creep deformations were combined, and plasticity formulations were considered as special cases of viscoplasticity 

formulations [1]. A continuum approach was usually used in such analyses, which assumes that heterogeneous behaviour 

can be averaged through a homogeneous representative volume element (RVE), and the size of RVE for metals is 

normally at the order of 0.1 mm3 [2]. Chaboche and Rousselier [3] and Chaboche [4] included isotropic and kinematic 

hardening in a visco-plasticity flow rule, to take the cyclic hardening and the Bauschinger effect into account.  

The Chaboche elasto-visco-plasticity model has been used extensively to study the cyclic material behaviour for P91. 

Ishmurzin et.al. [5] used this model in a typical forging problem to predict the residual stress and to estimate the fatigue 

life time. Saad et.al. [6] used this model to predict the initial stress amplitude evolution under strain-controlled uniaxial 

fatigue tests at high temperature. However, it is also important to predict the component lifetime as well as the failure site. 

Cracks and voids would significantly influence the cyclic stress-strain response. Following on the previous studies [6, 7], 

the Chaboche model was employed in this study to investigate the cyclic visco-plasticity behaviour in the full cycle 

fatigue life. 

Historically, the scalar damage parameter D (0 ≤ 𝐷 ≤ 1) was first introduced by Kachanov [8] and modified by Rabotnov 

[9], to describe the fraction of the actual load bearing area over the original area. Damage, in the microscopic view, refers 

to the presence of discontinuities, including micro-cavities and cracks, and its value is also described in a continuum 

mechanics way, where the size of the RVE is always large enough compared with damage discontinuities [10, 11]. The 

microcracks initiate when D=0 and grow with increasing D. When D=1, the crack develops to the mesoscale, and 

occupies the whole surface of the RVE. This is caused by a process of instability which suddenly induces the decohesion 

of atoms in the remaining resisting area. In a fatigue analysis in practice, damage is assumed to start from 0 and progress 

to a critical damage value Dc, instead of 1, to avoid the effective stress approaching infinity.  

The continuum damage mechanics (CDM) approach was widely used to study the fatigue damage under high temperature 

conditions. Wang et.al.  [12] divided the inelastic strain rates for high and low loadings to allow for description of the 

creep behaviour caused by diffusion and dislocation mechanisms, respectively. The damage process was also separately 

represented by pure fatigue and pure creep, based on an empirical model. Zhang et.al. [13] investigated the damage 

evolution under the stress controlled fatigue tests, and proposed a damage model based on the linear damage accumulation 

theory. The damage parameter is the sum of the creep damage as proposed by Rabotnov [9] and the fatigue damage as 

proposed by Lemaitre [14]. However, there are several disadvantages. For example, all the partition methods should be 

used in conjunction with a constitutive model giving different treatments for plasticity and creep. Otherwise, the effects of 

the plastic deformation and creep may be difficult to differentiate. Moreover, there are strong interactions between creep 

and fatigue, which increase with the increasing load. The presence of grain boundary cavities caused by creep accelerates 

the fatigue damage evolution due to embrittlement. On the other hand, the presence of surface cracks caused by fatigue 

accelerates the creep damage due to the stress concentration effect [15, 16]. 

In this study, a CDM method based on the total strain approach is coupled to the constitutive equations of the cyclic 

plasticity model to investigate the influence of the damage variable on the Chaboche model behaviour of the P91steel. The 

constitutive equations of the damage parameter coupled with the Chaboche model are introduced in Section 2. The 

experimental results, including the fatigue tests and microstructure studies, are shown in Section 3. The damage parameter 
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is formulated and analysed in Section 4, while the coding of the ABAQUS UMAT subroutine for the material behaviour 

is described in Section 5. The results obtained from the finite element analysis are presented and discussed in Section 6. 

Conclusions and future work are given in Section 7. 

2. Theoretical background  

With the framework of visco-plasticity, the total strain 𝛆 is decomposed into two internal variables, the elastic strain 𝜺𝒆 

and the irreversible visco-plastic strain 𝜺𝒑: 

𝜺 = 𝜺𝒆 + 𝜺𝒑            (1)  

The elastic strain is calculated using the linear elastic law, as follows: 

𝜺𝒆 =
1+𝑣

𝐸
𝝈̃ −

𝑣

𝐸
𝑇𝑟(𝝈̃)𝑰           (2) 

where 𝝈̃ is the effective stress defined using the concept of CDM, which is higher than the normal stress measured for a 

homogeneous continuum, caused by a loss of load bearing area in the RVE, as follows: 

𝝈̃ = 𝝈/(1 − 𝐷)            (3) 

The concepts of kinematic hardening 𝑿, isotropic hardening 𝑅 and initial yield stress 𝜎𝑦 are introduced to describe the 

yield function fy [17]: 

𝑓𝑦 = 𝐽(𝝈̃𝐷 − 𝑿) − 𝑅 − 𝜎𝑦 = [
3

2
(𝝈̃𝐷 − 𝑿): (𝝈̃𝐷 − 𝑿)]

1

2
− 𝑅 − 𝜎𝑦     (4) 

where the function  𝐽 represents the second invariant of the tensor in the bracket, and 𝝈̃𝐷 is the effective stress deviator. 

When fy<0, the stress response is in the elastic domain; when fy=0, the stress response is purely plastic on the yield 

surface; when fy>0, the value of yield function equals the viscous stress 𝑓𝑦 = 𝜎𝑣, and the stress response is caused by the 

visco-plastic behaviour of the material. The macroscopic expressions include a strain hardening term and a dynamic 

recovery term. The isotropic hardening R represents the size of the elastic domain, and is formulated as follows: 

𝑅 = 𝑅𝑠[1 − 𝑒𝑥𝑝(−𝑏𝑝)] + 𝐻𝑝          (5)  

where 𝑝 is the accumulated plastic strain, b is the coefficient controlling the changing rate, and 𝑅𝑠 is the saturated value of 

isotropic hardening, which represents either isotropic hardening (𝑅𝑠 > 0) or isotropic softening (𝑅𝑠 < 0). Whether the 

material hardens or softens depends on the temperature, material composition, and whether the material is pre-hardened. 

In this paper, cyclic softening occurs, in which dislocations move back and forth to relieve the dislocation accumulation or 

enable the dislocations to bypass the barrier [18]. The value of saturated isotropic hardening is exponentially related to the 

plastic strain range, which tends not to vary significantly at higher plastic strain ranges. 𝐻 is a coefficient used to modify 

the isotropic hardening in this continuous softening case. 

The kinematic hardening variable tensor X, related to the internal micro-stress, represents schematically the centre of the 

elastic domain. The superposition law suggests that there can be several additive kinematic hardening variables  𝑿𝟏, 𝑿𝟐… 

to consider both long range and short range effects [3]. It was suggested that the slow evolving long range kinematic 

hardening variable, which results from the dislocation looping mechanism, does not change in the isotropic softening 

situation [19, 20]. Therefore, only short range interaction between a dislocation and a single atom or centre of dislocation 

[21] is considered. Although it is proposed that the short-range kinematic hardening is decomposed into two individual 

variables, only one kinematic hardening variable is needed under viscoplasticity conditions, since the nonlinearity is 

already described by the normal viscous effect [22]. The kinematic hardening starts from an initial value 𝑋0 [19], and the 

nonlinear evolution law of the kinematic hardening proposed by Armstrong and Frederick [23] is employed for isothermal 

conditions, such that 
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𝑿̇ = 𝛾 (
2

3
𝑋𝑠𝜺̇

𝒑 − 𝑿𝑝̇ )              (6) 

where 𝑋𝑠 is the saturation value of kinematic hardening and the coefficient 𝛾  controls the rate of change. For non-

isothermal conditions, a temperature rate term is usually used. 

The yield stress 𝜎𝑦 in visco-plasticity formulations is slightly different from the concept in static tests at room temperature, 

since plastic flow occurs at a much lower stress than the normal yield stress. The flow rule for the plastic strain obeys the 

normality rule, such that the rate of plastic deformation is the product of the normal direction 𝒏 =
3

2

𝝈̃𝐷−𝑿

𝐽(𝝈̃𝐷−𝑿)
 and the 

accumulated plastic strain rate  𝑝̇: 

𝜀𝑖̇𝑗
𝑝
= 𝒏𝑝̇            (7) 

The value of the accumulated plastic strain rate 𝑝̇ is defined as  

𝑝̇ = (
2

3
𝜺̇𝑝: 𝜺̇𝑝)

1

2
            (8) 

In the uniaxial case, the value of the accumulated plastic strain rate equals the absolute value of the strain rate, 𝑝̇ = |𝜀̇𝑝|. 

For the visco-plastic material behaviour, it can be calculated from Norton’s law such that 

𝑝̇ = (𝜎𝑣/𝑆𝑘 )
𝑛            (9) 

The rate exponent n controls the material sensitivity to plastic deformation, while the drag force 𝑆𝑘 controls the resistance 

to plastic deformation. Plasticity is the limiting case when the yield surface 𝑓𝑦 = 0, and the value of the accumulated 

plastic strain rate 𝑝̇ can be obtained by solving the equation 𝑓𝑦 = 0.  

In low cycle fatigue, the number of cycles leading to macrocrack nucleation usually dominates the total life [24]. This is 

termed as the total life approach, in which the number of cycles to failure is assumed to be the number of cycles to crack 

initiation. The number of cycles to failure 𝑁𝑓 can be derived from the Coffin-Manson relationship in the uniaxial case, 

such that 

𝑁𝑓 = (Δ𝜀𝑝/2𝑐𝐹)
𝛾𝐹            (10) 

in which Δ𝜀𝑝 is the steady state plastic strain range, 𝛾𝐹  and 𝑐𝐹  are both material constants. In the multiaxial case, the 

accumulated plastic increment Δ𝑝 is used instead of Δ𝜀𝑝. A damage evolution curve is normally considered as a function 

of the life portion N/Nf, denoted as L, so that the damage evolution depends on the loading sequence and assumes 

nonlinear damage accumulation. Damage initiation criteria exist in the literature [10, 14], such as the accumulated plastic 

deformation or accumulated hysteresis energy criteria. However, the values at those damage initiation criteria are also 

strain range dependent for P91 at a temperature of 600oC, as shown in later experimental results in Section 3.1. In this 

study, it is assumed that damage initiates at the very beginning of the fatigue tests. A phenomenological description of the 

damage parameter against the life portion L is used based on the experimental observation that damage evolution for all 

the strain ranges was consistent against the life portion, as follows: 

𝐷 = 𝑠𝑖𝑛ℎ(𝐶2𝐿)/𝐶1           (11) 

where 𝐶1 and 𝐶2 are material constants. The life portion starts when L=0 and ends when L=1, and its incremental rule is 

defined as: 

𝑑𝐿/𝑑𝑁 = 1/𝑁𝑓(Δ𝜀
𝑝)           (12) 

3. Experimental work 
The material used in this work was a 9%Cr steel alloy (P91), and its composition is shown in Table 1.  

Table 1. Chemical composition for P91 steel (wt%) [7] 
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Cr Mo C Si S P Al V Nb N W 

8.60 1.02 0.12 0.34 <0.002 0.017 0.007 0.24 0.070 0.060 0.03 

 

Several strain-controlled isothermal fatigue tests were conducted at a temperature of 600 oC to investigate the stress-strain 

relationship and the damage effect in the macro-scale by Saad[7]. The tests were performed at a strain rate of 0.1%/s and 

with strain ranges of ±0.5%,  ±0.4%,  ±0.25% and  ±0.2% . The test specimen geometry follows the British Standard 

ISO 12111:2011(E) [25].  Another set of experiments with the same testing temperature at 600 0C with a dwell holding 

time of 120s at the maximum strain were conducted. 

In addition, the fatigue test with the strain range of ±0.5% was interrupted at cycle numbers 200 and 400 to allow for 

microstructure investigations for the as-received specimen, the interrupted specimens, and the specimen at failure. 

Samples were extracted from the longitudinal direction of the specimen’s gauge section for the Philips/FEI XL-30 

scanning electron microscope (SEM) to investigate damage in the mesoscale.  Meanwhile, in order to understand the 

mechanism responsible for the cyclic stress response, the JOEL 2000FX Transmission election microscopy (TEM) at 

200kV is also used for the samples taken perpendicularly to the loading axis. TEM is capable of studying the 

microstructure changes at a higher magnification, to observe features such as lath structure and dislocations.  

 

3.1 Fatigue test 

The direct outputs from the fatigue test include the stress-strain curves for each cycle, as well as the maximum and 

minimum stress evolution against cycle number. The low cycle fatigue life curves were plotted as stress amplitude 

(Δ𝜎/2) of each cycle against cycle number in Figure 1(a) which indicates that the stress amplitude keeps decreasing, 

except for the first few cycles. Moreover, as the strain ranges decrease, the cyclic maximum stress response decreases and 

the fatigue life becomes longer for the strain range of ±0.5%,  ±0.4% and ±0.25%. An exception is the fatigue test with 

a strain range of ±0.2%, for which the number of cycles to failure is greater than 10000, and therefore the fatigue 

behaviour is assumed to be elasticity dominant. This is an indication that the strain range of ±0.2% may represent a 

critical value between low and high cycle fatigue.  

In the British Standard used in this test [25], the failure criteria defined for the continuously softening materials is when 

there is a specified force drop from the projected straight line locus of peak tensile stress versus cycles. In this study, a 10% 

force drop is selected as the failure criterion.  Therefore, a critical damage value of Dc=0.1 is chosen in the FE analysis. 

This is the reason why the stress amplitude decreases at a steady rate, and the stress amplitude could be related to the 

cycle number N in a linear pattern, as shown in Figure 2(a), as follows: 

Δ𝜎/2 = 𝐶3𝑁 + 𝐶4           (13) 

where 𝐶3 and 𝐶4 are material constants. The material is assumed to fail when the experimental stress amplitude curve 

meets the straight line described by the following equation: 

Δ𝜎/2 = 𝐶3𝑁 + 𝐶4 × 90%          (14) 

The obtained number of cycles to failure Nf  were 608, 1467, 3614 and 10659 for the strain ranges of ±0.5%,  ±0.4%,  

±0.25% and  ±0.2% respectively. They were related to the plastic strain range by the Manson-Coffin relationship as in 

Equ. (10) in the uniaxial case, and the material constants obtained were 𝑐𝐹 = 29.403 and 𝛾𝐹 = 0.57, as shown in Figure 

2(b). 

From the evolution of the stress amplitude for all these strain ranges, it could be observed that there is a fast initial 

decrease of stress amplitude before 0.2Nf, followed by a steady linear decrease during cycle numbers between 
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approximately 0.2Nf  and 0.8Nf. Finally, there is a sudden decrease of stress amplitude after 0.8Nf. The evolution of the 

mean stress is rather small (less than 5 MPa and not shown here), which is negligible compared with the stress amplitude. 

The detailed stress-strain loops for cycle numbers 1, 101, 201, 301, 401, 501 and 601, 655 (final cycle number) for the 

strain range of  ±0.5% are plotted in Figure 1(b), and the cycle number could be identified easily by the decreasing 

maximum stress. These stress-strain curves are smooth without a sudden change at yielding, which is caused by the 

viscous effect. There is a clear change of slope in the elastic region when the number of cycles is 601 or 655 (Nf), but not 

much of a clear change before the cycle number 501 (0.8Nf). Since damage could also be regarded as the degradation of 

Young’s modulus, it is reasonable to postulate that the final decrease of stress amplitude was caused by the acceleration of 

damage propagation, which could be observed macroscopically after 501 cycles.  

The plastic strain increment of each cycle can be obtained as twice of the distance between the interception points of the 

stress-strain loops and the x-axis. They are plotted against the life portion in Figure 3(a), which shows that the variation of 

the plastic strain range was small, especially after the initial softening period. The accumulated plastic deformation was 

one of the quantities regarded as the damage initiation indicator in the Chaboche viscoplasticity model. They are plotted in 

Figure 3(b), which shows that for the same life portion, the accumulated plastic deformations are not the same, which may 

depend on the number of cycles to failure. Similar results also apply to the accumulated hystersis energy. Therefore, both 

of these two damage initiation indicators may not be suitable in this study.  

 

 (a) (b)     

Figure.1. (a) Stress amplitude Δ𝜎/2 against cycle number for strain ranges of  ±0.5%,  ±0.4%,  ±0.25% and  ±0.2%.  (b) 

Stress-strain curves for strain range at ±0.5% at the cycle number 1, 101, 201, 301,401, 501 and 601, 655 (the final loop) 

[7] 
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(a)  (b)  

Figure 2. (a) Determination of number of cycle to failure Nf and damage quantity; (b) Determination of material constants 

in the Manson-Coffin relationship at 600 oC.    

 (a)  (b)  
Figure 3. (a) Plastic strain range Δ𝜀𝑝 against the life portion N/Nf; (b) Accumulated plastic strain p evolution against the 

life portion N/Nf 

3.2. Microstructure study 

The microstructure tests, including SEM and TEM, were conducted for the as-received specimen, the interrupted 

specimens at cycle numbers 200 (0.33Nf) and 400 (0.66 Nf), and the specimen at failure, for the strain range of ±0.5%.  

It is observed from the SEM results [7] that there is no obvious microstructure change before the 200th cycles (Figure 4). 

A crack initiates before the 400th cycle at the specimen’s surface at two locations, and many microcracks with a length of 

about a grain size were observed at the 400th cycle (Figure 5a). When the force drops by over 10% at failure, the crack 

lengths are about 10 grain sizes (Figure 5b). Accurate recording of damage initiation would require additional acoustic 

systems. 

Bright field TEM results are shown in Figures 6 and 7 [7] to examine the microstructural mechanics responsible for the 

cyclic softening mechanics for P91 at high temperature. Some features could be observed under bright field TEM, which 

are regarded as obstacles to overcome in producing slip, and contribute to material softening. The first is the subgrain 

microstructure, named as martenstic lath. They cannot be observed under SEM since the misorientations between subgrain 

boundaries are small (<5o), and these low angle boundaries could also be regarded as arrays of edge and screw type 
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dislocations. In addition, dislocations inside the subgrains could be observed as short straight lines pinned at subgrain 

boundaries. A small fraction of dislocations inside and at the subgrain boundaries is regarded as mobile dislocations 

contributing to plastic deformation, whereas the majority of dislocations hinder plastic deformation [26]. The dark sites in 

the TEM picture are normally precipitates at the subgrain boundaries or caused by some pollution during the experiment. 

Better results of the precipitate should be achieved by the dark field TEM. 

Both subgrain size and dislocation density could be roughly calculated by the line intercept method [27]. For example, the 

average dislocation density 𝜌 inside the subgrains is calculated by drawing five random lines through the TEM images 

with total length Lr and counting the number of the intersection points N, with the following equation: 

𝜌 = 𝑁/𝐿𝑟𝑡            (15) 

in which t is the thickness of the TEM foil. The evolution of subgrain size and dislocation density obtained from TEM 

results are plotted in Figure 8a. 

The as-received sample exhibits small and inconsistent subgrain sizes, and high dislocation density. As cycles increase to 

cycle number 200 when the stress amplitude softens initially, the lath structure becomes longer, and the subgrain size 

increases by around 33%. There are thus less low angle boundaries, and a lower dislocation density. Dislocation 

annihilation occurs since dislocations located inside the subgrain tend to move towards the low angle boundaries of the 

opposite sign until the distance is less than a critical dislocation annihilation value. Slower evolutions of the subgrain size 

and dislocations density were observed after cycle number 200 to failure.  

 (a)  (b)  

Figure 4. SEM results at the surface of the P91 specimen in a fatigue test at strain range of ±0.5%: (a) the as-received 

material and (b) at the 200th cycles (0.33Nf)  

(a)  (b)  

Figure 5. SEM results at the surface of the P91 specimen in a fatigue test at strain range of ±0.5%: (a) Microcracks 

observed at the 400th cycles (0.66 Nf); (b) Mesocracks observed at failure  
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(a) (b)   

Figure 6. Bright field TEM results of the P91 specimen in a fatigue test at strain range of ±0.5% (a) the as-received 

material and (b) at the 200th cycles (0.33Nf) 

(a) (b)   

Figure 7. Bright field TEM results of the P91 specimen in a fatigue test at strain range of ±0.5%: (a) at the 400th cycles 

(0.66 Nf); (b) at failure  

4. Damage formulation 
In the macroscopic scale, damage could be viewed as the degradation of Young’s modulus due to the loss of load bearing 

area. Therefore, a typical method to obtain damage evolution is to determine the effective Young’s modulus 𝐸̃ by the 

following equation: 

𝐸̃ = Δ𝜎/(Δ𝜀 − Δ𝜀𝑝)           (16) 

The damage parameter can be determined via the following equation:  

D = 1 − 𝐸̃/𝐸            (17) 

The result is shown in Figure 8(b). There is initial stiffening during the first tens of cycles, which is assumed to be caused 

by thermal fluctuation during the experiment start-up . Alternatively, since in a strain-controlled test, it could be assumed 

that after the initial softening period, the plastic strain range is constant and the value of damage before 0.6Nf  is regarded 
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as zero, damage evolution could be obtained by measuring the stress amplitude percentage degradation from the linear 

regression curve of the stress amplitude in the linear softening stage, by the following equation: 

𝐷 = 1 − Δ𝜎/2(𝐶3𝑁 + 𝐶4)          (18) 

The damage evolution for the strain range of ±0.5% obtained from the above two methods follows nearly the same trend. 

In addition, the damage evolutions for the strain ranges of ±0.5%, ±0.4%, ±0.25% and ±0.2% are also consistent 

against the life portion. As mentioned before, the critical damage Dc is defined to be 0.1 here. The evolution curves are 

fitted to the sinh function of the life portion, as in Equ.(11), which gives 𝐶1 = 187667 and 𝐶2 = 10.6. The damage and life 

portion evolution laws are written as follows:  

𝐷 = 𝑠𝑖𝑛ℎ(10.6𝐿)/187667  𝑎𝑛𝑑  𝑑𝐿/𝑑𝑁 = 1/𝑁𝑓(Δ𝜀
𝑝) = (58.806/Δ𝜀𝑝)0.57    (19) 

 (a)  (b)  

Figure 8. (a) Subgrain size and dislocation density evolution based on the TEM results for the strain range of ±0.5%;(b) 

Evolution of the effective Young’s modulus 𝐸̃ and damage D against cycle number N 

5. Finite Element Implementation 

5.1. UMAT subroutine  

The commercially available software ABAQUS is used to conduct the FE analysis. The built-in FE solver of ABAQUS 

Standard is able to process the inputs of geometry and loading conditions, and to calculate the stresses and strains using an 

implicit scheme. For material behaviour models not available in ABAQUS, for example, the Chaboche visco-plasticity 

model, a UMAT subroutine can be used by the users to code the material behaviour. In order for the UMAT to work 

inside ABAQUS Standard, which uses the Newton-Raphson method to solve nonlinear problems, the user needs to 

provide updated stresses and the Jacobian matrix (change of stress increment with respect to strain increment) based on 

the previous material condition at every strain increment.  Several parameters, including damage, accumulated plastic 

strain, are defined as solution-dependent state variables (SDV in ABAQUS), which could be directly viewed in the output 

file of ABAQUS.  

The UMAT subroutine is suitable for use in axisymmetric, 2D plane strain and 3D problems. In the Chaboche visco-

plasticity model, plastic strain, kinematic hardening and isotropic hardening are fully coupled in the constitutive equations. 

An elastic predictor-plastic corrector method is used to update the stress in the coding [28].   

The first step is to assume that there is no plastic deformation (𝛥𝑝 = 0), and the stress increment is caused by elastic 

deformation only from time point n to n+1, and thus there is no change in isotropic and kinematic hardening. It is 

assumed that the trial flow direction of the elastic-predictor is the same as the flow direction, as follows: 

𝝈̃𝑝𝑟 = 𝝈̃𝑛 + 𝑱̃𝒆𝑑𝜺           (20) 
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where 𝑱̃𝒆 is the effective elastic Jacobian matrix, the passed-in variable 𝝈̃𝑛 is the effective stress incorporating the damage 

parameter for the last increment, and 𝝈̃𝑝𝑟 is the stress at time increment n+1 obtained by the elastic-predictor . Since the 

material behaviour is assumed to be fully elastic as an initial estimate, there is no change in isotropic and kinematic 

hardening variables. However, if the material behaviour in the specific increment n is unable to accommodate the 

excessive stress, the elastic predictor brings the yield function fy out of the yield surface, such that 

𝑓𝑦 = 𝐽(𝝈̃𝑝𝑟 − 𝑿𝑛) − 𝑅𝑛 − 𝜎𝑦 > 0         (21) 

The second step is to use the plastic corrector to correct the accumulated plastic deformation, and therefore the stress, to 

make the yield function satisfy the Norton’s law 𝜙(Δp,𝑿, 𝑅) when there is creep. Since the elastic-predictor normally 

under-estimates the plastic deformation and over-estimates the stress response at time point n+1, the plastic-corrector is in 

the reversed direction of the flow direction. The Newton-Raphson iteration method is used to solve for the incremental 

accumulated plastic deformation 𝛥𝑝 by minimising the objective residual function 𝑓𝑟𝑒𝑠 
𝑓𝑟𝑒𝑠 = 𝜙(Δp, 𝑿, 𝑅) − 𝛥𝑝/𝛥𝑡          (22) 

where 

𝜙(Δp,𝑿, 𝑅) = 𝑝̇𝑛+1 = [(𝐽(𝝈̃𝑝𝑟 − 𝑿𝑛) − 𝑅𝑛 − 𝜎𝑦)/𝑆𝑘  ]
𝑛

      (23) 

Expanding Equation (22) by Taylor’s expansion, 

𝑓𝑟𝑒𝑠 +
∂𝑓𝑟𝑒𝑠
∂Δp

δΔp +
∂𝑓𝑟𝑒𝑠
∂R

δ𝑅 +
∂𝑓𝑟𝑒𝑠
∂𝑿

δ𝑿 = 0        (24) 

The partial differential can be unified as 

∂𝑓𝑟𝑒𝑠

∂R
=

𝜕𝜙

𝜕𝑅
= −

𝜕𝜙

𝜕𝜎𝑒
           (25) 

∂𝑓𝑟𝑒𝑠

∂𝑿
=

𝜕𝜙

𝜕𝑿
= −

𝜕𝜙

𝜕𝜎𝑒

𝜕𝜎𝑒

𝜕𝑿
= −

𝜕𝜙

𝜕𝜎𝑒

3

2

𝝈̃𝑝𝑟−𝑿𝑛

𝐽(𝝈̃𝑝𝑟−𝑿𝑛)
= −

𝜕𝜙

𝜕𝜎𝑒
𝒏       (26) 

∂𝑓𝑟𝑒𝑠

∂Δp
=

𝜕𝜙

𝜕Δp
−

1

𝛥𝑡
= −3𝐺

𝜕𝜙

𝜕𝜎𝑒
−

1

𝛥𝑡
           (27) 

where 𝜎𝑒 is the equivalent stress expressed as 

𝜎𝑒 = 𝐽(𝝈𝑛+1 
𝐷 − 𝑿𝑛+1) = 𝐽(𝝈̃𝑝𝑟 −𝑿𝑛+1) − (3𝐺)Δp       (28) 

Rearranging Equ.(24), gives  

δΔp =
𝑓𝑟𝑒𝑠

1

𝛥𝑡
−
𝜕𝜙

𝜕Δp
−
𝜕𝜙

𝜕𝑅

𝜕𝑅

𝜕Δp
−
𝜕𝜙

𝜕𝑿

𝜕𝑿

𝜕Δp

=
𝑓𝑟𝑒𝑠

1

𝛥𝑡
+(3𝐺+

𝜕𝑅

𝜕Δp
+𝒏:

𝜕𝑿

𝜕Δp
)
𝜕𝜙

𝜕𝜎𝑒

       (29) 

and 

𝑅 + Δ𝑅 = 𝑄(1 − e−b(p+Δ𝑝)) +𝐻(𝑝 + Δ𝑝)
𝑦𝑖𝑒𝑙𝑑𝑠
→    

𝜕𝑅

𝜕Δp
= 𝑏(𝑅𝑠 − 𝑅) + 𝐻(1 + 𝑏𝑝)    (30) 

𝜕𝑿

𝜕Δp
=

2

3
𝛾𝑋𝑠𝒏 − 𝛾𝑿

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝒏:

𝜕𝑿

𝜕Δp
=

2

3
𝛾𝑋𝑠𝒏: 𝒏 − 𝛾𝑿:𝒏 = 𝛾𝑋𝑠 − 𝛾𝑿:𝒏    (31) 

The accumulated plastic deformation 𝛥𝑝 is updated by 𝛥𝑝 + δΔp. The final step is to update the isotropic hardening, 

kinematic hardening, life portion, damage parameter and stress, as follows: 

𝑅𝑛+1 = 𝑅𝑛 + 𝑏(𝑅𝑆 − 𝑅𝑛+1)𝛥𝑝 + 𝐻(1 + 𝑏𝑝)𝛥𝑝       (32) 

𝑿𝑛+1 = (𝑿𝑛 +
2

3
𝛾𝑋𝑆𝑛𝛥𝑝)/(1 + 𝛾𝛥𝑝)        (33) 
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𝐿𝑛+1 = 𝐿𝑛 +𝑁/𝑁𝑓(Δ𝜀
𝑝)          (34) 

𝐷𝑛+1 = 𝑠𝑖𝑛ℎ(𝐶2𝐿𝑛+1)/𝐶1          (35) 

𝝈𝑛+1 = 𝑱̃𝒆(Δ𝜺 − Δ𝜺𝑝)           (36) 

The stress and the Jacobian matrix are updated at the start of each time interval based on the pass-in information and the 

material constitutive equations. The ABAQUS implicit solver aims to minimise the difference between the external force 

and the internal force at a convergence rate determined from the Jacobian matrix. The Jacobian matrix to be updated in the 

UMAT subroutine is the same as the elastic Jacobian matrix 𝑱̃𝒆 to simplify the coding, since it only accounts for the 

convergence rate of the ABAQUS FE solver. The flowchart of the implementation of the UMAT subroutine for the visco-

plasticity model is shown in Appendix A. 

5.2. Determination of the material properties 

There are several material constants in the above set of equations, which are defined in the UMAT subroutine. The stress 

partition method was coded to give an initial estimate of the material constants, and further optimisation procedures are 

needed for better accuracy, due to the scattering of the stress partition results. 

5.2.1. Stress partition method 

For the isothermal fatigue test under high temperature, the stress response is located at the outside of the yield circle, and 

its value in the uniaxial case is the sum of the stress components, 𝑋, 𝑅, 𝜎𝑦and 𝜎𝑣. The unloading curve can be partitioned 

to these stress components based on equations (37)-(39), as shown in Figure 9(a). Upon unloading, the yield function is 

still greater than zero, there would be a fast initial decrease of the stress response, and the stress-strain slope may be even 

larger than the effective Young’s modulus 𝐸̃ [29, 30]. The method used here to differentiate between the elastic domain 

and viscous part is based on using the coefficient of determination R2, from which the maximum stress for the elastic 

domain 𝜎𝑒
𝑚𝑎𝑥 could be obtained.  The method to differentiate bewteen the elastic domain and the reversed visco-plastic 

deformation is based on the offset strain 𝜀offset, from which the minimum stress 𝜎𝑒
𝑚𝑖𝑛 for the elastic domain could be 

obtained.  The size and centre of the elastic domain and the viscous stress values, could be obtained based on the 

Cottrell’s method [21].  

𝑋 = (𝜎𝑒
𝑚𝑎𝑥 + 𝜎𝑒

𝑚𝑖𝑛)/2           (37) 

𝜎𝑣 = 𝜎𝑚𝑎𝑥 − 𝜎𝑒
𝑚𝑎𝑥           (38) 

𝑅 + 𝜎𝑦 = (𝜎𝑒
𝑚𝑎𝑥 − 𝜎𝑒

𝑚𝑖𝑛)/2          (39) 

These stress partition procedures were coded in a MATLAB script and were applied to the stress-strain curve for the strain 

range of ±0.5% under a temperature of 600 oC. Actually, the final results would be influenced by the extent of the control 

criterion significantly. For example, the elastic domain size increases when 𝜀offset increases. In this study, the control 

criterion is set as R2=0.99 and 𝜀offset= 0.1%. 

The radius and centre of the elastic domain are plotted against the number of cycles N in Figure 9(b), as well as the 

viscous stress 𝜎𝑣. The obtained stress components are quite scattered; however, the general trend can be easily observed. 

The initial softening of the stress amplitude is attributed to the initial fast decrease of both isotropic and kinematic 

hardening. The linear decrease of the stress amplitude is caused by the steady decrease of isotropic hardening, and 

kinematic hardening is already saturated with regard to the accumulated plastic deformation. The final decrease of stress 

amplitude is caused by Young’s modulus degradation, which also results in the decrease of the size of the elastic domain.  

Throughout the fatigue life, not much change was observed for the viscous stress.  
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All these stress components are curved fitted to equations (5) and (6) to give the initial estimate of the material constants 

for the Chaboche visco-plasticity model in Table 2. However, further optimisation procedures are still needed to 

accurately fit the experimental data. 

 (a)      (b)  

Figure 9. (a) Stress partition method [31]; (b) Evolution of the stress components by the stress partition method, including 

radius of elastic domain 𝑅 + 𝜎𝑦, kinematic hardening X and viscous stress 𝜎𝑣 

5.2.2. Optimisation procedure  

In order to accurately predict the value of the drag force and the exponent in the Norton’s law, another set of experiments 

with the same testing temperature at 600 0C with a dwell holding time of 120s at the maximum tensile strain were 

conducted. The optimisation process is available in the toolbox of MATLAB by the function lsqcurvefit, to find an array 

of unknown material constants q that fit a series of experimental data (𝑥𝑑𝑎𝑡𝑎, 𝑦𝑑𝑎𝑡𝑎). It is conducted by minimising the 

difference between the FE simulation results 𝐹(𝑞, 𝑥𝑑𝑎𝑡𝑎) and several objective functions ydata, based on a nonlinear 

least-squares algorithm. The objective functions include both the experimental fatigue data and stress relaxation data 

obtained in the tests with dwell time [7]. The flowchart of the curve fitting process is shown in Appendix B.  

As mentioned earlier, isotropic hardening is dependent on the plastic strain range. However, since the initial softening 

period is relatively short, and nearly no plastic strain range change is observed after the initial softening stage (Figure 

2(b)), the material constants for isotropic hardening are considered as constant for each fatigue test in the optimisation 

procedure.      

During the optimisation procedure for the fatigue results at the strain range of ±0.5%, all of the material constants, 

excluding the elastic material constants are regarded as variables. The objective function is the detailed stress evolution 

for the first 50 cycles, and the maximum and minimum stress evolution for the next 350 cycles, during the stress 

amplitude linear softening stage. The initial estimate is based on the stress partition method listed in Table 2. 

Table 2. Material constants for P91 at temperature of 600 oC and for the strain range of ±0.5%  

 
E 

(MPa) 
𝜈 𝜎𝑦 

(MPa) 

𝐾𝑠 
(MPa s1/n) 

n b 
𝑅𝑠 

(MPa) 
𝑋0 

(MPa) 
𝑋𝑠 

(MPa) 
𝛾 H 

Initial 

Estimate 
125000 0.3 141 1000 2 2.07 -26.8 31.6 -23.2 1.29 -1.7 

Optimised 

result 
125000 0.3 120 6339 2.02 10 -66 0.24 -10 1.29 -1.73 

 

For the optimisation procedure for fatigue results at the strain ranges of ±0.4% , ±0.25%  and ±0.2% , the cyclic 

behaviour for each cycle is not regarded as a priority, since the aim of the study concentrates on the peak stress response 
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in the full fatigue life. The objective functions are the maximum and minimum stresses for the fatigue life before the end 

of the linear softening stage. Since the linear softening period is much longer than the initial fast softening period, the 

optimisation procedure places more weighing factor to the results of the linear softening period automatically.  The initial 

estimates are the same as the optimised results of the material constants for the strain range of ±0.5%, and the variables 

are for isotropic hardening only. The optimised results for H, Rs and b are plotted in Figure 10(a).  

6. FE results and discussion 

6.1. Uniaxial simulation results 

A series of fatigue tests were simulated using the software ABAQUS with a cubic geometry, under the same uniaxial 

cyclic loading condition. The objective of the fatigue test simulation is to check the validity of the material constants 

obtained in the optimisation procedure, and the validity and capability of the damage term in the model. Only one element 

is used in the study and the element type is 3D continuum eight-node brick element with full integration (C3D8 in 

ABAQUS). 

For the strain range of ±0.5%, the stress-strain curves obtained from the FE simulation at cycles 1, 300 and 600 are 

compared to the experimental results in Figure 10(b).  The figure shows that the FE simulation is able to capture the main 

features of the cyclic plasticity behaviour, such as the size change and shift of the centres of elastic domain, the hysteresis 

loop, as well as the degradation of Young’s modulus. The maximum stress evolutions in both FE simulation and 

experiment are plotted in Figure 11(a), as well as the damage evolution from both FE simulation and experimental post-

processing results.  They show good prediction of the full life behaviour, including initial fast softening, steady linear 

softening, as well as the damage propagation. 

For the strain ranges of ±0.4%, ±0.25% and ±0.2%, the evolution of maximum stress 𝜎𝑚𝑎𝑥 against cycle number N are 

plotted in Figure 11(b). They give good approximations of the peak stress evolution, especially after the initial fast 

softening period.  

The stress-strain curves predicted by CDM were based on the assumption that microcrack sizes are smaller than the RVE 

size, so that damage is assumed to be homogeneous. However, when the microcrack size increases, the damage parameter 

would be greater than the critical damage value, and the CDM approach would be invalid. The fracture mechanics method, 

which deals with surface cracks, is a complementary method to the continuum damage approach. 

 (a)  (b)  

Figure 10. (a) Steady state plastic strain range Δ𝜀𝑝  dependency of the material constants of isotropic hardening; (b) 

Experiment and FE simulation of stress-strain curve at cycle number 1, 300 and 600 for the strain range of ±0.5%  
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(a) (b)  

Figure 11. (a) Experiment and FE simulation of the maximum stress 𝜎𝑚𝑎𝑥 and damage  D evolution against cycle number 

for the strain range of ±0.5%; (b) Experiment and FE simulation of the maximum stress 𝜎𝑚𝑎𝑥 against cycle number for 

the strain range of ±0.4%, ±0.25% and ±0.2% 

 

6.2. Notched-bar simulation results 

In order to demonstrate and validate the multiaxial capability of the Chaboche visco-plasticity model, a notch-bar 

isothermal fatigue test was conducted under a fully reversed triangular waveform load with the maximum and the 

minimum average axial stresses of ±300 MPa on the minimum notch cross-section, cycle period of 20 seconds, and 

temperature of 600oC. The specimen geometry and dimensions are shown in Figure 12(a). An extensometer with a gauge 

length of 12.5mm was positioned symmetrically to the notch position. The direct output from the experiment was the 

relative displacement from the end of the extensometer to the notch root. The maximum and minimum values of the 

displacement during a cycle are denoted as Umax and Umin. The experiment stops when there is a 5% increase of the 

displacement range Umax-Umin of the extensometer from the projected straight line locus, at the cycle number 1238. 

The FE simulation is applied to an axisymmetric notched-bar model. The element type used was CAX8R (8-node 

axisymmetric element with reduced integration, quadratic order) in ABAQUS. The experimental and FE simulation 

results for the maximum and minimum displacements during a cycle are plotted against the cycle number in Figure 12(b). 

The displacement reaches the same value at FE cycle number 1003. This difference is reasonable, since fatigue data are 

rather scattered in nature, and the predicted value of Nf  comes from the logarithmic Coffin-Mansion relationship.  

The stress, strain and damage parameter distribution over the influential part of the results are presented in Figure 13. 

Seen from the end of FE loading cycle 1003, stress concentrates near the root with the maximum von Mises stress being 

288 MPa and the maximum in-plane stress of 420 MPa (not shown here). However, the strain concentrates at the root up 

to 0.964%, with a large amount of plasticity. In the rest of the specimen, little plastic behaviour was observed (strain 

range<0.2%). The damage parameter is also quite concentrated at the notch position up to 0.7, which is already greater 

than the critical damage parameter Dc, with no obvious damage propagation around the notch. Since there is a large stress, 

strain and damage gradient in the element at the notch root, refining the mesh could improve the accuracy of the results. 

Further damage analysis may be conducted using a crack propagation analysis based on fracture mechanics.  
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(a) (b)  

Figure 12.(a) The notched thermo-mechanical fatigue specimen used in the load-controlled test (units in mm); (b) The 

maximum Umax and minimum Umin relative displacement of the end of the extensometer to the root of the notch  

 (a)  (b)   (c)  

Figure 13. The output distribution at the end of loading of the cycle 1003: (a) von Mises stress (MPa) distribution over full 

geometry of the test specimen; (b) Strain in the loading direction over full geometry of the test specimen; (c) Damage 

parameter over the notch geometry of the test specimen 

7. Conclusions and future work 
A damage variable is coupled to the constitutive equations of the Chaboche elasto-visco-plastic model to describe the full 

life cyclic plasticity behaviour of a P91 steel at the temperature of 600 oC under low cycle fatigue conditions. A stress 

partition method is introduced to understand the fatigue softening behaviour of P91 at the high temperature of 600 0C, and 

to determine an initial estimate of the material constants in the Chaboche visco-plasticity model. Further optimisation 

procedures with plastic strain range dependency of the material constants are introduced in the optimisation procedure in 

order to accurately predict the material behaviour, especially in the failure stage. Good approximations are achieved for 

the maximum stress evolution, especially in the linear softening stage and the damage propagation stage. The multiaxial 

capability of the ABAQUS UMAT coding is developed and is partially validated using the results from a notch bar test, 

from which it can be seen that reasonably accurate results have been obtained. 

The major drawback of the current model is that no damage initiation criterion is included, and the damage model is 

highly dependent upon the accurate prediction of the number of cycles to failure Nf. The Manson-Coffin relationship is 

used in this case without considering the temperature and strain rate dependencies. Future work may involve using an 

acoustic system to record the state when damage initiates, to investigate the damage initiation criterion for P91 at high 

temperature. In addition, temperature dependency should be introduced to be applicable in a real component simulation.  
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Appendix A. Flowchart of the implementation of the UMAT for the Chaboche visco-

plasticity model  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

No 

Yes 

Yes 

No 

fy>0 

Given 𝝈𝑛, 𝑿𝑛, 𝑅𝑛, p at time tn , ABAQUS solver determines 𝛥𝑡 and Δ𝜺 

Elastic Predictor: Compute predicted elastic Jacobian matrix 𝑱̃𝒆,  

𝛔𝑛+1 = 𝝈𝑛 + 𝑱̃𝒆𝑑𝜺, 𝑿𝑛+1 = 𝑿𝑛, 𝑅𝑛+1 = 𝑅𝑛, Δp = 0 

 

Yield function 𝑓𝑦 = 𝐽(𝝈𝑛+1
𝐷 − 𝑿𝑛+1) − 𝑅𝑛+1 − 𝜎𝑦 

δΔp =
𝑓
𝑟𝑒𝑠

1
𝛥𝑡
−

𝜕𝜙
𝜕Δp

−
𝜕𝜙
𝜕𝑅

𝜕𝑅
𝜕Δp

−
𝜕𝜙
𝜕𝑿𝟏

𝜕𝑿𝟏

𝜕Δp
−

𝜕𝜙
𝜕𝑿𝟐

𝜕𝑿𝟐

𝜕Δp

 

𝛥𝑝 = 𝛥𝑝 + δΔp , 

𝑅𝑛+1 = 𝑅𝑛 + 𝑏(𝑅𝑆 − 𝑅𝑛+1)𝛥𝑝 + 𝐻(1 + 𝑏𝑝)𝛥𝑝, 

𝐗n+1 = (𝑿𝑛 +
2

3
𝛾𝑋𝑆 Δp)/(1 + 𝛾Δp) ,  

 

Accept the predicted 𝝈𝑛+1, 𝑿𝑛+1, 𝑅𝑛+1 and 𝛥𝑝 

𝑓𝑟𝑒𝑠 convergence? 

Accept 𝑿𝑛+1, 𝑅𝑛+1 and Δp, compute Δ𝜺𝑝 = Δ𝑝 × 𝒏𝑛+1 , 

Δ𝜺𝑒 = Δ𝜺 − Δ𝜺𝑝, 𝛔𝑛+1 = 𝝈𝑛 + 𝑱𝑒Δ𝜺𝒆 

 

Return Mapping: Compute 𝜙(𝑑𝑝, 𝑟) =  
 𝜎𝑛+1

𝐷 −𝑋𝑛+1 𝑒𝑞−
(3𝐺)𝛥𝑝−𝑅𝑛+1−𝜎𝑦

𝑍
 

𝑛

,  

 Residual function 𝑓𝑟𝑒𝑠 = 𝜙(𝛥𝑝, 𝑿, 𝑅) − 𝛥𝑝/𝛥𝑡 
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Appendix B. Flowchart of the optimisation procedure in MATLAB 
 

 

 

 

 

Input initial estimate for material constants q0=[ 𝐾𝑠, n, 𝑅𝑠, b, 𝑋0, 𝑋𝑠, 𝛾, H] 

Set the experimental results (𝑥𝑑𝑎𝑑𝑎, 𝑦𝑑𝑎𝑡𝑎) 

Call function lsqcurvefit to start optimisation process; 

Define the minimum change in variable for finite-difference gradients 

DiffMinChange=1.0×10-3 

 

Read material constants 𝒒, change the material constants part of the input file 

of ABAQUS 

Accept 𝒒𝑛 

Run post-processor file to get the stress response 𝐹(𝑞, 𝑥𝑑𝑎𝑡𝑎𝑖) from ABAQUS 

results file  

 (𝐹(𝑞, 𝑥𝑑𝑎𝑡𝑎𝑖) − 𝑦𝑑𝑎𝑡𝑎𝑖)
2

𝑖
 

Is it a local minimum? 

 

Yes 

No 

Run input file to get the results file 

𝒒𝑛+1 = 𝒒𝑛 + 𝛥𝒒 


