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Abstract

We build a new sample of 300,000 famous people born between Hammurabi's epoch

and Einstein's cohort, including their vital dates, occupations, and locations from the

Index Bio-bibliographicus Notorum Hominum. We discuss and control for selection and

composition biases. We show using this long-running consistent database that there

was no trend in mortality during most of human history, con�rming the existence of a

Malthusian epoch; we date the beginning of the steady improvements in longevity to

the cohort born in 1640-9, clearly preceding the Industrial Revolution, lending credence

to the hypothesis that human capital may have played a signi�cant role in the take-o�

to modern growth; we �nd that this timing of improvements in longevity concerns most

countries in Europe and most skilled occupations.
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1 Introduction

Having gathered estimations on adult life expectancy from various times and places, Clark

(2007) (Tables 5.2 and 5.3) argues that there was no trend in adult longevity during the

Malthusian stagnation era, i.e. until about the industrial revolution. There is, moreover, ex-

tensive evidence showing that adult life expectancy has increased markedly and continuously

since the beginning of the 19th century. The importance of the economic growth process in

fostering such improvements has been stressed by Fogel (1994). Country wide statistics for

Sweden, England and France show the emergence of a trend for generations born in the nine-

teenth century, although little information is available for those born earlier.1 The earliest

evidence of improved adult life expectancy is provided by Wrigley et al. (1997). They re-

ported an important reduction in adult mortality in the English population in the middle of

the eighteenth century. On top of that, some authors who looked at small prominent groups

of households, such as the English aristocrats (Hollingsworth 1977), identify the beginning

of the change one century earlier for these groups than for the overall population.

The question of the timing of the rise in longevity �nds a nice echo in what the contemporaries

of the industrial revolution wrote about the history and prospects of life expectancy. Malthus

(1798) believed that �With regard to the duration of human life, there does not appear to have

existed from the earliest ages of the world to the present moment the smallest permanent

symptom or indication of increasing prolongation.� Writing a few years before Malthus,

Condorcet (1795), instead, anticipated the emergence of large improvements in longevity:

�One feels that transmissible diseases will slowly disappear with the progresses of medicine,

which becomes more e�ective through the progress of reason and social order, ... and that

a time will come where death will only be the consequence of extraordinary accidents, or of

the increasingly slower destruction of vital forces.�

In this paper, we aim to document the long stagnation period and identify the time at which

longevity, de�ned as the average lifespan of individuals of a given cohort, started to increase

above its plateau mean. To this aim, we built a new dataset of around 300,000 famous peo-

ple born between the 24th century BCE (Hammurabi, king of Babylonia, is among the �rst)

and 1879 CE, the year of Albert Einstein's birth. Vital dates were taken from the Index

Bio-bibliographicus Notorum Hominum (IBN), which also contains information on multiple

individual characteristics, including place of birth and death, occupation, nationality, reli-

gion and gender, among others. This very comprehensive tool, covering 3000 biographical

1From the Human Mortality Database (HMD), cohort life expectancy at age 20 (males) started to increase
in 1810-19 for Sweden, 1850-59 for France, and 1840-49 for England and Wales. For the latter, 1840-49 is the
�rst decade of observation. An overview on the HMD is at http://www.mortality.org/Public/Overview.
php.
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sources from all countries and historical periods, enables us to go beyond the current state

of knowledge and to provide a global picture. Existing estimations are local and start, at

best, in the 16th century.2

The main contribution of this paper is fourfold. First, it documents, using a worldwide, long-

running, consistent database, that there was no trend in adult longevity until the second

half of the 17th century, longevity of famous people being at about 60 years during this

period. This �nding is important as it provides a reliable con�rmation to conjectures that

life expectancy was rather stable for most of human history and establishes the existence of a

Malthusian epoch. Indeed, the existing literature tends to show that technical advancements

has not generated an increase in the standard of living over the years 1, 1000 and 1500 (using

the GDP per capita of Maddison (2010)). This view is con�rmed and extended by our study

as indeed, standards of living, as measured by longevity, had not changed over nearly 4000

years within the period that is conventionally viewed as the Malthusian epoch.

Second, it shows that permanent improvements in longevity preceded the Industrial Revo-

lution by at least one century. The longevity of famous people started to steadily increase

for generations born around 1650, reaching a total gain of around nine years for Einstein's

cohort. The rise in longevity among the educated segment of society hence preceded in-

dustrialization, lending credence to the hypothesis that human capital may have played a

signi�cant role in the process of industrialization and the take-o� to modern growth.

Third, using information about locations and occupations available in the database, we

also found that the increase in longevity did not occur only in the leading countries of the

17th-18th century, but almost everywhere in Europe, and was not dominated by mortality

reductions in any particular occupation. Hence, the results found in the existing literature

about some local groups of nobles generalize to the whole class of elite people, including

writers, scientists, artists, master craftsmen, etc.

Fourth, the rise in longevity is associated primarily with the recanalization of age speci�c

mortality rates, not with a change in the characteristic length of life as measured by the

lifespan. This suggests that the rise in longevity we observe in the 17th-19th century does

not re�ect changes in the biological lifespan of humans but rather improvements in its envi-

ronment.

People in the IBN belonged to the upper classes of human societies, including the richest,

2Before the Fourth Lateran Council in 1215, which recommended parishes to hold Status Animarum

books covering baptisms, marriages and burials, and took centuries to be adopted over Europe, no systematic
register of individual life spans existed in Europe. Graunt (1661) produced the �rst life table using London
data collected by Cromwell in 1535, and the �rst full-�edged life table was developed by Halley (1693) using
data from Breslau (today Wroclav in Poland) for 1687-88.
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most powerful and in�uential individuals, with the highest human capital. In this sense,

the observed break occurred around 1650 can be seen as a tipping point in the longevity of

the upper classes. Since, as in most studies in economics history, the IBN is not a random

sample, we were concerned with the several selection and composition biases that may a�ect

our results. As individuals need to have acquired some reputation to be recorded in the IBN,

the sample su�ers from a form of selection bias that we refer to as the notoriety bias. People

with the potentials to become famous but dying young are excluded and, inversely, only

those that are old enough to become famous are included. In addition, there are other biases

related to changes in the composition of the sample, in terms of gender, occupation and

location. To deal with the di�erent types of selection and composition biases faced by the

IBN, we created a measure of conditional longevity that controls for all observed individual

characteristics, including occupation dummies, re�ecting di�erences in the notoriety bias

across occupations. As additional robustness, we interacted the nine large occupational

categories with the time dummies to take into account for possible unobservable changes

in standard that may a�ect the selection bias. Finally, we also documented some of these

biases by comparing our results with existing data from di�erent times and places.

The notoriety bias is related to the well-known problem in statistics of left truncation. Most

people in the IBN did not get notoriety from birth, but after reaching some status (as for

example, a military rank, a political responsibility, or any hierarchical position in a public

or private organization) or accomplishing some important achievement (writing a book,

painting a picture, making a scienti�c discovery, founding a city). To compute age speci�c

death rates and life expectancy, one needs to know for all ages the population at risk, i.e. the

population of already famous people susceptible of dying. Since the IBN is silent about the

age at which people became famous, we cannot estimate life expectancy. For this reason, we

used the alternative measure of longevity, equal to the mean lifetime of all observed famous

people, and only requires their vital dates. As far as the standards for being famous have

not signi�cantly changed over the sample period, we should expect that longevity and life

expectancy co-move, longevity being systematically larger.

However, over such a long period, these standards might likely have changed. The introduc-

tion of the printing press, for example, has multiplied the number of published biographies,

likely making the standards to be famous less strict. If it were the case, changes in longevity

may be associated to unobservable changes in the de�nition of being famous, totally uncor-

related with changes in life expectancy. To deal with this problem we made the following

out-of-sample test. For the population of cardinals of the Catholic Church and the population

of knights of the Golden Fleece, whose nomination dates are available, we have computed

both longevity and life expectancy at age 25. We found in both population that longevity
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and life expectancy co-move and show a break at the second half of the 17th century, con-

sistently with the behavior of the IBN famous people longevity. This establishes that, even

in cases where the conditions to be included into the sample changed dramatically over time

(for example the age at elevation of catholic cardinals rose from 40 in the sixteenth cen-

tury to 50 in the middle of the nineteenth century), the tipping points in longevity and life

expectancy are the same.

Famous people are those with a high level of human capital. The community of European

famous people, such as scientists, artists, and entrepreneurs, is seen by Mokyr (2011) as

being at the root of the Industrial Revolution. The early increase in their longevity has a

speci�c relevance for economic growth, and may support the hypothesis that improvements

in longevity were one cause of the industrial revolution. One mechanism for this e�ect could

be through facilitating knowledge accumulation (see Lucas (2009) and Bar and Leukhina

(2010)). For Lucas, �a productive idea needs to be in use by a living person to be acquired

by someone else, so what one person learns is available to others only as long as he remains

alive. If lives are too short or too dull, sustained growth at a positive rate is impossible.�

Another possible mechanism relates to the provision of incentives for investment in human

capital (see Galor and Weil (1999), Boucekkine, de la Croix, and Licandro (2002), Soares

(2005), Cervellati and Sunde (2014) and de la Croix and Licandro (2013)). For Galor and

Weil, �Changes in mortality can serve as the basis for a uni�ed model that describes the

complete transition from the Malthusian Regime to the Modern Growth Regime. Consider

the e�ect of an initial reduction in mortality (due to an exogenous shock to health technology

or to standards of living). The e�ect of lower mortality in raising the expected rate of return

to human capital investments will nonetheless be present, leading to more schooling and

eventually to a higher rate of technological progress. This will in turn raise income and

further lower mortality...�.

Famous people were also very much living in cities. We know that cities were unhealthy

places, with higher mortality rates. It therefore appears remarkable that despite the increase

in population density in the course of urbanization, longevity �rst remained relatively stable,

then started to increase, suggesting perhaps that there was a gradual improvement in the

capacity of individuals to live a longer life. Or perhaps that literate people (who are being

sampled) had learned how to cope with the hazard of an increase in population density in

cities.

The paper is organized as follows. In Section 2, we describe the data and measure the

unconditional longevity of famous people. Section 3 de�nes the universe from which the

sample is drawn, reports a list of potential composition and selection biases, discusses the

gap between longevity and life expectancy, and provides the out-of-sample test. In Section 4,
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we provide an estimation of famous people conditional longevity, after controlling for the

reported biases. We also study whether changes in longevity were general to all locations

and occupations. An analytical description of the observed changes is provided in Section 5

through the lenses of the Gompertz-Makeham survival law and the Compensation E�ect

of Mortality. In Section 6, we compare, for some speci�c geographical locations and time

periods, the longevity of IBN famous people with existing case studies. Finally, in Section 7,

we suggest a set of criteria that any good interpretation of these events should meet, advance

some possible explanations and conclude.

2 Sample and Descriptive Statistics

Our database is built from the Index Biobibliographicus Notorum Hominum (IBN), which

is aimed to help researchers around the world to easily access existing biographical sources.

The information in the IBN was compiled from around 3000 biographical sources (mainly dic-

tionaries and encyclopedias) covering almost all countries and historical periods; Europeans

are clearly overrepresented.

Famous People: For people included in the IBN, we have name, year (and often place)

of birth and death, a statement about the individual including some broad information on

occupation and nationality, and the list of biographical sources in which he (rarely she) is

mentioned. Data in the IBN may be coded in di�erent languages (English, German and

French are the most frequent) and basically contain the type of information reported in

the two examples below (we only report one source per person, but many sources may be

associated with the same person):

• Hammurapi; 1792-1750 (1728-1686) ante chr.;3 ... ; Babylonischer könig aus der dy-

nastie der Amoräer; Internationale Bibliographie de Zeitschriftenliteratur aus allen

Gebieten des Wissens.

• Einstein, Albert; 1879-1955; Ulm (Germany) - Princeton (N.J.); German physicist,

professor and scienti�c writer, Nobel Prize winner (1921), Swiss and American citizen;

Internationale Personal Bibliographie 1800-1943.

The digital version of the IBN used in this paper contains around one million famous people

whose last names begin with the letters A to L, since those from M to Z were not yet available

in electronic format when we received the data. However, this criterion is not expected to

introduce any selection bias in the estimation of longevity changes.

3Notice that two di�erent years of birth are reported for Hammurabi (Hammurapi in German), but a
unique lifespan. The places of birth and death are not reported.
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Figure 1: Time Distribution of Biographical Sources. Frequency (dashed line, left axis),
cumulative (solid line, right axis)

The retained database includes 297,651 individuals extracted from the IBN following three

steps. First, for reasons that we will make explicit below, we restricted the sample to people

born before 1880. Second, only people with known years of both birth and death were

retained, allowing us to measure their lifespan.4 Third, individuals with lifespan less than

15 or larger than 100 years, 729 and 872 respectively, were excluded. Note that the IBN

reports information on very few people dying during childhood, and most centenarians in

the database are likely to be measurement errors.

Biographical Sources: We identi�ed 2,781 biographical sources in the IBN for which a

publication year was observed. To illustrate the nature of the famous people in the database,

these are four haphazard examples of sources written in the English language:

• A Dictionary of Actors and of Other Persons Associated with the Public Representation

of Plays in England before 1642. London: Humphrey Milford / Oxford, New Haven,

New York, 1929.

• A Biographical Dictionary of Freethinkers of all Ages and Nations. London: Progres-

sive Publishing Company, 1889.

• Portraits of Eminent Mathematicians with Brief Biographical Sketches. New York:

Scripta-Mathematica, 1936.

4When the date of death is not reported, it can either be because it is unknown, or because the person
was still alive at the time of the publication of the source. Unfortunately, we cannot identify which case is
relevant for each observation, preventing us from using a duration model.
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• Who Was Who in America. Historical volume (1607-1896). A complement volume of

Who's Who in American History. Chicago: The A. N. Marquis Company, 1963.

Figure 1 plots the distribution of the years of publication (in case of multiple publication

years, we retained the most recent date); they concentrate heavily in the 19th and 20th

Century.

Using the information reported in the IBN, we created the following variables.

Lifespan: The lifespan is the year of death minus the year of birth.

Precision: In some cases, the lifespan is imprecise. The IBN adds the indications �c.�,

for circa, or �?� to the vital dates when the years of birth or death are not known with

certainty. It may also be that more than one date is reported. We retained all the imprecise

observations (taking the mean if there was more than one date), but created a discrete

variable called precision, allocating a value of one when the lifespan was imprecise, zero

otherwise. Appendix A gives some information on the evolution of precision, and also reports

heaping indexes calculated on dates of birth and death.

Place of Birth and Death: In order to locate individuals in speci�c cities, we used

the places of birth and death cells. Among the 297,651 individuals in the database, a place

of birth or death was missing for 60,637 (20% of the sample). For the remaining 237,014

individuals, we �rst counted words using the Hermetic Word Frequency Counter 1089t and

identi�ed 56,574 birth places and 35,852 death places; we took into account the fact that

some cities have composed names, such as New York. We then translated city names for

birth (resp. death) places with at least 30 (resp. 20) observations into 22 languages,5 and

searched again to identify all individuals who were born or died in the same city. We also

checked for historical names for these cities (if possible) using Wikipedia.6 This procedure

identi�ed 584 and 603 birth and death cities, respectively. After translation, the number of

observations more than doubled for some cities. We �nally retained 77 cities with at least

300 observations as either birth or death place (see Table 2). For the statistical analysis

below, we created a dummy for each of the 77 cities.7 They are set equal to one if someone

lived in one of those cities, i.e. was born there, or died there. We have also created a large

5For this, we used Nice Translator �http://nicetranslator.com/. The list of languages included were
Bulgarian, Catalan, Czech, Danish, Dutch, English, Estonian, Finnish, French, German, Greek, Hungarian,
Italian, Latvian, Lithuanian, Norwegian, Polish, Portuguese, Romanian, Slovak, Slovenian, Spanish, Swedish
and Turkish.

6See http://en.wikipedia.org/wiki/Names\_of\_European\_cities\_in\_different\_languages.
7It is important to notice that some cells in the IBN are empty, and when complete some contain useless

information, implying that the variables here created contain missing values. Of course, by construction, this
is not the case for the year of birth and the individual lifespan. When creating dummies, the missing values
systematically adopt the value zero. It does imply that we tend to underestimate the dummy coe�cients,
since the excluded group may include individuals belonging to the control group.
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cities dummy that takes value one if an individual was born or dead in at least one of the

77 selected cities, zero otherwise.

Migration: For all individuals with observed birth and death places, we created amigration

dummy that took value one if the places of birth and death were di�erent.

Occupation, Nationality and Religion: Information in the statement cells is more

complex. Only 1,274 observations had an empty statement cell. We identi�ed 81,078 unique

words using the Hermetic Word Frequency Counter 1089t, and retained those words with at

least 200 observations that could be associated with any type of occupation, nationality or

religion. We then translated them into the same 22 languages as we used for the cities, and

merged all observations corresponding to the same occupation, nationality or religion. The

words collapsed into 171 occupations, 65 nationalities and 10 religions. Using these cate-

gories, 278,084 individuals had at least one occupation (94.4% of the sample) and 207,049

had more than one; 218,530 have at least one nationality (73.4%) and 11,929 have more than

one. Finally, we retained all relevant words with at least 300 observations; this allowed us

to identify 33 nationalities, 7 religions, and 148 occupations (see Appendix 2). In addition,

occupations were grouped into nine categories: Arts and métiers, business, religious, edu-

cation, humanities, law and government, military, nobility, and sciences (see Appendix C).

There were six other repeated words that we also used as controls.8

Gender (1=female, 0=male or unknown) was coded automatically on the basis of most

frequent female names, using www.namepedia.org, which is a name database. We have

identi�ed 9,362 individuals as females, but one should be aware that this classi�cation is

highly imperfect, essentially because the mapping between names and gender is far from

univocal.

Age at Publication. Finally, the source cells were used to single out for each individual

the publication year of the biographical source citing her/him. We identi�ed this year for

290,528 individuals, 99.9% of total observations.9 Then, we measured for each individual

the age of her/his cohort at the publication of the source in the following way. When the

individual's death year was before the publication year of the source, we took the di�erence

between the publication year and the individual's birth year. The resulting post-mortem age

at publication is then larger than the individual lifespan. Otherwise, we assume it is missing.

8Chief, bengali, founder, landowner, servant and unionist. We include bengali in this group, because most
were British soldiers in the Bengal war from the book �List of the o�cers of the Bengal army, 1758-1834.
Alphabetically arranged and annotated with biographical and genealogical notices�, who seem to have had
particularly short lives.

9Unfortunately, because of the way data are organized in the IBN, when an individual was cited by more
than one source, we could only identify one of these sources automatically, not necessarily the most recent.
In particular, for 42,600 observations, the year of publication preceded the year of death, which we take as
evidence of the existence of another source published later.
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Figure 2: Number of Observations by Decade. Density (dots) and cumulative (solid line)

Finally, we created eight �age at publication� dummies for ages {15-29, 30-39, ..., 90-99}.

The dummies were allocated a value of one for individuals for whom the age at publication

of the source was in the age group, zero otherwise. These dummies will be used to control

for the source bias (see Section 3.3).

To describe the sample, let us before represent unconditional longevity by grouping individ-

uals into ten-year cohorts and averaging their lifespan. In Section 3 we will discuss the biases

in this estimation and in Section 4 we will provide an estimation that controls for individual

characteristics (conditional longevity).

We concentrate on cohort longevity, and not on period longevity, which is subject to tempo

e�ects when mortality changes over time (Bongaarts and Feeney 2003). Individuals in the

database were grouped into cohorts by year of birth. As can be observed in Figure 2, at

the beginning of the sample, the size of these cohorts is very small; there were only 274

individuals born before Christ, 400 individuals before 230 CE, and 1600 before 1040 CE.

The data only really becomes rich for cohorts born after 1400. Since these cohorts have

small size at the beginning of the sample, when representing the data, we apply a simple

adaptive rule

λt =

{
(nt/x) lt + (1− nt/x)λt−1 if nt < x

lt otherwise
(1)

where lt and λt are actual and smoothed longevities, nt represents the actual cohort size,

and x is an arbitrary representative size. The choice of x is based on the idea that if

the lifespans of people in the sample were random draws from a Normal distribution, the
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Figure 3: Unconditional Longevity. Data (dots), smoothing with x = 400 (dotted line),
smoothing with x = 1600 (solid line)

standard deviation of the observed cohort longevity would be σ/
√
x, where σ is the standard

deviation of the population and x is the cohort size. Since σ = 15 for famous people born

before 1640, we need x = 400 (respectively 1600) for the observed longevity to be within a

95% con�dence interval ±1.5 (±0.75).

As an initial condition we used λ−∞ = 60.8, taken from Clark (2007) for the hunter-

gatherers.10 The adaptive rule adds past information λt−1 when the actual size of the sample

nt is smaller than its representative size x. Current and past information, lt and λt−1, are

weighted by the relative size nt/x, when nt < x, and its complement, respectively. When

the cohort size is large enough, actual and smoothed longevities are identical.

Figure 3 shows the actual longevity (dots) and the corrected longevity of ten-year cohorts

for x = 400 and x = 1600. Actual longevity �uctuates dramatically around 60.9 until the

14th Century, because of the small size of the cohorts. Smoothed longevity, however, moves

around the mean with very small �uctuations until the Black Death (cohorts born just before

1340-1350); then, it moves again around the mean until it starts to increase with the cohort

born 1640-1649.
10This number is very close to the sample mean (60.9) for individuals born before 1640.
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3 Biases in Sampling

This section describes the universe from which famous people in the IBN have been drawn

from, some sampling issues and the way we took care of them.

3.1 Universe

According to Malanima (2009), the ancien régime society can be schematically depicted as a

two-class society, respectively made up of gentlemen and those who were not. He estimated

the high-society (nobles, rich landowners, professional men, important tradesmen) to be 10%

of the European population on average over 1500-1700, the nobility accounting only for 3%

of the same total. Consistent with this estimation, Vauban, engineer and general under

Louis XIV, classi�ed the French population as follows: 10% rich, 50% very poor, 30% near

beggars, 10% beggars (Cipolla 1993, p. 9).

Our study is based on a group of people who has done something special to be kept in the

records, because they were rulers, members of di�erent clergies, rich merchants, important

statesman, authors of books, professors at university, artists, artisans, etc. Most of them

belonged to the top 10% of the society, and were among the richest, most powerful and

in�uential individuals, likely with the highest human capital.11 In this sense, the 10% elite

group represents the universe from which the present sample has been drawn.

Table 1 shows the composition of our sample in terms of the occupations described in Sec-

tion 2. It shows that, contrary to most existing studies on elite groups (see Cummins (2014)

for the most recent one), our sample contains much more than just nobles or religious digni-

taries. The decline of religion and nobility is very sharp over the period, as well as the rise

of humanities, science, and business.12

There are several reasons why studying the longevity of this group of famous people is

valuable. First, as we stressed in the introduction, famous people are those with a high level

of human capital. It is therefore of special importance for studying whether improvements

in longevity were one cause of the industrial revolution. Remember that Mokyr (2011) saw

the community of European famous people formed during the Enlightenments as being at

11As stressed by van Poppel, van de Kaa, and Bijwaard (2013) who studied Dutch and Belgian artists,
�the data on these groups re�ect the experience of populations which were, in all likelihood, better nourished
and better housed than the general population.�

12Let us also remark that the ratio of occupations per person is around 1.5 for all periods. This means,
that, often, one person had several occupations. For example, Pieter Huidekoper (1798-1852), was not only
Mennonite deacon, but also Dutch politician, mayor of Amsterdam, banker, and merchant. Table 1 also
reports the very low but increasing percentage of women in the sample.
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<1550 1550-1649 1650-1699 1700-1749 1750-1799 1800-1849 1850-1879

Religion 16.7% 22.3% 20.8% 15.6% 9.3% 7.4% 4.9%

Army 3.4% 5.3% 7.1% 8.7% 12.1% 7.5% 4.4%

Education 18.7% 24.0% 23.0% 22.6% 20.9% 23.4% 26.5%

Art 10.9% 11.7% 11.2% 11.5% 10.9% 13.2% 14.5%

Law 12.4% 12.8% 12.1% 14.1% 16.6% 14.2% 12.7%

Humanities 4.6% 3.6% 3.4% 3.6% 4.0% 6.7% 8.7%

Science 4.8% 4.2% 4.7% 6.2% 7.8% 10.2% 12.3%

Business 2.8% 3.3% 4.5% 6.0% 7.6% 9.7% 10.0%

Nobility 11.0% 4.9% 4.2% 3.2% 2.5% 1.0% 0.4%

Unknown 14.7% 8.2% 9.0% 8.6% 8.2% 6.7% 5.7%

Women 1.4% 2.2% 2.5% 2.5% 3.3% 3.4% 4.0%

Table 1: Occupational and Gender Composition of Our Sample of Famous People

the root of the Industrial Revolution. Upper tail knowledge is nowadays more and more

recognized to be central to the development process (see Mokyr (2005a) and Squicciarini

and Voigtländer (2014)).

Second, our sample forms a coherent whole in terms of social position. It is however quite

heterogeneous compared to previous studies in historical demography in terms of ethnic-

ity/nationality. To limit the presence of unobserved heterogeneity, having a sample with

social position homogeneity might be more important than with nationality homogeneity.13

Indeed, there might be less diversity across elites of di�erent countries than between the elite

and ordinary people within each country. Reading Mokyr (2005b) again, one feels that there

was even probably more in common between Hume and Kant, than between Hume and the

average farmer in England.

Finally, an important strength of our study is the use of a large number of observations,

which allows to measure empirical moments with more accuracy than the typical study in

historical demography (1000 to 2000 observations per period in Perrenoud (1978), 100 to 6000

by 50-year birth cohort in van Poppel, van de Kaa, and Bijwaard (2013), a few hundreds

per period in Vandenbroucke (1985)).

3.2 Notoriety Bias, and Longevity vs Life Expectancy

The analysis of famous people longevity in our sample may su�er from several biases. In

the following, we detail them and discuss solutions. We start with the notoriety bias, a

particular form of selection bias.

13Desmet, Ortuño-Ortín, and Wacziarg (2014) found that ethnicity has a low explanatory power in ac-
counting for cultural norms.
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An individual has to acquire some reputation or social status to be recorded in the IBN.

This generates a form of selection bias as the IBN does not include those who died too soon

to become famous. We refer to it as the notoriety bias. In most cases, the probability of

obtaining such a status increases with age, implying that mortality rates of famous people

tend to be underestimated, particularly at young ages. In addition, there might be unobserv-

able changes in standards that modify the age at which a person becomes famous, making

the notoriety bias to change over time. The introduction of the printing press, for example,

rendered easier to write and publish biographies, which likely reduced the requirements for

being in the IBN and made people became famous at younger ages.

To control for the notoriety bias, we included in our regression analysis the set of occu-

pational dummies described in Section 2. The associated coe�cients re�ect di�erences in

the notoriety bias across occupations. In Section 4.3, as robustness tests, we interacted the

nine large occupational categories with the cohort dummies to take into account for possible

unobservable changes in standard that may a�ect the notoriety bias. We also performed

out-of-sample tests that we now describe.

The notoriety bias is related to the well-known problem in statistics of left truncation. Most

people in the IBN did not get notoriety from birth, but after reaching some status. To deal

with left truncation and compute the mortality rate of famous people at any age, we have

to include in the population only those that were alive and have already achieved notoriety

at this age. The population de�ned this way is referred as population at risk, since it only

includes all members of the population whose death is susceptible to be observed. The left

truncation is then related to the fact that a particular person is not part of the population of

famous people until he/she does achieve notoriety. For populations like those in the IBN, the

age at which people become famous is not usually known, making it impossible to measure

the population at risk at any age. More fundamentally, even if accurate information about

individual achievements (and the time of their occurrence) were available, in most cases it

will be very di�cult to determine the exact age at which they became famous. It would be

easy in the case of European kings or US Presidents, but very di�cult for Dutch painters,

for example.14

This poses a fundamental problem for the measurement of life expectancy, problem that is

shared by most populations of famous people. Since we do not have information on the age

at which our famous people got notoriety, we cannot compute the population at risk and

the corresponding death rates, and we cannot then measure life expectancy. We use the

14For many of these occupations, indeed, identifying the age at which the event or achievement that made
individuals famous is highly di�cult. When did van Gogh become famous enough to be recorded as a famous
painter from the point of view of a book's editor? The degree of notoriety varies of course from occupation
to occupation and from book to book.
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Figure 4: Longevity at 25 (black) and Life expectancy at 25 (gray) of cardinals (left) and of
Knights of the Golden Fleece (right)

alternative measure of longevity: the average age at death of a particular population. As for

life expectancy, it can be measured conditional on a minimum age a. Implicitly, dead rates

are computed using the total number of famous people alive at a particular age irrespective

of the fact that at these age they were or not famous. Of course, when we observe all

individuals of a particular population at birth, life expectancy and longevity are the same

measure. In general, however, longevity is larger than life expectancy. Appendix B shows

that the gap between the two measures depend on the process leading people to enter the

population at risk.

This paper aims to identify the exact time in human history when famous people mortality

started improving. Since we cannot measure life expectancy and we have to rely on longevity,

as de�ned above, we would like to be sure that these two measures at least share a common

trend. There are two particular groups for which we can compute both, the cardinals of the

Catholic Church and the knights of the Golden Fleece.

For the 2179 cardinals of the Catholic Church born before 1880 (Fornasin, Breschi, and

Manfredini 2010), we know the designation date in addition to their vital dates.15 It was

then possible to compute the population at risk and then life expectancy. Figure 4 (left)

shows the join evolution of their life expectancy at 25 and their longevity at 25.16 As

expected, longevity is larger than life expectancy. More importantly, both move in parallel

with an important improvement in both series during the second half of the 17th century.

If anything, for the second half of the 17th century, longevity tends to underestimate the

15Among them, 1296 have a family name between A and L. We were able to identify 537 of them in the
IBN, around 40% of those with family names between A and L.

16In order to make these two measures directly comparable, we report as life expectancy the standard life
expectancy at 25 plus 25.
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improvement in life expectancy.17

The second sample for which we can compare both measures over time contains the knights

of the Golden Fleece. The Order consists of a highly select group of noblemen, starting with

dukes and princes of Burgundy and continuing with the Hapsburg rulers and the kings of

Spain, the Austrian emperors of the Holy Roman Empire, and the Bourbons (Vandenbroucke

1985). For each knight, we know the year of nomination to the Order, the year of birth,

and the year of death. Figure 4 (right) shows longevity and life expectancy for this sample.

Again here, the two measures move together, start raising in the second half to the 17th

century, and the rise in longevity underestimate the rise in life expectancy over the sample

period.

From these two out-of-sample examples, we are con�dent that longevity is informative about

life expectancy, and that both measures move in the same direction showing a common

tipping point at the second half of the 17th century, despite changes in the standards to

enter the sample.

3.3 Composition and Other Biases

In addition to the notoriety/selection bias referred to in the previous section, the IBN may

su�er from di�erent types of composition biases, related to occupation, location and gender.

Occupation Bias. Fame has not always been related to the same human achievements,

implying that the weight of some occupations may have changed substantially over time.

This is the case, for example, for the nobility and for religious occupations. The case of

martyrs, although less frequent, is more striking, because they lived short lives, by de�nition,

and were concentrated in particular periods of human history. For this reason, changes in

the occupational composition of the sample may generate arti�cial changes in longevity.

Occupation dummies were also used to control for this potential occupation bias.18

Location Bias. Another form of potential composition bias is related to changes over time

in the location of individuals in the sample, in relation for example with the changes in the

17The di�erence between longevity and life expectancy at age 25 does not show any particular pattern
even if the average age at elevation (age at which cardinals were appointed) grew steadily from the second
half of the 17th century. See Fornasin, Breschi, and Manfredini (2010) for an explanation of the reasons for
the behavior of the cardinals' life expectancy.

18It may also be that occupational categories change their risk pro�le over time. For example, the aris-
tocracy in most European countries went from being in the business of war to a bunch of leisure-seeking
activities. Changes in the risk pro�le cannot be control for a time-invariant dummy. Unfortunately, we
do not have enough data to estimate changes over time in the mortality risk of all occupations together.
However, the robustness exercise performed in Section 4.3 does also control for possible changes in the risk
pro�le.
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primacy of nations over time. City dummies and nationality dummies were used to control

for the location bias.

Gender Bias. Such a bias may arise if famous females live on average longer (or shorter)

than famous males and their proportion in the sample varies over time. The gender dummy,

identi�ed from people's �rst names, is used to control for this bias.

Migration Bias. Since the probability of migrating is positively correlated with the individual

lifespan, we expect that migrants on average have a larger lifespan than non-migrants. If the

propensity to migrate changed over time, a bias is introduced in the estimation of longevity.

We refer to this e�ect as the migration bias. As the IBN provides information on the city of

birth and the city of death for most individuals, we can control for the migration bias using

the migration dummy which takes the value of one when the place of birth and death are

di�erent.

Finally, we have identi�ed two other controls that we include in the regression analysis below.

Source Bias. As explained above, our database only includes famous people for whom the

years of birth and death were reported. For this reason, celebrities in the IBN still alive at

the time they were cited in a biographical dictionary or encyclopedia were excluded from our

database, since their year of death was not known at the time of publication. This is another

form of selection bias, this time related to right truncation. Consequently, our sample may

underestimate the longevity of famous people, in particular for cohorts for which the average

time between birth dates and publication dates was short. We call this phenomenon the

source bias. As most biographical sources were published during the 19th and 20th centuries

(see Figure 1), we have decided to exclude people born after 1880 to limit the scope of this

bias. Moreover, we included in the regression the eight dummies �age at publication�, for

(post-mortem) ages {15-29, 30,39,...,90-99}, as described previously. These dummies capture

the abnormally low longevity of those whose date of birth is close to the issuing of the source

citing them. Another, less e�cient, way to control for this bias is to exclude from the sample

all the people born close to the publication of the source. This method will be used to

validate the correction with the �age at publication� dummies.

Precision Bias. The increase in the precision of the data documented in Appendix A may

hide trends that could a�ect our estimates. Including a precision dummy which takes value

one when the vital dates are imprecise (when a vital date has �c.�, or �?�, or when more than

one date is reported, for either the birth or the death date) should take care of this bias.
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4 Conditional Longevity of Famous People

4.1 Estimation

We estimate conditional longevities of famous people cohorts using the following regression:

mi,t = m+ dt + αxi,t + εi,t (2)

where mi,t is the lifespan of individual i belonging to cohort t, the constant term m mea-

sures the conditional longevity of the excluded cohort dummy �for a representative individual

without retained city, nationality or occupation (because those are either unknown or below

our 300 observations threshold); dt is a cohort �xed e�ect which measures the di�erence

between the conditional longevity of cohort t and the conditional longevity of the excluded

cohort; xi,t is a vector of individual controls including city, occupation and nationality dum-

mies, gender, precision and migration dummies, and age at publication dummies; α is a

vector of parameters; and εi,t is an error term measuring individual's i idiosyncratic lifespan

circumstances. Equation (2) was estimated using Ordinary Least Squares.19 The detailed

results are in Table 2.

Because our main objective was to identify the precise cohort after which the longevity of

famous people started to increase, and we had few observations per decade before the �fteenth

century, we created cohort dummies by decade starting in 1430-1439, the �rst decade with

more than 300 observations. The conditional longevity of all previous cohorts, consistent

with the observation in Figure 3, was assumed constant.20 Figure 5 shows estimates, and

the corresponding 95% con�dence intervals, for all cohort dummies. As can be observed,

the longevity of cohorts born between 1430 and 1640 was not signi�cantly di�erent from

the longevity of celebrities born before 1430, which implies that there was no signi�cant

gradual increase of longevity during 1550-1649. Indeed, the longevity of celebrities started

to increase with the cohort born in 1640-49, gaining nine years over around two and a half

centuries. This �gure establishes the conclusion that longevity improvements for celebrities

started well before the Industrial Revolution.

19Remember that the OLS estimators are weighted sums of random variables, the central limit theorem ap-
plies, and the OLS estimators are in any case asymptotically normal. All test statistics relying on asymptotic
distribution results are typically valid with large samples such as ours.

20Including cohort dummies before 1430 allows to capture the dip due to the Black Death, but estimations
are very imprecise.
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# obs Coef. Std. Err. t P>|t|

Constant term 297,651 59.669 0.192 310.22 0

Decade

1430 511 -0.042 0.656 -0.06 0.949

1440 436 -0.683 0.707 -0.97 0.334

1450 508 -0.505 0.658 -0.77 0.443

1460 516 0.341 0.653 0.52 0.602

1470 567 0.902 0.625 1.44 0.149

1480 690 -0.888 0.572 -1.55 0.121

1490 758 -0.522 0.549 -0.95 0.341

1500 883 0.680 0.512 1.33 0.185

1510 896 -0.119 0.509 -0.23 0.815

1520 1,200 0.284 0.450 0.63 0.528

1530 1,333 -0.005 0.430 -0.01 0.991

1540 1,405 0.373 0.421 0.89 0.376

1550 1,525 0.436 0.408 1.07 0.285

1560 1,852 0.597 0.378 1.58 0.114

1570 2,020 0.120 0.366 0.33 0.744

1580 2,294 -0.333 0.349 -0.96 0.339

1590 2,559 -0.104 0.336 -0.31 0.757

1600 2,818 0.316 0.325 0.97 0.331

1610 2,773 -0.009 0.327 -0.03 0.979

1620 3,016 0.146 0.317 0.46 0.646

1630 3,182 0.045 0.312 0.15 0.884

1640 3,281 1.559 0.309 5.05 0

1650 3,394 1.411 0.305 4.62 0

1660 3,572 2.008 0.301 6.68 0

1670 3,576 1.271 0.301 4.23 0

1680 3,849 1.975 0.294 6.71 0

1690 4,120 2.577 0.289 8.93 0

1700 4,337 3.018 0.284 10.63 0

1710 4,986 3.676 0.273 13.44 0

1720 5,704 4.250 0.264 16.13 0

continued on next page
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# obs Coef. Std. Err. t P>|t|

1730 6,621 4.653 0.254 18.29 0

1740 7,619 4.679 0.247 18.96 0

1750 9,233 4.887 0.237 20.59 0

1760 10,118 4.832 0.233 20.7 0

1770 10,313 4.249 0.233 18.24 0

1780 10,486 4.144 0.233 17.78 0

1790 12,338 4.443 0.227 19.58 0

1800 15,630 4.681 0.220 21.31 0

1810 17,335 5.703 0.218 26.21 0

1820 17,609 6.041 0.218 27.76 0

1830 18,120 5.971 0.218 27.44 0

1840 19,867 5.938 0.216 27.52 0

1850 20,831 6.341 0.216 29.36 0

1860 22,960 7.530 0.215 34.95 0

1870 22,932 8.853 0.217 40.8 0

Availability of information

city 101,955 0.311 0.189 1.65 0.099

nationality 206,421 -0.258 0.247 -1.04 0.297

precision 43,158 -0.812 0.080 -10.18 0

Additional biases

female 9,362 1.088 0.156 6.97 0

migration 135,759 0.464 0.059 7.89 0

Cities

Amsterdam 2,194 -0.752 0.366 -2.06 0.04

Antwerpen 1,159 -0.887 0.462 -1.92 0.055

Augsburg 544 -0.463 0.635 -0.73 0.466

Barcelona 627 -2.042 0.622 -3.28 0.001

Basel 560 -1.137 0.634 -1.79 0.073

Berlin 4,777 -0.458 0.267 -1.71 0.087

Bern 579 -0.833 0.627 -1.33 0.184

Bologna 592 1.060 0.614 1.73 0.084

Bordeaux 946 0.750 0.493 1.52 0.129

continued on next page
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# obs Coef. Std. Err. t P>|t|

Boston 724 -0.191 0.565 -0.34 0.735

Bremen 619 -0.881 0.600 -1.47 0.142

Breslau 1,234 -1.640 0.438 -3.74 0

Brno 550 -0.356 0.632 -0.56 0.573

Bruxelles 1,614 0.811 0.404 2.01 0.044

Budapest 3,757 0.421 0.338 1.24 0.213

Buenos Aires 1,279 0.609 0.550 1.11 0.268

Chicago 434 0.046 0.711 0.06 0.949

Cologne 918 0.159 0.501 0.32 0.751

Copenhagen 2,781 -1.270 0.369 -3.44 0.001

Denhaag 1,492 2.210 0.422 5.23 0

Dresden 1,700 -0.631 0.384 -1.65 0.1

Dublin 696 -0.460 0.619 -0.74 0.457

Edinburgh 806 -0.312 0.538 -0.58 0.561

Florence 1,050 0.152 0.475 0.32 0.749

Frankfurt 1,058 -0.748 0.468 -1.6 0.11

Frederiksberg 362 4.034 0.782 5.16 0

Freiburg 451 0.172 0.693 0.25 0.804

Gdansk 577 -1.516 0.616 -2.46 0.014

Geneve 1,651 -0.266 0.400 -0.67 0.505

Genoa 452 0.477 0.694 0.69 0.491

Ghent 690 0.489 0.582 0.84 0.401

Graz 880 -0.883 0.518 -1.7 0.088

Hamburg 1,699 -1.364 0.383 -3.57 0

Hannover 640 1.446 0.588 2.46 0.014

Helsinki 553 -0.431 0.693 -0.62 0.534

Kaliningrad 812 -1.349 0.527 -2.56 0.01

Krakow 1,036 -0.008 0.497 -0.02 0.988

Leiden 582 -1.963 0.620 -3.16 0.002

Leipzig 1,384 -2.574 0.419 -6.14 0

Liege 778 0.437 0.549 0.8 0.426

Lisbon 755 -0.008 0.627 -0.01 0.99

continued on next page
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# obs Coef. Std. Err. t P>|t|

London 6,381 0.435 0.260 1.67 0.094

Lviv 705 -0.501 0.574 -0.87 0.383

Lyon 1,319 -1.732 0.426 -4.07 0

Madrid 1,587 -1.896 0.435 -4.36 0

Marseille 528 1.375 0.642 2.14 0.032

Metz 441 1.235 0.697 1.77 0.076

Milan 834 -0.210 0.525 -0.4 0.69

Montreal 444 -0.115 0.717 -0.16 0.873

Moscow 1,102 1.101 0.478 2.3 0.021

Munich 2,107 0.011 0.354 0.03 0.976

Napoli 1,046 -0.649 0.478 -1.36 0.174

New York 2,379 0.332 0.345 0.96 0.336

Nuremberg 1,112 -2.410 0.463 -5.2 0

Oslo 734 0.601 0.641 0.94 0.348

Paris 13,693 -0.018 0.215 -0.08 0.934

Philadelphia 973 -1.267 0.496 -2.55 0.011

Prag 2,747 -1.444 0.346 -4.17 0

Riga 689 -3.177 0.570 -5.57 0

Rio de Janeiro 669 1.014 0.688 1.47 0.141

Roma 2,442 -0.324 0.337 -0.96 0.336

Rotterdam 697 -0.109 0.574 -0.19 0.849

Rouen 835 0.838 0.520 1.61 0.107

Saint Petersburg 1,897 -1.021 0.387 -2.64 0.008

Stockholm 3,373 -0.486 0.332 -1.46 0.143

Strasbourg 1,584 -1.235 0.398 -3.1 0.002

Stuttgart 871 0.632 0.514 1.23 0.219

Toulouse 510 1.883 0.653 2.88 0.004

Turin 539 -0.341 0.641 -0.53 0.595

Utrecht 681 0.064 0.581 0.11 0.913

Venezia 886 -0.233 0.512 -0.45 0.649

Versailles 545 1.532 0.629 2.44 0.015

Warsaw 1,974 -0.987 0.398 -2.48 0.013

continued on next page
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# obs Coef. Std. Err. t P>|t|

Washington 654 -0.661 0.596 -1.11 0.267

Wien 6,352 -1.066 0.266 -4.01 0

Wiesbaden 438 2.114 0.703 3.01 0.003

Zurich 813 -1.980 0.543 -3.65 0

Occupation categories

Arts and métiers 56,657 -1.393 0.202 -6.91 0

Business 35,003 1.151 0.263 4.38 0

Education 105,582 0.738 0.137 5.38 0

Humanities 26,223 0.486 0.325 1.49 0.135

Law and government 62,961 1.356 0.137 9.9 0

Military 32,826 -3.024 0.217 -13.94 0

Nobility 11,037 -0.265 0.393 -0.67 0.5

Religious 48,230 -0.029 0.189 -0.16 0.877

Sciences 39,232 1.407 0.267 5.27 0

Occupations

abbot 1,430 3.443 0.406 8.47 0

academician 675 3.216 0.558 5.76 0

actor 4,454 -0.356 0.282 -1.26 0.207

administrator 1,042 1.917 0.454 4.22 0

admiral 1,207 8.214 0.442 18.58 0

adviser 3,899 0.263 0.326 0.8 0.421

agronomist 658 1.679 0.602 2.79 0.005

ambassador 953 0.550 0.478 1.15 0.25

antiquary 563 1.254 0.640 1.96 0.05

archaeologist 1,111 1.655 0.489 3.38 0.001

archbishop 1,234 3.470 0.434 7.99 0

archdeacon 517 2.384 0.638 3.74 0

architect 3,980 1.195 0.332 3.6 0

artist 2,741 0.522 0.292 1.79 0.074

astronomer 917 -0.587 0.509 -1.15 0.248

author 62,685 0.722 0.123 5.87 0

baili� 915 -0.346 0.496 -0.7 0.485

continued on next page
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# obs Coef. Std. Err. t P>|t|

banker 1,728 3.560 0.400 8.9 0

baron 479 1.948 0.726 2.68 0.007

beamter 4,979 0.562 0.231 2.43 0.015

benedictine 1,841 0.555 0.368 1.51 0.132

bishop 4,855 3.873 0.244 15.9 0

bookseller 1,472 0.518 0.443 1.17 0.242

botanist 2,090 0.384 0.366 1.05 0.294

brigadier_general 593 -3.938 0.615 -6.4 0

builder 773 1.458 0.556 2.62 0.009

businessman 4,934 1.393 0.303 4.61 0

cantor 643 1.768 0.581 3.04 0.002

captain 3,049 -0.773 0.303 -2.55 0.011

capuchin 928 2.120 0.493 4.3 0

cardinal 727 1.580 0.564 2.8 0.005

cartographer 614 -0.219 0.613 -0.36 0.721

chamberlain 604 2.113 0.655 3.22 0.001

chemist 1,897 0.056 0.391 0.14 0.887

classicist 495 0.818 0.703 1.16 0.245

clergyman 6,455 1.164 0.244 4.78 0

collector 1,130 4.359 0.458 9.52 0

colonel 3,747 4.326 0.291 14.87 0

commander 1,018 0.729 0.459 1.59 0.112

composer 6,489 1.013 0.255 3.97 0

congressman 2,276 -0.970 0.336 -2.88 0.004

consul 701 -0.347 0.553 -0.63 0.531

councillor 5,166 0.895 0.291 3.08 0.002

deacon 653 -4.975 0.576 -8.64 0

dean 1,036 4.065 0.453 8.98 0

deputy 5,367 1.478 0.220 6.71 0

designer 652 -0.224 0.573 -0.39 0.696

diplomat 2,278 1.553 0.317 4.9 0

director 8,694 1.690 0.292 5.78 0

continued on next page
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# obs Coef. Std. Err. t P>|t|

doctor 15,384 -2.204 0.273 -8.08 0

dramatist 1,604 0.328 0.382 0.86 0.391

duke 1,283 -4.721 0.472 -9.99 0

earl 1,243 -2.159 0.490 -4.4 0

economist 796 0.872 0.584 1.49 0.135

editor 5,362 0.050 0.293 0.17 0.865

engineer 4,799 0.448 0.307 1.46 0.144

engraver 2,976 0.593 0.290 2.05 0.041

farmer 2,302 2.876 0.385 7.47 0

�ghter 915 -4.230 0.519 -8.15 0

franciscan 1,063 1.456 0.462 3.15 0.002

general 12,503 7.044 0.221 31.88 0

geograph 668 1.001 0.588 1.7 0.089

geologist 861 1.324 0.528 2.51 0.012

goldsmith 1,178 0.200 0.464 0.43 0.666

governor 2,915 0.808 0.283 2.85 0.004

historian 7,562 2.243 0.320 7.02 0

illustrator 1,224 2.286 0.421 5.43 0

industrialist 2,066 3.391 0.394 8.61 0

inspector 1,813 0.053 0.357 0.15 0.883

inventor 865 1.851 0.520 3.56 0

jesuit 7,201 -2.822 0.238 -11.84 0

journalist 6,056 -1.988 0.351 -5.67 0

judge 3,494 2.168 0.257 8.44 0

jurist 15,660 -0.682 0.149 -4.56 0

kapellmeister 804 1.369 0.534 2.56 0.01

king 2,300 -1.900 0.434 -4.38 0

knight 746 0.414 0.614 0.67 0.501

lawyer 10,242 -0.355 0.168 -2.11 0.035

lecturer 1,685 -0.864 0.355 -2.43 0.015

librarian 1,769 1.019 0.413 2.46 0.014

lieutenant 4,927 -1.231 0.241 -5.1 0

continued on next page
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# obs Coef. Std. Err. t P>|t|

lieutenant_colonel 457 -0.738 0.740 -1 0.318

lithograph 1,241 0.666 0.419 1.59 0.112

lord 1,546 1.844 0.466 3.95 0

magistrato 1,753 2.338 0.354 6.6 0

major 2,696 2.174 0.433 5.02 0

major_general 1,479 -2.877 0.594 -4.84 0

manufacturer 1,649 3.061 0.417 7.34 0

marshal 1,707 6.744 0.377 17.88 0

martyr 532 -14.623 0.631 -23.17 0

mathematician 2,018 -0.104 0.381 -0.27 0.785

mayor 4,488 2.756 0.230 11.99 0

merchant 4,008 0.967 0.342 2.83 0.005

military 3,431 -0.542 0.279 -1.94 0.052

minister 5,417 1.109 0.222 4.99 0

missionary 2,801 -1.257 0.291 -4.31 0

musician 6,644 1.174 0.255 4.61 0

naturalist 1,016 -0.817 0.480 -1.7 0.089

noble 3,635 -2.274 0.395 -5.76 0

notary 1,217 1.016 0.419 2.43 0.015

o�cer 13,787 0.962 0.191 5.03 0

organist 1,777 1.411 0.374 3.78 0

orientalist 611 -0.448 0.631 -0.71 0.477

painter 19,293 1.974 0.203 9.72 0

pastor 9,800 0.822 0.204 4.03 0

pedagogue 3,806 1.777 0.369 4.82 0

pewterer 448 0.867 0.707 1.23 0.22

pharmacist 1,192 0.022 0.463 0.05 0.962

philologe 2,976 -0.733 0.379 -1.93 0.053

philosopher 1,966 0.007 0.428 0.02 0.986

physician 2,990 -0.566 0.359 -1.58 0.114

physicist 989 0.828 0.493 1.68 0.093

pianist 979 -0.899 0.486 -1.85 0.064

continued on next page
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# obs Coef. Std. Err. t P>|t|

piarist 455 -0.220 0.694 -0.32 0.751

poet 11,681 -0.617 0.228 -2.71 0.007

politician 11,014 1.413 0.168 8.43 0

preacher 5,552 -0.270 0.231 -1.17 0.243

prefect 636 1.936 0.576 3.36 0.001

president 4,065 3.103 0.239 12.96 0

priest 12,322 0.841 0.203 4.14 0

prince 742 -3.683 0.606 -6.08 0

printer 1,852 -0.742 0.386 -1.92 0.054

procureur 673 -0.139 0.561 -0.25 0.804

professor 25,430 1.356 0.119 11.38 0

publicist 2,471 -0.413 0.371 -1.11 0.266

queen 421 -1.513 0.740 -2.05 0.041

rabbi 935 4.508 0.504 8.95 0

rector 3,673 1.219 0.249 4.9 0

regisseur 506 2.464 0.662 3.72 0

scholar 2,876 0.146 0.279 0.52 0.601

sculptor 3,888 2.256 0.281 8.03 0

secretary 2,555 -0.470 0.296 -1.59 0.112

senator 2,828 3.483 0.280 12.43 0

sheri� 569 1.525 0.611 2.5 0.013

singer 2,431 0.238 0.323 0.74 0.461

soldier 2,031 -2.398 0.417 -5.75 0

student 1,521 -10.032 0.390 -25.7 0

surgeon 2,428 1.104 0.319 3.46 0.001

teacher 12,713 0.248 0.153 1.63 0.104

theologian 8,717 1.184 0.197 6 0

trader 2,883 -0.966 0.360 -2.68 0.007

translator 3,889 -0.323 0.350 -0.92 0.357

vicar 1,937 0.130 0.344 0.38 0.705

violin_maker 584 1.901 0.624 3.05 0.002

violinist 988 0.540 0.483 1.12 0.263

continued on next page
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# obs Coef. Std. Err. t P>|t|

wholesaler 438 0.568 0.766 0.74 0.458

writer 24,391 0.946 0.142 6.69 0

zoologist 535 1.005 0.652 1.54 0.123

Nationalities

American 18,261 2.307 0.266 8.66 0

Argentinian 1,438 -2.901 0.551 -5.27 0

Australian 556 4.648 0.650 7.14 0

Austrian 8,282 0.508 0.303 1.68 0.094

Belgian 4,325 -0.808 0.344 -2.35 0.019

Brazilian 1,461 -5.057 0.515 -9.82 0

British 21,857 1.239 0.261 4.75 0

Canadian 1,150 2.862 0.485 5.9 0

Chinese 1,029 0.723 0.513 1.41 0.159

Croatian 587 -1.240 0.633 -1.96 0.05

Czech 2,755 0.340 0.384 0.89 0.376

Danish 6,329 0.074 0.323 0.23 0.819

Dutch 8,516 -0.236 0.310 -0.76 0.447

Finnish 1,524 -1.027 0.468 -2.19 0.028

French 21,408 1.190 0.260 4.57 0

German 41,401 -0.560 0.250 -2.24 0.025

Greek 744 2.096 0.550 3.81 0

Hungarian 8,992 -1.618 0.303 -5.34 0

Icelandic 2,058 0.651 0.400 1.63 0.104

Indian 460 -1.550 0.695 -2.23 0.026

Irish 1,303 1.110 0.490 2.27 0.023

Italian 7,958 1.397 0.292 4.79 0

Japanese 554 1.421 0.653 2.18 0.029

Norwegian 2,239 -0.721 0.424 -1.7 0.089

Polish 6,744 -1.099 0.309 -3.56 0

Portuguese 1,330 0.519 0.511 1.01 0.31

Roman 968 -0.703 0.476 -1.48 0.14

Russian 7,467 -3.973 0.293 -13.55 0

continued on next page
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# obs Coef. Std. Err. t P>|t|

Slovak 387 0.738 0.762 0.97 0.333

Slovenian 543 -2.215 0.654 -3.38 0.001

Spanish 5,554 0.011 0.326 0.03 0.972

Swedish 13,914 0.896 0.276 3.24 0.001

Swiss 8,327 0.823 0.293 2.81 0.005

Religions

Baptist 595 0.139 0.597 0.23 0.816

Catholic 2,016 0.976 0.331 2.94 0.003

Lutheran 552 -2.438 0.619 -3.94 0

Mennonite 521 5.445 0.638 8.53 0

Methodist 415 -0.041 0.717 -0.06 0.954

Protestant 1,647 -0.170 0.371 -0.46 0.647

Reformed 1,292 1.599 0.419 3.81 0

Various

Bengali 1,459 -13.402 0.483 -27.77 0

chief 2,178 1.151 0.310 3.71 0

founder 2,942 3.012 0.266 11.3 0

Jewish 606 0.252 0.586 0.43 0.668

landowner 1,081 3.211 0.439 7.32 0

servant 405 2.068 0.715 2.89 0.004

unionist 383 4.102 0.737 5.57 0

Age at publication

15 27 -39.379 2.753 -14.3 0

30 205 -35.641 1.000 -35.64 0

40 834 -29.274 0.497 -58.86 0

50 2,681 -22.729 0.280 -81.31 0

60 6,313 -15.478 0.185 -83.75 0

70 13,232 -8.914 0.132 -67.56 0

80 19,829 -4.480 0.111 -40.38 0

90 22,634 -2.869 0.104 -27.45 0

R-squared 0.1342

Table 2: Detailed Regression Results
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Figure 5: Conditional Longevity. Cohort dummies and 95% con�dence interval

The estimated constant term was 59.67 years, which is slightly smaller than the 60.46 years

of the unconditional mean before 1430 �the standard deviation is 0.19, implying that it is

estimated with high precision. The di�erence has to be attributed to the omitted control

dummies, because the constant term measures the age of the mean male celebrity born

before 1430 with a precise lifespan, non-migrating and without an identi�ed city, nationality,

occupation or religion. The precision dummy was estimated at -0.81 years, which is small

but signi�cantly di�erent from zero �the standard deviation was 0.08. The negative sign is

fundamentally due to the fact that imprecise observations occurred more frequently before

1640. Consequently, controlling for imprecise reported lifespans, if anything, reduces the

gains in longevity observed after 1640.

The estimation also provides evidence that the other dummies e�ectively controlled for the

di�erent biases referred to in Section 3. From our estimation, a person living in one of

the 77 retained cities had on average no survival advantage with respect to the rest of the

population, since the estimated coe�cient of the large cities dummy was small, 0.31 years,

and not signi�cantly di�erent from zero �the standard deviation was 0.19.21 Even if the 77

city dummies were estimated with relatively high precision �their standard deviations are in

the interval (0.21,0.79), for 2/3 of them zero is in the 95% con�dence interval. A few cities

have longevity 2.5 years larger (Frederiksberg) or smaller (Leipzig and Riga) than the mean.

21We have also created a control variable urban, taking value one if the place of birth or the place of death
were mentioned in GeoDataSource. We decided not to retain it, since the estimated coe�cient was non
signi�cant.
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Details for cities are in Appendix 2.

The estimated coe�cient for the group of large nationalities �a dummy grouping all indi-

viduals with at least one among the 33 retained nationalities� is non signi�cantly di�erent

from zero: -0.26 years with a standard deviation of 0.24. Australians had the largest pos-

itive estimated coe�cients and Brazilians, in the other extreme, had the lowest, 4.64 years

and 5.06 years above and below the mean, respectively. Details for nationalities are also in

Appendix 2.

The estimated coe�cients of the occupation categories are shown in Figure A.3, in the

appendix, with the corresponding 95% con�dence intervals. These results illustrate that

the regression e�ectively controlled for occupational composition bias. The di�erence in

longevity between an average military occupation and an average science occupation was

slightly larger than four years. Among the 148 estimated occupation dummies, 1/3 are not

signi�cantly di�erent from zero and 73% of the estimated coe�cients are in the interval

(-2,2). A few occupations had large negative dummies, in some cases larger than 10 years

(martyrs and students). Details for occupations are also in Appendix 2.

As Table 3 illustrates for religious, military and education occupations, seniority is one of

the main causes of the notoriety bias referred to in Section 3.22 High ranks in the three

occupational groups had larger dummies than low ranks, since some seniority is required to

climb up the rank ladder. Particularly interesting is the case of martyrs and students, which

had a highly signi�cant negative dummy. This observation likely re�ects the fact that these

people became famous because they died young.

The migration dummy was estimated at 0.46 years, with standard error 0.06, re�ecting the

migration bias that some potential emigrants died before migrating. The gain is relatively

small since migration and being famous are likely to be highly correlated.23 The female

dummy was estimated at 1.09 years (sd. 0.15), re�ecting the fact that females live on

average longer than males.

To control for the source bias, we included in the regression eight age at publication dum-

mies (15-29,30-39,...,90-99). All coe�cients, as reported in Table 2, are negative, sizable

and statistically signi�cant �the dotted lines correspond to the 95% con�dence interval. As

expected, the coe�cient of the dummy decreased in absolute value with the age at publi-

cation, from 39.4 to 2.9 years. The source bias was thus high for people dying close to the

publication date of the source. Note that, by construction, the lifespan of persons in the �rst

22To make estimated dummies comparable across occupations in di�erent occupational groups, the occu-
pational category dummy (in the �rst row) has to be added to the occupation dummy.

23Mokyr (2005b) measured the mobility of 1185 �creative people� in Europe over 1450-1750 and showed it
was large, with 3.72 mean moves per person. Longer living people, as expected, moved somewhat more.
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religious -0.03 military -3.02 education 0.74
rabbi 4.51 admiral 8.21 dean 4.07
bishop 3.87 general 7.04 academician 3.22
archbishop 3.47 marshal 6.74 professor 1.36
abbot 3.44 colonel 4.33 rector 1.22
archdeacon 2.38 major 2.17 writer 0.95
cardinal 1.58 o�cer 0.96 teacher 0.25
theologian 1.18 commander 0.73 scholar 0.15
clergyman 1.16 military -0.54 lecturer -0.86
priest 0.84 captain -0.77 student -10.03
pastor 0.82 lieutenant -1.23
vicar 0.13 soldier -2.40
preacher -0.27 �ghter -4.23
missionary -1.26
deacon -4.98
martyr -14.62

Table 3: Notoriety Bias for �religious�, �military� and �education� Occupations.

group was between �fteen and thirty years; when added to the estimated dummy the sum

was close to the longevity of the representative celebrity (20+40=60).

To estimate the extent of the source bias, we ran the regression without the age at publication

dummies, and then measured the source bias as the di�erence between the cohort dummy

coe�cients of the benchmark regression and the newly estimated coe�cients. The solid line

in Figure 7 represents the estimated source bias, and the dotted line is twice the standard

deviation of the cohort dummies in the benchmark estimation. The source bias and the

precision of the benchmark estimation �the inverse of the standard deviation� both clearly

increased. The source bias is close to zero until the seventeenth century, then slowly increases

but remaining small and non-signi�cant until the cohort born in 1700; then, it increases to

reach more than 4 years for the last cohort. Controlling for the source bias does not a�ect

the main result that famous people longevity started increasing in 1640, as we have already

observed in Figure 3. However, controlling for the source bias signi�cantly increases the size

of the improvement at the end of sample: it almost doubled the �ve year unconditional gain.

Since most sources were published in the 19th and mainly 20th centuries, the number of

observations included in the age at publication dummies increased from around 5% of the

total observations in the �rst half of the eighteen century to 60% in the last decade. This

factor explains why controlling for the source bias had such a large impact at the end of the

sample.
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Figure 6: Conditional Longevity. Full sample: Cohort dummies and 95% con�dence interval
(dashed). Restricted Sample: Cohort dummies and 95% con�dence interval (dots)
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Figure 7: Source bias. Estimation (solid line), 2× std cohort dummies (dotted line)
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4.2 Additional Robustness Checks

An alternative procedure of controlling for the source bias consists in removing from the

sample all individuals with a birth date close to the publication date of the source. This

method is however much less e�cient than the previous one, as we may loose a substantial

number of observations. Still, to check the consistency of our benchmark estimation, we

ran the same regression without the age at publication dummies on a restricted sample,

excluding all individuals for which the source was published less than 100 years after their

birth (i.e, all individuals for which one of the age at publication dummies takes value one).

Results with this restricted sample are shows in Figure 6. Signi�cant di�erences occur at the

very end of the sample (where the restricted sample looses a lot of observations): for these

cohorts, the gains in longevity are signi�cantly for the restricted sample. This reinforces our

view that the age at publication dummies do not arti�cially in�ate the longevity gains.

To check that our results are not dominated by the lifespan of people from a few sources,

we have also controlled for the 20 and the 60 largest sources, by including source dummies

that take value one only if the individual is cited by the source. They include 110,745 and

177,983 observations, respectively. The cohort dummies estimated with these additional

controls stay in the con�dence interval of the benchmark estimation.24

To further assess the validity of our approach, we looked at some characteristics of the

residuals εi,t. First, we estimated their density function, see Figure A.4: it appears to be

unimodal and negatively skewed, a well-known result for the lifespan distribution of adult

humans (Robertson and Allison 2012).

Second, looking at Figure 5, we observe that the con�dence interval gets narrower as time

passes. We checked whether this could be attributed to the increasing number of observa-

tions or to some heteroscedasticity in the error term. Accordingly, we computed the standard

deviations of the residuals by decade, with con�dence bounds around them, see Figure A.5.

The only permanent large change was for the last six decades, for which the standard de-

viation displayed a downward trend. The reason is that, at the end of the sample, there

are few people with an advanced age because of the source bias, reducing variability in

longevity. Correcting for the source bias as we did does not fully correct the problem. Such

heteroscedasticity is an artifact of the selection bias, not a change in the variance of the

underlying population. Furthermore, we also computed the con�dence interval of Figure 5

24The source with the largest (in absolute value) dummy coe�cient is a book citing British soldiers who
died in Bengali between 1758 and 1834. This source belongs to the 60 largest but not to the 20 largest. It
covers 1396 people in the sample. The estimated coe�cient is -16.96 (se 0.88). Interestingly, the coe�cient
of the dummy bengali moves up from -13.89 in the benchmark regression to 0.52 (se 0.86) in the regression
with the 60 source dummies.

34



with robust standard errors, and the changes are negligible.

Third, we checked for the e�ect of exceptional events on our estimation. We computed the

longevity for each year of death, trying to identify particularly deadly events �see Figure A.6.

By far the biggest event happened in 1794, which corresponds to the Reign of Terror during

the French Revolution. Introducing a dummy variable �dead in 1794� into the regression,

however, did not greatly modify the estimation. The biggest change was in the coe�cient

for the dummy �martyr� which went from -14.62 to -13.21. The next biggest change was for

decade 1730-9, with the coe�cient going from 4.65 to 5.04. Coe�cients, such as those for

French, Bordeaux, and Toulouse, were a�ected, but to a very small extent. We conclude

from this exercise that trying to model certain unusual events from European history would

add little to our estimation.

Finally, we performed a median regression (the median regression is a particular case of a

quantile regression where the coe�cients are estimated by minimizing the absolute deviations

from the median) to check that the rise in longevity was not driven by the right tail of the

distribution. Results are very similar. The median lifespan of our famous people was 61.75

years until 1420. Cohort dummies are not signi�cantly di�erent from zero until cohort

1640-49, with median longevity reaching 72.05 for Einstein's cohort. If something, gains in

longevity are larger for the median than for the mean celebrity.

4.3 Is the Early Increase in Longevity General?

Model (2) states that the longevity of celebrities in all occupations, cities and nationalities has

moved jointly over time. Any gain in longevity is then assumed to be common. However, it

may be that a particular occupational group or a particular region were behind the observed

increase from 1640, and that the longevity of other occupations or regions did not improve

at all or started to improve later. Perhaps income started increasing before the Industrial

Revolution in the regions or for the occupations that led it, not in the others, making the

longevity of famous people increase only in these regions or occupations. For this propose, we

identi�ed potential characteristics for early improvement in life expectancy, created dummies

and ran new regressions interacting these dummies with the cohort dummies. The model to

be estimated became:

mi,t = m+ dt + d̃t + αxi,t + εi,t (3)

where d̃t measuring the di�erence between the conditional longevity of the selected group

and the whole cohort t.
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Figure 8: Longevity Excluding Each Occupational Group in Turn

4.3.1 Occupations

Could some occupations, because they pro�ted from early improvements in income, or from

some speci�c conditions, such as the military revolution, have led the reduction in mortal-

ity? To answer this question, we interacted the cohort dummies with occupational groups

(arts and métiers, business, religious, education, humanities, law and government, military,

nobility and sciences), one at a time, according to equation (3). We found that none of these

groups was individually driving the main result. Figure 8 shows the estimated coe�cients of

the cohort dummies, dt in equation (3), i.e., after controlling for changes in the longevity of

each occupational group separately. In each case, the cohort dummy coe�cients represent

the cohort longevity of famous people not belonging to each of the speci�ed occupations. As

can be observed in Figure 8, all of the coe�cients were within the con�dence interval of the

cohort dummies in the benchmark estimation (the upper and lower dotted lines). Moreover,

for each of the nine occupational groups, the interaction terms d̃ were always in the (−2, 2)

years interval, without showing any particular pattern. Hence, it cannot be that our result

were driven by any of the occupational groups alone.

4.3.2 Nationalities and Cities

Did celebrities' longevity increase �rst in those regions that led the industrial revolution,

Great Britain in particular, or was it a more general phenomenon? With this hypothesis
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Figure 9: Longevity Excluding British, Leading Nations and Leading Cities

in mind, we created three dummies. First, a leading cities dummy including the largest

cities in the sample, i.e., those with the largest number of observations (Amsterdam, Berlin,

Copenhagen, London, Paris, Rome, Stockholm, Wien). Second, a British dummy, including

English and Scottish nationalities, as well as people born or dying in London and Edinburgh,

the only two British cities among the retained 77 large cities. Third, a leading nations dummy

allocating the value of one if an individual had the nationality of a selected group of countries,

or was born or died in a city, among the 77 selected cities, in the actual territory of one of the

leading nations. The set of selected countries included those that, according to Maddison

(2010), in 1870 had an annual GDP per capita of at least 1800 dollars (Australia, Austria,

Belgium, Denmark, France, Germany, Netherlands, Switzerland, UK and US). As in the

previous subsection, we added to the benchmark regression new terms interacting the cohort

dummies with the three leading dummies above, one at a time. Figure 9 shows the cohort

dummy coe�cients estimated when the interactive terms were included (the dotted upper

and lower lines correspond to the con�dence intervals of the benchmark estimation). As can

be observed, including the leading dummies did not signi�cantly a�ect the estimation of the

longevity of the whole population, meaning that neither leading cities, Britain nor leading

nations were behind our main result that the longevity of famous people started increasing

as early as in 1640 after millennia of stagnation.
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5 Survival Laws

To better characterize the forces responsible for the increase in famous people longevity,

this section studies the shifts in the survival law underlying it. In particular, we investigate

whether these shifts came from a change in the process of aging, or, on the contrary, they

were related to improvements in health conditions independently of age. For this purpose,

we grouped individuals into 150 cohorts of at least 1600 members and measured survival

laws for these cohorts, then, following Gavrilov and Gavrilova (1991), we estimated the

Gompertz-Makeham mortality law for each cohort and used the estimated coe�cients to test

the Compensation E�ect of Mortality. We found that the changes in mortality observed since

the middle of the seventieth century were mainly due to changes in the Gompertz parameters

consistent with the Compensation E�ect, and showing an early tendency for the survival law

to rectangularize. Rectangularization implies a shift of age speci�c mortality rates away from

young persons, without changing the lifespan. As death becomes more concentrated among

the older persons, it implies a decreasing variability in the distribution of ages at death. (See

Wilmoth and Horiuchi (1999) for various measures of rectangularization.)

5.1 Conditional Survival and Mortality Rates

Cohort dummies and residual terms of equation (2), as estimated in Section 4.1, were used

to measure conditional survival laws for all individuals in the sample. For each individual i

belonging to cohort t, let us de�ne r̂i,t ≡ m̂+ d̂t + ε̂i,t, where m̂ was the estimated constant,

d̂t the estimated cohort dummy parameter and ε̂i,t the estimated residual. We denoted by

ri,t the conditional lifespan of individual i belonging to cohort t, where ri,t was the integer

part of r̂i,t.25 This measure represents the lifespan of individual i after controlling for all

observed characteristics.

For cohort t, let nt be the total number of observations belonging to this cohort and let st,h
be the number of observations with conditional lifespan equal or larger than h. Cohort t

conditional survival probabilities are then measured by computing the ratios st,h/nt for all

h.26

In this section, following the argument developed in Section 2 concerning con�dence intervals,

we created cohorts of at least 1600 individuals; individuals born the same year always belong

25When the fractional part is less than 0.5, we take the largest previous integer; otherwise we take the
smallest following integer. Notice that conditional lifespans are not bounded between ages 15 and 100, as
unconditional lifespans are by construction.

26Contrary to their usual de�nition, survival probabilities are here computed vis a vis the whole population
instead of the population at risk. We propose a correction for this in Section 5.3.
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Figure 10: Conditional Survivals for some 1600-cohorts. From deep black to clear gray are

cohorts 1535-1546, 1665-1669, 1787-1788, 1807-1808, 1816, 1879.

to the same cohort; we refer to them as the 1600-cohorts. Following this criterion, we detected

150 1600-cohorts.27 Figure 10 shows the survival laws of some selected 1600-cohorts; they

are ordered from black, the oldest, to light gray, the youngest. The �rst survival law precedes

1640. As can be observed, the survival law moves to the right from the 17th century onward

in a tendency to rectangularize.

5.2 Gompertz-Makeham Law and Compensation E�ect

We followed Gavrilov and Gavrilova (1991) to estimate and interpret the evolution of the

survival law. The main argument was based on two observations: the Gompertz-Makeham

law of mortality and the Compensation E�ect. Let death rates be denoted by δ(a), an

age dependent function, where a denotes individuals' age. The Gompertz-Makeham law of

mortality, as suggested by Gompertz (1825) and Makeham (1860), asserts that death rates

follow

δ(a) = A+ eρ+αa. (4)

27Individuals in the sample are ordered by their year of birth and cohorts were created following the
position of individuals in the sample; for example, the �rst 1600 individuals belong to the �rst cohort.
Because individuals born the same year belong to the same cohort, cohort sizes are in general larger than
1600 individuals. Indeed, the mode was very close to 1600 and 50% of the cohorts had less than 1900
observations. Details are provided in Appendix F.
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Death rates depend on an age-dependent component, the Gompertz function eρ+αa, and

an age-independent component, the Makeham constant A, A > 0. In the Gompertz func-

tion, parameter ρ measures the mortality of young generations while parameter α, α > 0,

represents the rate at which mortality increases with age. The corresponding survival law is

S(a) = exp{−Aa− (eαa − 1)eρ/α}. (5)

To assess whether the observed shifts in the survival law were related to age-dependent or

age-independent factors, we estimated, by non-linear least squares, the Gompertz-Makeham

law (4) (in logs) for each of the 1600-cohorts. As usual in this literature, the estimation

only considered the observed mortality rates between 30 and 90 years, since the Gomperz-

Makeham law mainly applies to this age bracket.

Consistent with the main �ndings in Gavrilov and Gavrilova (1991), the estimated Gompertz

parameter ρ decreased over time whereas the estimated Gompertz parameter α increased, as

can be observed in Figures A.8 and A.7 �the dotted lines correspond to the 95% con�dence

intervals. These parameter changes took place as early as for the cohort born in 1640,

i.e., earlier than in Gavrilov and Gavrilova (1991). Contrary to the estimations in Gavrilov

and Gavrilova (1991), the age-independent parameter A was systematically non-signi�cantly

di�erent from zero �see Figure A.9. This last observation relies on the fact that the mortality

rates of famous people are close to zero for ages below 40. We develop this argument in

Section 5.3 below.

The Compensation E�ect of Mortality states that any observed reduction in the mortality of

the young, ρ, has to be compensated by an increase in the mortality of the old, α, following

the relation

ρ = M − Tα, (6)

where M and T , T > 0, are constant parameters, the same for all human populations.

While parameters ρ and α in equations (4) and (5) may be dissimilar for di�erent human

populations, parameters M and T in equation (6) are common for humanity.

For A = 0, it is easy to see that under the Compensation E�ect, survival tends to rect-

angularize when α goes to in�nity; in this case, the maximum lifespan of humanity is T .28

Following (6), any reduction in ρ compensated by an increase in α rectangularizes the sur-

vival and increases longevity. Such an improvement in longevity is however bounded by the

maximum lifespan T .

28For this purpose, take ρ in (6) and substitute it in (4). Then, let α go to in�nity, which implies that the
death rates tend to zero for a < T and to in�nity when a > T .
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Figure 11 (left) represents the point estimates {ρ, α} for the 150 1600-cohorts retained in

this section. They clearly move around a straight line. Indeed, the Compensation E�ect of

Mortality holds for famous people during the sample period. This �nding is also in line with

Gavrilov and Gavrilova (1991).29 Since ρ decreased and α increased consistently with the

Compensation E�ect, the survival law of famous people tends to rectangularize as observed

in Section 5.1. The Compensation E�ect equation (6) was estimated by OLS on the 150

pairs {ρ, α} previously estimated. The lifespan parameter T was estimated at 80.2 years

�with a standard deviation of 0.58 years.
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Figure 11: The two parameters of the Gomperz function ρ (Y-axis), α (X-axis). Benchmark
(left) and Notoriety Bias Corrected (right)

5.3 Mortality of Potentially Famous People

As explained in Section 3, the IBN su�ers from the notoriety bias. The correction we

implemented by introducing occupation dummies in the regression captures the di�erence

in notoriety across famous people occupations, but might not be totally satisfactory, as it

follows a very reduced form approach.

An alternative way to fully control for the notoriety bias is to estimate a structural model of

this bias. Let us make the following assumptions. First, let us denote by δp(a) the mortality

rates of the population of potentially famous people, which includes not only those observed

in the IBN but also those that had the potential to be included but died before achieving the

required prestige and fame. Let us then assume that the Gompertz-Makeham mortality law

holds for the population of potential celebrities. For the sake of simplicity, let us assume that

29Strulik and Vollmer (2013) found changes in the Compensation Law in the last half of the 20th Century,
with a corresponding increase in human lifespan T .
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δp(a) follows equation (4). Let us denote by Φ(a) the probability that potentially famous

people achieve notoriety before age a. Consequently, death rates of (observed) famous people

are

δ(a) = Φ(a)δp(a),

the probability of dying at age a conditional on being already famous.

Di�erent theories may be elaborated to predict the age at which a potentially notorious

person acquires the needed reputation to become famous. In this section, we build a simple

theory based on the assumption that potentially famous people belong to dynasties, each

one undertaking a single prominent job. Potentially famous members of the dynasty are

sitting in a queue waiting for the death of the dynasty member currently holding the job.

This is clearly the case for hereditary occupations like nobility where, for example, a prince

has to wait for the death of the king to accede to the throne. It is also the case of ranked

occupations, such as religious or military occupations, in which people move up in a grade

scale and then hold the position until death. In occupations such as arts and sciences, things

are more complex, since the number of jobs is somewhat endogenous. However, some form

of congestion may also operate, making it more di�cult to become famous when the pool of

famous people is large.

Let us take the case of princes and kings as our benchmark. A prince has to wait until his

father's death to become king. The probability of becoming king as a function of his age

thus depends on the probability of death of his father. Given that both belong to the same

population, the probability of a prince's accession depends on the death of the reigning king,

i.e.,

Φ(a) =
1− Sp(a+ b)

Sp(b)
,

where a is the age of the prince and b is the age of the king at the princes birth. Of course,

Sp(a + b) depends on the same parameters as the Gompertz-Makeham function δp(a) �see

equation (5). We can then use non-linear least square methods to estimate parameters A,

ρ and α for the population of potentially famous people on the death rates of observed

celebrities by estimating:

δ(a) =
1− exp{−A(a+ b)− (eα(a+b) − 1)eρ/α}

exp{−Ab− (eαb − 1)eρ/α}︸ ︷︷ ︸
Φ(a)

(
A+ eρ+αa

)︸ ︷︷ ︸
δp(a)

(7)

for some given b. We estimated the parameters of δ(a) for the 1600-cohorts, under the

assumption that b = 26. The Makeham constant becomes positive and signi�cant; it displays

no particular trend over the whole sample, except for a (non signi�cant) decrease in the
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nineteenth century, which is consistent with the observations in Gavrilov and Gavrilova

(1991). More interestingly, the new estimated parameters ρ and α �right panel of Figure 11�

follow a similar pattern as the parameters estimated in the benchmark.30 The estimated

lifespan is 80.2 years, as in the benchmark estimation.

One can conclude that the rectangularization of the survival laws initiated in 1640, as well as

the estimation of the lifespan T , are both robust to the proposed correction of the notoriety

bias. The changes in longevity measured in Section 4 are then related to changes in the age-

dependent Gompertz parameters ρ and α, and these changes occur by leaving the lifespan

T unchanged (Compensation E�ect).

6 Comparisons with Previous Studies

At least two questions are still open. First, to what extent is famous people longevity informa-

tive about the life expectancy of the whole population? To address this issue, we compared

our estimates with existing estimates using English data based on family reconstruction

(1550-1820), Swedish census data (1750-), and data for the city of Geneva (1625-1825). Sec-

ond, to what extent do we provide a di�erent message from the few studies about speci�c

groups of famous people, such as English aristocrats and the Knights of the Golden Fleece?

6.1 Comparison with Ordinary People

6.1.1 English Family Reconstitution Data, 1580-1820

A global comparison between famous people and ordinary people even in Europe cannot be

performed over the past, as data for the whole population are usually not available. England

is an exception in this respect, thanks to the work of Wrigley et al. (1997), who provide life

tables for the English population from 1550 to 1820. We can compare their data for males

with a subsample of our database that includes famous people with English nationality

and/or London as city of birth or death. Remember that our survival probabilities were

computed from a measure of conditional lifespan for each individual, as described in Section

5.1, which results from adding the estimated constant term, the corresponding cohort dummy

and individual error. Taking long periods, as in Wrigley et al. (1997), our subsample had a

large enough number of observations to compute sensible survival laws: from 2184 individuals

for 1550-1649 to 7935 individuals for 1800-1849.
30We have obtained similar results by simply assuming that the probability Φ(a) follows the uniform law

rather than a survival probability.
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Figure 12: England: Life Expectancy at 25 (Wrigley's data, gray) vs Longevity at 25 (IBN,
black)

Two main conclusions emerged when we compare the data of Wrigley et al. (1997) with ours,

as can be seen in Figure 12. First, longevity of famous Englishmen in the IBN is system-

atically above the life expectancy of normal English males, consistently with the previous

discussion in Section 3.2. Second, famous adult people were forerunners in declining mortal-

ity. Their longevity started increasing for cohorts born the second half of the 17th century

creating an increasing gap from ordinary adults, who started catching-up with generations

born the second half of the 18th century.

6.1.2 Swedish Records, 1750-1879

As early as 1749, Sweden established a public agency responsible for producing population

statistics. These statistics were based on population records kept by the Swedish Lutheran

church. These data are available from the Human Mortality Database (HMD) and show that

the demographic transition in Sweden followed the standard pattern. Adult life expectancy

started to increase around 1825 (see e.g. de la Croix, Lindh, and Malmberg (2008)).

The survival probabilities of the whole Swedish population and IBN Swedish famous people

are compared in Figure 13. The Swedish population in the IBN is large enough to make the

comparison in Figure 13 meaningful: 2444 individuals born in 1750-1799, to 4458 individuals

born in 1800-1849. As for England, we observed that longevity is above life expectancy. We

also observe a catching-up taking place at the beginning of the 19th century, 50 years later
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Figure 13: Sweden: Life Expectancy at 25 (HMD, gray) vs Longevity at 25 (IBN, black)

than in England. Of course, we do not know the life expectancy of the whole population

before 1750. If what we measure in 1750 is representative of the level that prevailed before

(assumption with light gray curve), then the pattern looks very much like the one we have

for England, with an initial gap between life expectancy of ordinary people and longevity of

famous people around �ve years, then a widening of the gap, because famous people started

to bene�t from longer lives, then a closing of the gap at the end of the period considered.

6.1.3 Geneva, 1625-1825

Perrenoud (1978) provided very detailed demographic data for the city of Geneva (Switzer-

land) over two centuries. If we consider periods of 50 years covering the Perrenoud sample,

we have about 200 famous persons born or dying in Geneva per subperiod. Results are

presented in Figure 14. We �rst remark that Perrenoud's data display an upward trend as

early as in the seventeenth century. This fact was already stressed by Boucekkine, de la

Croix, and Licandro (2003) who used that evidence to claim that improvements in adult

longevity preceded the industrial revolution, at least in some cities, and may have increased

the incentives to acquire education. Comparing Perrenoud to IBN, we do not retrieve the

pattern seen for Britain and Sweden of early improvement for famous people, followed by a

catching-up phenomenon; here the people of the city seem to have the same global trend as

the IBN famous people, one of improvement in longevity through 1650-1799. This raises the

question whether the trend we observe for famous people is in fact a urban phenomenon in
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Figure 14: Geneva: Life Expectancy at 25 (Perrenoud's data, gray) vs Longevity at 25 (IBN,
black)

Europe (beyond Geneva).31

6.2 Comparison with Nobility

In order to study long-term trends in the mortality rates of adults of a given population,

several others have used various types of records, usually available for high social classes,

such as genealogical data or monographs about military or religious orders. These social

classes are closer to our famous people than to the rest of the population. Comparing these

studies with similar subsamples extracted from the IBN dataset is an interesting robustness

check.

We use two datasets covering the period 1500 to 1900, which overlaps the period where

longevity of famous people starts increasing. First, the mortality tables for British peers,

published by Hollingsworth (1977), dying between 1603 and 1938 and their o�springs.32 A

comparable subsample from our IBN database consists of British Nobles. We have many

such individuals, from 577 for the 16th century to 3,324 for the 19th century. Second,

Vandenbroucke (1985) provides vital statistics for the Knights of the Golden Fleece, an

31There are not many cities for which we have longevity data prior to 1750. Beltrami (1951) provided
demographic data for the city of Venice (Italy) over 1600-1750. As in Geneva, Beltrami's data display a drop
in mortality through the seventeenth century. Again, people from the cities seem to have the same global
trend as IBN famous people, in particular as far as survival up to age 50 is concerned.

32The original data were sampled from genealogical data by Hollingsworth (1964).
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Figure 15: British Nobles: Life Expectancy at 25 (Hollingsworth's data, gray) vs Longevity
at 25 (IBN, black)

order started in 1430 with the Dukes of Burgundy and continued with the Hapsburg rulers,

the kings of Spain and the Austrian emperors. A comparable subsample from our database

consists of people with a nobility occupation and Austrian, Belgian, Dutch, German or

Spanish nationality (all belonging to the former Hapsburg empire): 2,349 persons fall in this

category in the 16th century, and 17,334 in the 19th century.

Several lessons can be drawn from Figures 15 and 16. First, the life expectancy of both

groups of nobles and the longevity of the corresponding IBN nobles share a common trend,

supporting the claim that is around 1650 that adult mortality of famous people started re-

ducing. Second, the gap between the two series is larger before 1700 than after; if something,

our measure of longevity underestimates the improvements in life expectancy. This means

that the results derived in Section 4, in particular the one that longevity increased by 5 years

between 1640 and 1740, should in fact be interpreted as a lower bound on the actual increase

in life expectancy. Third, mortality reductions for nobility take place in the 17th century in

the three databases, reinforcing the observation that improvements in longevity of famous

people anticipate those of ordinary people by at least one hundred years.
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Figure 16: Habsburg Nobles: Life Expectancy at 25 (Knights of the Golden Fleece data,
gray) vs Longevity at 25 (IBN, black)

7 Interpretations and Conclusion

It is generally accepted that survival of ordinary adults started to increase permanently

in the nineteenth century, with scattered evidence showing that in some places it started

some decades before. The main causes of this observation are still under debate, but include

higher income, better nutrition, better hygiene habits and sanitization of cities, more e�cient

medicine and public health.33

This paper uses for the �rst time the Index Bio-bibliographicus Notorum Hominum (IBN), a

dataset containing information about vital dates, occupations, nationality and other relevant

characteristics of hundreds of thousands of famous individuals from all around the world.

Exploiting observed individual characteristics to control for potential biases, we showed that

the conditional longevity of all cohorts of famous people born before 1640 �uctuated around

sixty years. We dated the beginning of the steady improvements in longevity to the cohorts

born in 1640-9, clearly preceding the Industrial Revolution by one and a half centuries. We

found that improvements in longevity involved most countries in Europe, as well as all types

of skilled occupations. Finally, the reasons for this early increase in longevity were mainly

33For a general view on the main causes see Wilmoth (2007) and Cutler, Deaton, and Lleras-Muney
(2006). The fundamental role of nutritional improvements on the reduction of mortality during the Industrial
Revolution has been stressed by McKeown and Record (1962). Landes (1999), referring to the �rst half of the
19th century, argues that much of the increased life expectancy of these years came from gains in prevention,
cleaner living rather than better medicine.
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related to an early rectangularization of the survival law.

The objective of the paper is to establish the above facts. But it is tempting to ask what

could be the reasons for the reduction of famous people mortality rates in the seventeenth

century. From the analysis above, a good explanation of this early improvement in longevity

needs to ful�ll the following conditions:

Selectivity. Reductions in mortality rates have to be restricted to people with some fame,

not a�ecting the longevity of the general population.

Regional Independence. The reductions should not be related to a particular location,

since the improvements in longevity took place throughout Europe.

Occupational Independence. They have to a�ect similarly almost all skilled occupations.

Age Dependence. They should not a�ect all adult ages in the same way, but mainly reduce

the mortality rates of working age adults.

Urban Character. They may a�ect ordinary people living in cities.

The Age dependence criterion implies that the cause of increased longevity should funda-

mentally generate a rectangularization of the human survival law without a�ecting the life

span of human populations. We see four possible candidate reasons, detailed below. We are

not going to select one of them, but rather check that they can ful�ll the necessary conditions

suggested above.

The �rst candidate is the early empowerment of the bourgeoisie. We formulate this hypothe-

sis in the following way. A major accumulation of capital, skills and technology has preceded

the industrial revolution; a sort of necessary condition. From the seventeenth century on-

ward, famous people directly or indirectly bene�ted from this change, through a substantial

increase in their income. However, the rest of the population continued living under the

same conditions as in the Malthusian era, generating a notorious increase in income inequal-

ity.34 This hypothesis, by assumption, ful�lls the Selectivity requirement. As long as the

emergence of the bourgeoisie is a European phenomenon, it also ful�lls the Regional Inde-

pendency requirement. Occupational Independence is also met because the increase in the

34Ho�man et al. (2002) studied inequality in Europe from 1500 onward. They looked at the purchasing
powers of di�erent income classes based on changes in relative prices. They concluded that luxury goods,
especially servants, became cheaper, greatly widening the inequality of lifestyles before the Industrial Revo-
lution. The evidence they provide on relative prices o�ers another rationale for an early increase in inequality
over Europe. Inequality is also at the core of the natural selection story proposed by Galor and Moav (2002).
In their model, there are two kinds of parents, distinguished by their taste for the quality of children. Before
the takeo� from the Malthusian regime the income of the �quality type� increases (the type from which one
would draw our celebrities). Though in their model life expectancy is constant, one could claim that the
increase in income of the �quality type� should lead to higher life expectancy. Hence their model is consistent
with our �ndings of a takeo� of the life expectancy the high Human Capital people before the industrial
revolution.
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surplus di�uses among the famous (e.g., even if the artists or the priests were not directly

a�ected, the richest would buy more from them or make them larger transfers).

Receding pandemics is the second candidate. The last plague in England was clearly identi�ed

in 1666-1667 (see Creighton (1891)). After this date, Europe could have been free of plagues

by chance (Lagerlöf (2003), for example), or because of the natural evolution of the disease

itself. Famous people belong to the upper social classes and are, therefore, shielded from

certain diseases that are the prime cause of mortality for the rest of the population, such as

infectious diseases, but cannot escape plagues. If plagues are receding, as was shown to be the

case after 1640 by Biraben (1975), then one should observe an improvement in the longevity

of the upper classes, without much e�ect on the rest of the population, which remains

primarily a�ected by other types of diseases. This type of explanation would �t Regional

Independence, as plagues know no borders. The Urban Character of this explanation is

also likely, as contagion is ampli�ed by the high density of population. However, it is not

clear how receding pandemics could satisfy the Age Dependence criterion; one would indeed

a priori expect that pandemics are included in the (age-independent) Makeham constant,

rather than in the Gompertz parameters.

The third candidate is medical progress. According to some authors (e.g. Omran (1971)),

the in�uence of medical factors was largely inadvertent until the twentieth century, by which

time pandemics of infection had already receded signi�cantly. However, in the period 1500-

1800, medicine showed an increasingly experimental attitude: no improvement was e�ected

on the grounds of the disease theory (which was still mainly based on traditional ideas), but

signi�cant advances were made based on practice and empirical observations. For example,

although the theoretical understanding of how drugs work only developed progressively in the

nineteenth century with the development of chemistry (Weatherall 1996), the e�ectiveness

of treatment of some important diseases was improved thanks to the practical use of new

drugs coming from the New World.35 Another example is the use of the condom as a way to

prevent spread of sexually transmitted diseases.36 Note that the bene�ts of better medical

practice could �t Selectivity if it was a�ordable and/or known only to the rich �see Johansson

(1999). Regional Independence would be satis�ed if medical knowledge spread easily across

35For example, according to Hawkins (1829) leprosy, plague, sweating sickness, ague, typhus, smallpox,
syphilis and scurvy were leading causes of death in the past but could be treated e�ectively at the time he
wrote his book.

36According to Collier (2007), In �1666, the year of the Great Fire of London, the English Birth Rate
Commission o�cially documented the condom's popular use throughout the country by explaining that the
signi�cant decrease in births at the time was due to the use of �condons.� This is the �rst time that spelling,
or anything close to it, was used in an o�cial government document.� In the same book it is also noted
that promiscuous aristocrats used the condom invented under Charles II (1630-1685) and o�cers of his army
using it during the English Revolution of the 1640s.
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Europe.

A variation of the medical progress theory would be the Enlightenment hypothesis. The

decrease in superstition that emerged from the new approach to the world promoted by the

Enlightenment could have led the elite to consider that they indeed had some hold on their

length of life, and that diseases were not necessarily sent by god. The Enlightenment might

also have pushed the upper classes to give up bad medical habits, such as bathing in mercury

to cure syphilis, or considering the Kingâ��s powdered feces as medicinal, implying that the

advantage of a higher income in purchasing better food and shelter became more prominent.

The enlightened view of the world could have easily spread among the upper classes in Europe

through the network e�ect highlighted in Mokyr (2005b) but taken centuries to percolate

into the rest of the population.

The fourth possible candidate is the drop in overall violence a�ecting famous people in the

society. In his famous book, Pinker (2011) argues that there is an overall trend towards

less violence; data from Europe seem to show an acceleration in the trend in the seventeenth

century (see homicide rates, Figure 3-3, p63). Pinker also notices that �The European decline

of violence was spearheaded by a decline in elite violence. (...) The historical Civilizing

Process, in other words, did not eliminate violence, but it did relegate it to the socioeconomic

margins.� This view would be in line with our Selectivity criterion. Along the same line,

Eisner (2011) builds a database of 1500 European monarchs, 22% of them dying from a

violent death, and documents that the rate of regicide dropped steadily after 1200 CE.

Our criteria could also be used to reject explanations, as shown in the following two exam-

ples. First, the introduction and di�usion of the potato across Europe (widespread cultivation

beginning in the late seventeenth and early eighteenth centuries) improved nutritional stan-

dards, increased population size and urbanization (Nunn and Qian 2011), and may have

increased longevity, but such an explanation would violate the Selectivity criterion. Second,

one can wonder whether the rise in longevity we observe in 1640 is related to the military

revolution and, in particular, to the declining role of noblemen in armies.37 This would

however violate the occupation independence criterion. Moreover, nobles and military are

only 15% of our sample. Further research may try to use the criteria highlighted here to

discriminate among possible explanations.

37Until the seventeenth century noblemen assumed positions of command (regardless of their competence)
in European armies. Over 1600-1700, armies grew considerably in size, requiring a better organization. For
instance, in 1675, Louis XIV made power dependent on merit and seniority (rather than on social class or
birth).
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A Lifespan Precision (NOT FOR PUBLICATION)

To measure the quality of the individual lifespan data, in this section we show two di�erent
statistics: the frequency of observations with imprecise vital dates and the heaping index.

The IBN adds the indications �c.�, for circa, or �?� to the vital dates when the years of birth
or death are not known with certainty. It may also be that more than one date is reported.
We retained all the imprecise observations (taking the mean if there was more than one date),
but created a discrete variable called precision, allocating a value of one when the lifespan
was imprecise, zero otherwise. Figure A.1 shows the fraction of imprecise observations by
decade. Individual lifespans measured by the IBN were highly imprecise until the end of the
Middle Ages; the degree of imprecision then moves to zero as the sample reaches the 19th
century.

When vital data are not known with certainty, biographers (or concerned persons themselves)
often approximate them by rounding the year of death or birth to a number �nishing in 0 or
5. Moreover, in the particular case of famous people, for obvious reasons, years of birth are
likely to be more uncertain than years of death. The heaping index measures the frequency
of observations with vital dates �nishing in 0 or 5; it is commonly normalized by multiplying
the frequency by 5. A heaping index close to unity shows that the vital data are very
precise. Figure A.2 shows birth and death heaping indexes by decades up to 1879.38 The
death date heaping index is low, indicating that the dates of death of famous people were
well known. Birth dates were much more uncertain, as the heaping index is about 2.5 before
1450, indicating that there are 2.5 times more dates �nishing in 0 or 5 than there should be.
Improvements in the birth year heaping index seem to start around 1450. This observation is
consistent with the �ndings of De Moor and Zuijderduijn (2013) that numeracy levels among
the well-to-do in the early modern period were very low (in the Netherlands). By 1700, the
gap between birth and death heaping has decreased and both indexes �uctuate around one.

If, following A'Hearn, Baten, and Crayen (2009), we interpret the age heaping index as a
measure of human capital (consistently with the robust correlation between age heaping and
literacy at both the individual and aggregate level), our �ndings support the hypothesis that
there was a major increase in human capital preceding the industrial revolution.

38Notice that heaping has no sense before 800, when the dating system starting at the birth of Jesus of
Nazareth became widely used.
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B Longevity vs Life Expectancy (NOT FOR PUBLICATION)

The population of currently famous people alive at the beginning to time s, Ns, evolves
according to:

Ns+1 = Ns − ds + Is+1 (8)

where ds is the number of deaths between age s and age s+1, and Is+1 is the number of new
people gaining celebrity over the same age interval. When computing life expectancy, Ns

is the population at risk. Unfortunately, we do not observe Ns since we do not know when
people become famous (except in special cases for which a nomination is required) and Is+1

is unobserved.

The life expectancy at age a of this population is:

Ea =
T∑
s=a

(s− a)ms,a

where T is the maximum number of periods one can live, and ms,a is the true probability of
dying at age s conditionally on being alive at age a:

ms,a =
ds
Ns

× Ss,a.

Ss,a is the probability of reaching age s if one has reached age a. It follows:

Ss+1,a = Ss,a ×
(

1− ds
Ns

)
= Sa,a ×

s∏
j=a

(
1− dj

Nj

)
=

s∏
j=a

(
1− dj

Nj

)

Notice that, contrary to the case where all individual belong to the population at age a and
can be followed until death, ms,a 6= ds/Na.

One can rewrite the population at risk as:

Ns+1 = Ss+1,a

(
Na +

s+1∑
j=a+1

Ij
Sj,a

)
. (9)

We denote the population of all famous people aged s by N̂s. This population includes
everyone that is or will become famous. Contrary to Ns, we observe N̂s. Its dynamics are
given by

N̂s+1 = N̂s − ds (10)

Using equations (8) and (10), we can compute the gap between total population N̂ and
population at risk N as

N̂s −Ns = N̂s+1 −Ns+1 + Is+1
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Iterating forward, we get

N̂s −Ns = N̂T −NT +
T∑

j=s+1

Ij =
T∑

j=s+1

Ij (11)

where T is the date at which all famous people have been discovered, i.e., Ij = 0 ∀t > T . It
implies N̂T = NT . The above equation re�ects the idea that N̂s incorporates all the people
that are not yet famous but will be. We can de�ne m̂s,a as the observable probability of
dying at age s conditionally on being alive at age a:

m̂s,a =
ds

N̂a

.

We have the following property:

T∑
s=a

ds = N̂a,
T∑
s=a

m̂s,a = 1.

We can measure the mean lifetime conditionally on being alive at a:

La =
T∑
s=a

s m̂s,a

which we call �longevity�.

There is a gap Ga between the expected length of life a+ Ea:

Ga = La − Ea − a =
T∑
s=a

(s− a)(m̂s,a −ms,a).

This gap comes from the fact that we cannot compute the correct mortality rates ms,a as we
do not know the population at risk. Replacing m̂s,aby its value, we obtain

Ga =
T∑
s=a

(s− a)

(
ds
Ns

Ns

N̂a

−ms,a

)
=

T∑
s=a

(s− a)ms,a

(
Ns

N̂aSs,a
− 1

)

Using (9) we get:

Ga =
T∑
s=a

(s− a)ms,a

Ss,a
(
Na +

∑s
j=a+1

Ij
Sj,a

)
N̂aSs,a

− 1


=

T∑
s=a

(s− a)ms,a

(
Na +

∑s
j=a+1

Ij
Sj,a

N̂a

− 1

)
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Using (11) we get:

Ga =
T∑
s=a

(s− a)ms,a

(
N̂a −

∑T
j=a+1 Ij +

∑s
j=a+1

Ij
Sj,a

N̂a

− 1

)

=
T∑
s=a

(s− a)ms,a

(
s∑

j=a+1

Ij

N̂aSj,a
−

T∑
j=a+1

Ij

N̂a

)
.

Here is how the gap depends on the process leading to notoriety {Ij}j=a..T :

Ga =
T∑
s=a

(s− a)ms,a

(
s∑

j=a+1

Ij(1− Sj,a)
N̂aSj,a

−
T∑

j=s+1

Ij

N̂a

)
.

To illustrate the e�ect of a change in the age at which people become famous, suppose that
a proportion µ of all famous people are already famous at age a and that the proportion
1− µ gets famous at age f > a. Then the bias is:

Ba =
T∑
s=a

(s− a)ms,a

(
(1− µ)N̂a

N̂aSf,a

)
=

1− µ
Sf,a

Ea.

The bias is therefore proportional to life expectancy, with the proportionality factor increas-
ing in f (as Sf,a is decreasing in f) and decreasing in µ. If age at notoriety f changes, we
have:

∂Ba

∂f
= −1− µ

S2
f,a

Ea
∂Sf,a
∂f

.

The derivatives depends on the slope of the survival function at age f . If it is not too
decreasing at f (∂Sf,a

∂f
is small), for example when S is concave and f is low enough, the

e�ect on the bias will be small.
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C Occupation categories (NOT FOR PUBLICATION)

Arts and métiers: actor, artist, cantor, collector, composer, designer, dramatist, engraver,
goldsmith, illustrator, kapellmeister, lithograph, musician, organist, painter, pewterer, pi-
anist, poet, regisseur, sculptor, singer, violinmaker and violinist.

Business: antiquary, bookseller, banker, printer, publicist, businessman, director, editor,
farmer, librarian, industrialist, merchant, trader, manufacturer and wholesaler.

Education: author, academician, dean, lecturer, professor, rector, scholar, student, teacher
and writer.

Humanities: archaeologist, classicist, economist, historian, journalist, orientalist, pedagogue,
philologe, philosopher and translator.

Law and government: administrator, adviser, ambassador, baili�, beamter, congressman,
consul, councillor, deputy, diplomat, governor, inspector, judge, jurist, lawyer, magistrato,
mayor, minister, notary, politician, prefect, president, procureur, secretary, senator and
sheri�.

Military: admiral, brigadier-general, captain, colonel, commander, �ghter, general, lieu-
tenant, lieutenant-colonel, major, major-general, marshal, military, o�cer and soldier.

Nobility: baron, chamberlain, duke, earl, king, knight, lord, noble, prince and queen.

Religious: abbot, archbishop, archdeacon, capuchin, cardinal, clergyman, deacon, franciscan,
jesuit, martyr, missionary, pastor, piarist, preacher, priest, rabbi, theologian and vicar.

Sciences: agronomist, architect, astronomer, botanist, builder, cartographer, chemist, doc-
tor, engineer, geographer, geologist, inventor, mathematician,naturalist, pharmacist, physi-
cian, physicist, surgeon and zoologist.
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Figure A.3: Conditional Longevity. Main occupational groups
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D Analysis of the Residuals (NOT FOR PUBLICATION)
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Figure A.4: Kernel Density of the Residuals (solid) and Normal density (dashes)
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E Longevity per Year of Death (NOT FOR PUBLICATION)
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F 1600 cohorts (NOT FOR PUBLICATION)

cohort # years # obs
1 2450 BCE - 1040 CE 1,611
2 1041 - 1254 1,602
3 1255 - 1360 1,634
4 1361 - 1415 1,617
5 1416 - 1450 1,737
6 1451 - 1481 1,619
7 1482 - 1502 1,600
8 1503 - 1520 1,676
9 1521 - 1534 1,636
10 1535 - 1546 1,675
11 1547 - 1557 1,641
12 1558 - 1566 1,627
13 1567 - 1575 1,765
14 1576 - 1583 1,708
15 1584 - 1590 1,660
16 1591 - 1597 1,723
17 1598 - 1603 1,773
18 1604 - 1610 1,926
19 1611 - 1616 1,616
20 1617 - 1622 1,740
21 1623 - 1628 1,743
22 1629 - 1633 1,621
23 1634 - 1639 1,870
24 1640 - 1644 1,660
25 1645 - 1649 1,621
26 1650 - 1654 1,731
27 1655 - 1659 1,663
28 1660 - 1664 1,862
29 1665 - 1669 1,710
30 1670 - 1674 1,846
31 1675 - 1679 1,730
32 1680 - 1683 1,609
33 1684 - 1688 1,888
34 1689 - 1693 1,903
35 1694 - 1697 1,713
36 1698 - 1701 1,872
37 1702 - 1705 1,641
38 1706 - 1709 1,680

continued on next page
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cohort # years # obs
39 1710 - 1713 1,946
40 1714 - 1717 2,023
41 1718 - 1720 1,662
42 1721 - 1724 2,106
43 1725 - 1727 1,763
44 1728 - 1730 1,879
45 1731 - 1733 1,892
46 1734 - 1736 2,046
47 1737 - 1739 1,994
48 1740 - 1742 2,208
49 1743 - 1745 2,298
50 1746 - 1748 2,284
51 1749 - 1750 1,874
52 1751 - 1752 1,795
53 1753 - 1754 1,793
54 1755 - 1756 1,901
55 1757 - 1758 1,834
56 1759 - 1760 1,907
57 1761 - 1762 1,840
58 1763 - 1764 2,042
59 1765 - 1766 2,125
60 1767 - 1768 1,978
61 1769 - 1770 2,231
62 1771 - 1772 2,054
63 1773 - 1774 2,074
64 1775 - 1776 2,041
65 1777 - 1778 2,060
66 1779 - 1781 2,039
67 1781 - 1782 1,867
68 1783 - 1784 1,997
69 1785 - 1786 2,146
70 1787 - 1788 2,255
71 1789 - 1790 2,390
72 1791 - 1792 2,240
73 1793 - 1794 2,436
74 1795 - 1796 2,485
75 1797 - 1798 2,620
76 1799 - 1800 2,950
77 1801 - 1802 3,061
78 1803 - 1804 3,017

continued on next page
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cohort # years # obs
79 1805 - 1806 3,152
80 1807 - 1808 3,161
81 1809 - 1810 3,322
82 1811 1,688
83 1812 1,743
84 1813 1,611
85 1814 1,642
86 1815 1,795
87 1816 1,624
88 1817 1,849
89 1818 1,838
90 1819 1,805
91 1820 1,863
92 1821 1,705
93 1822 1,731
94 1823 1,770
95 1824 1,709
96 1825 1,845
97 1826 1,685
98 1827 1,760
99 1828 1,746
100 1829 1,795
101 1830 1,890
102 1831 1,692
103 1832 1,693
104 1833 1,786
105 1834 1,775
106 1835 1,785
107 1836 1,835
108 1837 1,873
109 1838 1,860
110 1839 1,931
111 1840 2,069
112 1841 1,958
113 1842 2,001
114 1843 1,972
115 1844 1,951
116 1845 2,048
117 1846 1,953
118 1847 1,966

continued on next page
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cohort # years # obs
119 1848 2,067
120 1849 1,882
121 1850 2,097
122 1851 2,022
123 1852 2,079
124 1853 1,901
125 1854 1,956
126 1855 2,056
127 1856 2,134
128 1857 2,055
129 1858 2,292
130 1859 2,239
131 1860 2,286
132 1861 2,212
133 1862 2,304
134 1863 2,300
135 1864 2,267
136 1865 2,296
137 1866 2,273
138 1867 2,245
139 1868 2,410
140 1869 2,367
141 1870 2,301
142 1871 2,128
143 1872 2,288
144 1873 2,296
145 1874 2,286
146 1875 2,381
147 1876 2,327
148 1877 2,267
149 1878 2,309
150 1879 2,349

Total 297,651
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G Estimation of the Gomperz-Makeham Law (NOT FOR

PUBLICATION)
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Figure A.7: Estimated α̂
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Figure A.8: Estimated ρ̂
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Figure A.9: Estimated Â
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Figure A.10: Estimated α̂ - Notoriety Bias Corrected
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Figure A.11: Estimated ρ̂ - Notoriety Bias Corrected
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Figure A.12: Estimated Â - Notoriety Bias Corrected
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