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Dynamic nuclear polarization (DNP) is a promising strategy for generating a significantly in-
creased non-thermal spin polarization in nuclear magnetic resonance (NMR) applications thereby
circumventing the need for strong magnetic fields. Although much explored in recent experiments,
a detailed theoretical understanding of the precise mechanism behind DNP is so far lacking. We
address this issue by theoretically investigating solid effect DNP in a system where a single electron
is coupled to an ensemble of interacting nuclei and which can be microscopically modelled by a
quantum master equation. By deriving effective equations of motion that govern the polarization
dynamics we show analytically that DNP can be understood as kinetically constrained spin diffu-
sion. On the one hand this approach provides analytical insights into the mechanism and timescales
underlying DNP. On the other hand it permits the numerical study of large ensembles which are
typically intractable from the perspective of a quantum master equation. This paves the way for a
detailed exploration of DNP dynamics which might form the basis for future NMR applications.

PACS numbers: Valid PACS appear here

The sensitivity of imaging and spectroscopy techniques
based on nuclear magnetic resonance (NMR) depends on
the spin polarization that arises from the Zeeman inter-
action of the nuclei with an externally applied magnetic
field. However, even with the highest magnetic fields
that can currently be generated by superconductive mag-
nets, the nuclear spin polarization of 1H nuclei is only in
the order of less than ten parts per million at ambient
temperature. A promising strategy to overcome the low
sensitivity in many NMR applications is the use of dy-
namic nuclear polarization (DNP). Here the electronic
spin polarization — that is about three orders of magni-
tude higher than the nuclear spin polarization — is trans-
ferred from paramagnetic centres in solid state materials
to the surrounding nuclear spin ensemble by irradiating
with microwave fields at an appropriate frequency. DNP
was already proposed and demonstrated in the early days
of nuclear magnetic resonance [1–3], but it has recently
attracted increased attention since progress in hardware
technology, mainly in the form of stable high frequency
and high power microwave sources, has made it possible
to substantially enhance the NMR signal in several appli-
cations [4, 5] including the detection of nuclei with small
gyromagnetic constants [6], of nuclei located on the sur-
face of structured materials [7] and of nuclei in protein
micro-crystallites [8] by magic angle spinning solid state
NMR spectroscopy. Furthermore, DNP carried out at
cryogenic temperatures combined with a fast dissolution
step to rapidly bring the sample to ambient tempera-
ture, was successfully used to generate highly polarised
13C-labelled compounds that could be detected in in vivo
Magnetic Resonance Imaging applications after their in-
jection [9, 10]. A full understanding of the spin dynam-
ics during DNP is essential for the interpretation of the
experimental data and ultimately for optimising the ex-
perimental protocols. In principle this problem can be

addressed by numerically solving the full quantum mas-
ter equation [11, 20]. Owing to its complexity, however,
this approach is limited to small systems [12, 13].

In this work we show how to overcome this limita-
tion and to extend the analysis of the spin dynamics to
large ensembles containing more than a thousand cou-
pled spins. By using an adiabatic elimination procedure
we derive an effective equation for the evolution of the
spin polarization. This equation is classical in the sense
that it describes transitions between Zeeman basis states
and therefore the computational complexity of simulat-
ing the spin dynamics is drastically reduced. Moreover,
the analytical form of the effective equations of motion
permits a transparent interpretation of the physics un-
derlying DNP in terms of operator-valued, i.e kinetically
constrained, diffusion rates.

Solid effect DNP (SE DNP) is observed in systems that
consist of interacting unpaired electrons S and nuclei I
[see Fig. 1(a)] in an external magnetic field with Lamor
frequencies ωS and ωI. Polarization buildup is mediated
by the electrons that are irradiated at an off-resonance
frequency ω0 which is in resonance with either the so-
called double or zero quantum transition ωS±ωI [14–20].
For SE DNP to be effective, the electrons need to have a
resonance linewidth that is smaller than the nuclear Lar-
mor frequency. A suitable minimal model for SE DNP
consists of an ensemble of n nuclei coupled to a single
unpaired electron through the hyperfine interaction. The
spin dynamics of SE DNP can be described by the quan-
tum master equation dρ̂/dt = Lρ̂ with the Liouvillian

L = −i ˆ̂H +Γ. It describes the coherent evolution of the
spin system under the action of the Hamiltonian commu-

tation superoperator ˆ̂H and the effect of the dissipative
processes (decoherence) represented by the relaxation su-
peroperator Γ. Note, that throughout a bold symbol is
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FIG. 1. (a) Sketch of the solid effect DNP setup. The elec-
tron is coherently driven by the applied microwave field and
coherent excitation-exchange between the spins is mediated
through dipole-dipole couplings. Furthermore the electron
and nuclei are subject to dissipation leading to relaxation
(see text for details). (b) The effective dynamics of the polar-
ization is described by a classical master equation and thus
permits the simulations of large systems. (c) Comparison be-
tween the exact (solid black lines) and effective (colored lines)
relaxation dynamics of a system consisting of one electron and
four nuclei. (d) Polarization dynamics in a linear spin chain
with one electron and 30 nuclear spins. The polarization ver-
sus spin index (0 denotes the electron position) is shown for
different times and the polarization versus time is shown for
the electron (blue line) and four selected nuclear spins (red
lines).

used to represent superoperators and a doublehat for a

commutation superoperator, i.e. ˆ̂O ≡ [Ô, ·].
In the following we discuss the structure of the quan-

tum master equation in detail. The Hamiltonian Ĥ of the
system consists of four terms: Ĥ = ĤZ+ Ĥ0+ Ĥ++ Ĥ−,
where ĤZ = ωI(Ŝz +

∑
k Îkz) is the Zeeman term. The

term

Ĥ0 = λŜz +
∑
k

Ak ÎkzŜz +
∑
k<j

dkj

(
3Îkz Îjz − Îk · Îj

)
describes the hyperfine and nuclear dipole interaction. It
depends on the secular strengths of the electron-nuclear
hyperfine interaction, parameterized by Ak and further-
more on the inter-nuclear dipolar coupling coefficients djk
[21]. There is an additional dependence on the so-called
offset parameter λ = ωS−ωI−ω0 which represents a res-
onance condition between the microwave frequency ω0

and that of the double quantum transition ωS − ωI. The
remaining terms of the system Hamiltonian are

Ĥ± =
ω1

2
Ŝ± +

1

2

∑
k

Bk±Îk±Ŝz,

which arise from the pseudosecular hyperfine interaction
and the microwave irradiation. They are parameterized
by the pseudosecular coupling strength Bk± between the
electron and the nuclei and the microwave amplitude ω1.
Note, that the interaction parameters Ak, Bk± and dkj
depend on the geometry of the spin system [21].

The relaxation superoperator is composed of two
terms, Γ = Γ1 + Γ2. The first one is given by

Γ1 =
R

(S)
1

2
[D(Ŝ+) +D(Ŝ−)] + Γth

+
R

(I)
1

2

∑
k

[D(Îk+) +D(Îk−)]

where we have defined the dissipator D(X̂)ρ̂ ≡ X̂ρ̂X̂† −
{ρ̂, X̂†X̂}/2. Γ1 describes dissipative processes or lon-
gitudinal relaxation due to interaction of the spins with
the environment [22]. The rates for longitudinal relax-

ation are R
(S)
1 and R

(I)
1 for the electron and the nuclei,

respectively. The superoperator Γth = P0 R
(S)
1 [D(S−) −

D(S+)]/2 acts as a correction term and ensures that
the electron relaxes back to its thermal equilibrium state
which—at typical temperatures of T > 0.1K— is up to
a scaling factor approximated by ρth = 1− 2P0Ŝz. Here
P0 = tanh (~ωS/2kBT ) is the thermal electronic polar-
ization [21]. The second term,

Γ2 = 2R
(S)
2 D(Sz) + 2

∑
k

R
(I)
2 D(Ikz)

represents the loss of coherences or transverse relaxation

of the spin ensemble, which depends on the ratesR
(S)
2 and

R
(I)
2 for the electron and the nuclear spins, respectively.
The full quantum master equation describes the

dynamics of the spin system in the Liouville space
L of dimension 22N where N = n + 1. How-
ever, all information that is relevant for character-
izing SE DNP is typically contained in the Zeeman
subspace LZ [23] which is spanned by the operators
{1̂, Îkz, Îkz Îk′z, Îkz Îk′z Îk′′z, . . .} and has a dimension
2N . For example the bulk nuclear polarization is given
by the expectation value of

∑
n Îkz. We have obtained a

closed equation for the dynamics in the Zeeman subspace
by means of a quite lengthy adiabatic approximation pro-
cedure which is detailed in the supplemental material.
This resulting effective master equation is of the form
˙̂ρZ = LZρ̂Z. It has not only a substantially reduced di-
mension but in addition it is of entirely classical nature
— although we employ in the following a notation that is
also used in the quantum case. As shown in the supple-
mental material the dynamics can be expressed in terms
of jump operators [see Fig. 1(b)], which connect classi-
cal spin configurations, and their corresponding effective
jump rates, i.e. the equation is of Lindblad form [24].
When formulated in this way the problem lends itself
to the use of classical kinetic Monte Carlo (kMC) algo-
rithms which permits the simulation of large systems. To
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check the validity of this approximate approach we have
simulated small systems with the exact quantum Master
equation and kMC. Example results are shown in Fig.
1(c) as well as in the supplemental material and show
excellent agreement between the two methods.
The effective dynamics in the Zeeman subspace is gov-

erned by a set of single-spin and two-spin dissipators:
LZ = Lsingle−spin + Ltwo−spin. The single-spin terms are
given by

Lsingle−spin = Γ
(S)
+ D(Ŝ+) + Γ

(S)
− D(Ŝ−) +

+
∑
k

[
Γ
(I)
k+D(Îk+) + Γ

(I)
k−D(Îk−)

]
. (1)

and depend on the constant rates

Γ
(S)
± =

1∓ P0

2
R

(S)
1 +

ω2
1

2ω2
I

R
(S)
2 , (2)

Γ
(I)
k± =

R
(I)
1

2
+

Bk−Bk+

8ω2
I

R
(I)
2 . (3)

Here Γ
(S)
± are the rates at which the electron spin flips

’up’ (+) or ’down’ (−). They depend on the longitudi-

nal relaxation rate R
(S)
1 of the electron with a weighting

pre-factor which ensures that in the absence of any per-
turbation by the microwave field the electronic steady-
states polarization is identical to the thermal electronic
polarization P0. The second term is a consequence of the
applied microwave field. Eq. (3) describe the rates for
a nuclear spin k to flip ’up’ or ’down’. Since we have
assumed in the derivation of these equations that the
thermal nuclear polarization is negligibly small, these two
rates coincide and correspond to half the longitudinal nu-

clear relaxation rate R
(I)
1 . The additional term appearing

in Eq. (3) arises from the pseudosecular interaction with
the electron which leads to a tilt of the nuclear effective
field axis.
The two-spin dissipators are given as

Ltwo−spin =
∑
k

Γ̂
(IS)
k D(Ŷk) +

∑
k<j

Γ̂
(II)
kj D(X̂kj), (4)

with Ŷk = Îk+Ŝ− + Îk−Ŝ+ and X̂kj = Îk+Îj− + Îk−Îj+ .
They clearly describe a diffusive (flip-flop) dynamics be-
tween the electron and the nuclei as well as among the

nuclei. Interestingly the diffusion rates Γ
(IS)
k and Γ̂

(II)
kj

are not constant, but operator-valued. Hence the diffu-
sion rate of the spin-polarization depends on the state of
the entire spin system. In the context of the study of
glassy relaxation [25, 26] such operator-valued rates are
often referred to as kinetic constraint. Explicitly, they
read

Γ̂
(IS)
k =

ω2
1

8ω2
I

|Bk−Bk+|
R

(S)
2 +R

(I)
2

(
1̂ + D̂2

k

)−1

,

D̂k =
λ1̂ +

∑
s̸=k AsÎsz

R
(S)
2 +R

(I)
2

, (5)

Γ̂
(II)
kj =

d2kj

4R
(I)
2

(
1̂ + Ĉ2

kj

)−1

, Ĉkj =
(Ak −Aj)Ŝz

2R
(I)
2

. (6)

A brief discussion of these expressions provides insight
into the spin dynamics on which SE DNP is based on. Eq.
(5) describes the rate of flip-flop transitions or jumps be-
tween a nuclear spin k and the unpaired electron. Hence

Γ̂
(IS)
k is of fundamental importance for the SE DNP effect.

This rate depends on both the strength of the microwave
field ω1 and the pseudosecular interaction strength Bk±.
It is inversely proportional to the square of the nuclear
Larmor frequency ωI and also inversely proportional to
the sum of the transverse relaxation rates of the electron,

R
(S)
2 , and the nuclear spin, R

(I)
2 . This indicates that al-

though this process is represented by the flip-flop jump
operator, the underlying quantum mechanical process is
mediated by coherences which in fact decay with these
relaxation rates.

Most importantly, the rate for polarization transfer be-
tween the electron and the k-nucleus is controlled by the
operator D̂k whose (eigen)value depend on the polariza-
tion level of the nuclear spin ensemble. For negligible
nuclear polarization in an ensemble of nuclear spins the
sum

∑
s̸=k AsÎsz evaluates to a value close to zero as

there is an equal probability for the nuclei to be in their
spin ’up’ or ’down’ state. However, with increasing level
of nuclear polarization the magnitude of this sum grows

which decreases the effective rate Γ̂
(IS)
k . Note, that the

effect of the off-resonance parameter λ is negligible as
long as the microwave frequency ω0 is matched to the
double quantum transition at ωS − ωI.

The transport of polarization within the dipolar-
coupled network of the nuclear spins takes places via
spin diffusion which is governed by the operator-valued
rate given in Eq. (6). The rate of polarization trans-
port among two nuclei is proportional to the square of
their nuclear dipolar coupling constant dkj , and it is in-
directly proportional to the nuclear transverse relaxation

rate R
(I)
2 . Interestingly, there is also a dependence on the

difference of the secular hyperfine interaction strength
Ak of the two nuclei. In the case in which this difference
is significant, the internuclear polarization transfer be-
tween the spins can become strongly quenched provided
the electronic polarization Ŝz is non-zero.

As the effective dynamics in the Zeeman subspace can
be treated efficiently numerically SE DNP can be stud-
ied in relatively large samples. In Fig. 1(d) we already
showed a simple example for 31 spins in one dimension
while Fig. 2 now shows the progressive buildup of spin
polarization within a three-dimensional sample of 1330
13C spins arranged on a regular cubic lattice with one
electron spin at the centre. For the latter the distance
between the nuclei is 10 ± 5% Å and the field strength of
the static external magnetic B0 field is 3.4 T. The applied
microwave field has a frequency of ω0 = ωS − ωI = 34.5
MHz and a strength ω1 =100 kHz. The relaxation
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FIG. 2. Simulation of the polarization dynamics of 1330 nuclear spins (13C) arranged on a regular grid in a cube (11× 11× 11)
around one central electron (black). The diameter and the colour of the spheres indicate the expectation value of the nuclear
spin polarization at the given position. The simulation demonstrates that polarization buildup is fastest for the nuclei that are
located close to the electron at an angle of π/4 with respect to direction of the applied static magnetic field. In order to show
the contribution of spin diffusion to the distribution of polarization within the spin ensemble the dipolar coupling constants
were set to zero in the rightmost panel. This prevents any transport of polarization through spin flip-flop jumps between pairs
of nuclear spins. Note, that the front quarter of the 13C spin ensemble is not shown for better visibility of the polarization
buildup near the electron.

time constants are R
(S)
1 = 1 s−1, R

(S)
2 = 105 s−1, R

(I)
1 =

1.4× 10−4 s−1 and R
(I)
2 = 104 s−1.

Let us finally investigate the role the nuclear dipolar in-
teraction plays in the distribution of polarization between
the nuclear spins. This question has been addressed e.g.
by Hovav et al. in Ref. [11] who conducted simulations
of small chains (up to 9 nuclei) within the framework of
the full quantum master equation. Their results show
that there is only a weak dependence of the polarization
build up rates on the nuclear dipolar couplings between
nuclei further away from the electron (nuclei belonging
to the bulk) suggesting that there is a direct transfer of
polarization from the electron to all bulk nuclei through
mixing of the multi-nuclear product states. Our data
shown in Fig. 2 clearly suggests that the nuclear dipolar
couplings are important but this does not rule out the ex-
planation provide by Hovav et al. in Ref. [11]. To further
investigate the polarization transport we have simulated
the polarization dynamics of a linear spin chain consist-
ing of 30 spins as shown in Fig. 1(d) [see supplemental
material for further details]. In contrast to the analysis
in Ref. [11] our findings show that a decrease of the nu-
clear dipolar interaction constants of the bulk nuclei by
a factor of two alters the polarization buildup dramat-
ically, which is consistent with a diffusive polarization
transport. The discrepancy is thus most likely caused by
boundary effects, which can be severe for short chains.
Moreover, further discrepancies might arise due to the
way in which relaxation was introduced in the reference
frame in Ref. [11] as we have already previously discussed
[22].

Let us now establish a more quantitative connection
between SE DNP and the diffusion of polarization. For
a linear chain of n nuclear spins, as shown in Fig. 1, we

can derive an average diffusion constant:

Dav =
1

n− 1

n−1∑
k=1

Dk, Dk =
4R

(I)
2 d2ka

2
k(

4R
(I)
2

)2

+ (Ak −Ak+1)
2

(7)
Here ak is the distance between the nuclear spins k and
k + 1, dk is the dipolar coupling constant between the
two spins and Ak is the strength of the secular hyperfine
interaction of spin k. The constant Dk is the rate of dif-
fusive polarization transport among neighboring nuclei.
It is quenched when the difference between the secular
hyperfine interactions of the two spins, |Ak − Ak+1|, is
large and when the nuclear transverse relaxation rate R

(I)
2

is fast. Comparing the polarization dynamics calculated

via kMC with a simple diffusion model, ∂p
∂t = Dav

∂2p
∂x2 ,

where p(x) is the polarization field, indeed shows good
agreement with data as the one presented in Fig. 1(d).
Further details and a discussion of the relevant boundary
conditions is provided in the supplemental material. We
conclude that polarization transport in a SE DNP experi-
ment is mediated by nuclear spin diffusion. The presence
of the electron will hinder this process for nuclei close
to the electron since for these nuclei the difference be-
tween the strengths of the secular hyperfine interactions
is significant [11, 28].

We have derived effective equations of motions which
show that the mechanism underlying SE DNP is kineti-
cally constrained diffusion. The derived set of equations
enable the study polarization buildup in relatively large
spin systems which has been demonstrated by investigat-
ing DNP in a system with 1330 13C nuclei and a single
electron. Finally, we have highlighted the importance of
nuclear dipolar couplings in SE DNP and derived an ef-
fective rate for polarization diffusion in a one-dimensional
chain. We believe that this study represents an impor-
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tant step in the quantitative understanding of SE DNP
for practical applications in NMR. In the future we will
investigate whether the method presented here is also
applicable in more complex settings, which involve e.g.
more than a single electron.
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SUPPLEMENTARY MATERIAL

Adiabatic Elimination

For any linear system with constant coefficients

˙̂σ = Lσ̂ (8)

defined in some vector space H, the following technique is valid.
Suppose we need to know dynamics in a subspace H1 ⊂ H and initially also σ̂(0) ≡ σ̂1(0) ∈ H1. By using the space

decomposition

H = H1 +H2

and introducing the projections

σ̂k = πkσ̂, Lkj = πkLπj, k, j = 1, 2,

we can write

˙̂σ1 = L11σ̂1 + L12σ̂2, ˙̂σ2 = L22σ̂2 + L21σ̂1.

Given σ̂1, the second equation is resolved as

σ̂2(t) = eL22t

∫ t

0

e−L22τL21σ̂1(τ) dτ.

Substituting this into the first equation, we obtain the equation closed in H1

˙̂σ1(t) = L11σ̂1(t) +

∫ t

0

K(t− τ)σ̂1(τ) dτ, (9)

where

K(T ) = L12e
L22TL21. (10)

In terms of the Laplace transforms (defined for ζ > 0)

l̂1(ζ) =

∫ +∞

0

e−ζtσ̂1(t) dt, lK(ζ) =

∫ +∞

0

e−ζtK(t) dt,

(9) is resolved as

l̂1(ζ) = (P(ζ))−1σ̂1(0), (11)

where

P(ζ) = ζ1− L11 − lK(ζ). (12)

The initial value σ̂1(0) and the Laplace transform of the kernel lK uniquely define the Laplace transform of the
solution. The solution itself is then uniquely found by inversion of its Laplace transform.
It follows from (9) that the solution at time t depends on its history in the time interval [0, t]. The integral kernel

K is often called memory function. Besides the memory effects, K describes how dynamics in the complementary
subspace H2 affect the dynamics in H1.
If all eigenvalues ζk of the superoperator L22 have negative real parts then any solution to (9) tends to the steady-

state solution

σ̂1(t) → σ̂1∗, t → +∞,

satisfying

(L11 +M)σ̂1∗ = 0
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with

M =

∫ +∞

0

K(t) dt = −L12L22
−1L21.

On the other hand, in terms of (10), (12) and the Laplace transform,

K(t) =
∑

eζktKk, lK(ζ) =
∑ Kk

ζ − ζk
.

Due to the formulas

lK(0) = −
∑ Kk

ζk
= M,

dlK
dζ

(0) = −
∑ Kk

ζ2k
,

we have that under the conditions

|ζ| ≪ ζ−, ∥L12∥ · ∥L21∥ ≪ ζ2−, ζ− = min |ζk|

we obtain the approximation

lK(ζ) = lK(0) +
dlK
dζ

(0)ζ + . . . ∼ M

where the second term is negligibly small. Since the small values of ζ are responsible for the long-term slow dynamics,
it means that the steady-state part M of the integral term well approximates the informative long-term asymptotic
of the dynamics.

Thus, under the conditions

∥L12∥ · ∥L21∥ ≪ ζ2−, ∥L11 +M∥ ≪ ζ−, (13)

we have the asymptotics in (12)

P ∼ ζ1− L11 −M.

Returning to the Laplace transform (11), this means that solutions to equation (9) are well approximated by solutions
to the equation

˙̂σ1(t) = (L11 +M)σ̂1(t). (14)

Equation (14) does not contain any memory function. Its operator L11 +M is time-independent. Due to (13), fast
dynamics in the complementary subspace H2 make the solution in H1 tend to the steady-state, rapidly “forgetting”
its previous history.

We call equation (14) an adiabatic approximation for equation (9) and say that the complementary subspace H2

is adiabatically eliminated. The term adiabatic means that we first separate fast motions in H2 from slow motions
in H1 and then eliminate all information about the fast motions, not influencing the slow dynamics. Here the
equation preserves its initial form of the linear system with constant coefficients. The technique is easily generalised
to inhomogeneous systems and initial conditions outside the informative subspace H1.

Such procedures are commonly used (among other fields) in condensed matter theory, quantum optics (where the
term adiabatic elimination initially comes from), quantum statistics and quantum information, in cases where either
external driving or an interaction with an environment are involved in such way that a non-resonant part of the
dynamics becomes non-informative. A similar effect, well-known in the NMR context, is achieved by proceeding to
a rotating frame and averaging out secular terms. Another example is eliminating high spin correlation orders in
multi-spin dynamics where the role of the fast motion is played by spin relaxation. See in this context, for example,
[12, 13, 27]. If the dimension of the informative subspace H1 is much smaller than the dimension of the total space
H, this gives a significant reduction of the initial problem.
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Elimination of non-zero quantum coherences

The Liouville state space can be decomposed as

L =
∑

Lq,

where Lq is the subspace of q-quantum coherences,

ˆ̂H Z ρ̂ = qωI ρ̂, ρ̂ ∈ Lq, q = 0, ±1, . . . , ±(n+ 1). (15)

Within the method described in the previous section, let the subspace H1 be the subspace of zero-quantum coherences
L0 and H2 the complementary subspace,

H1 = L0, H2 =
∑
q ̸=0

Lq.

Starting from the thermal equilibrium, we have

σ̂1(0) = 1− 2P0Ŝz.

The relations

(i ˆ̂H 0 + Γ)Lq ⊂ Lq,
ˆ̂H ±Lq ⊂ Lq±1

along with (15) give

L11σ̂1 = −(i ˆ̂H 0 + Γ)σ̂1, L21σ̂1 = −i( ˆ̂H + + ˆ̂H −)σ̂1,

L12L±1 = −i ˆ̂H ∓L±1, L12Lq = 0, |q| > 1,

L22L±1 = −(±iωI1+ i ˆ̂H 0 + i ˆ̂H ± + Γ)L±1,

L22Lq = −(iqωI1+ i ˆ̂H 0 + i ˆ̂H + + i ˆ̂H − + Γ)Lq, |q| > 1.

(16)

Due to the presence of relaxation, the eigenvalues of the superoperator L22 have negative real parts, satisfying the
requirement outlined in the previous section. Physically, at high magnetic field,

∥ω−1
I

ˆ̂H 0,±∥, ∥ω−1
I Γ∥ ∼ ϵ ≪ 1, (17)

so the superoperator M is found as the series

M = ω−1
I M1 + ω−2

I M2 + . . . (18)

converging exponentially fast

M−
m∑

k=1

ω−k
I Mk ∼ ϵm+1.

Using (16), we can calculate

M1 = −i[ ˆ̂H +,
ˆ̂H −], M2 = − ˆ̂H +(i

ˆ̂H 0 + Γ) ˆ̂H − − ˆ̂H −(i
ˆ̂H 0 + Γ) ˆ̂H +, . . . (19)

On the other hand, it follows from (16)

ζ− > |ωI |, ∥L12∥ ≤ max ∥ ˆ̂H ±∥, ∥L21∥ ≤ 2max ∥ ˆ̂H ±∥.

Hence, because of (17), (18), (19), conditions (13) are satisfied, so we can replace equation (9) by its adiabatic
approximation

˙̂σ = L0σ̂ (20)

with

L0 = L11 +M = M0 + ω−1
I M1 + ω−2

I M2,

where

M0 = −(i ˆ̂H 0 + Γ),

M1,2 are defined in (19), and in (18) we restricted to the second order approximation for M.
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Elimination of non-Zeeman spin orders

In the previous section, we adiabatically proceeded from the initial Liouvillian L to the new Liouvillian L0, well
describing the dynamics closed in the subspace L0 of zero-quantum coherences.
We decompose now the zero-quantum subspace as

L0 = LZ + LC ,

where

LZ = span{1̂, Îkz, Îkz Îk′z, Îkz Îk′z Îk′′z, . . .}

is the subspace of Zeeman spin orders, and LC is the complementary subspace consisting of non-Zeeman zero-quantum
coherences.
The commutation character of the notation ˆ̂O ≡ [Ô, ·] implies that the superoperator M1 is a commutation,

M1 = −i ˆ̂H 1, Ĥ1 = [Ĥ+, Ĥ−] = Ĥ1,0 + Ĥ ′
1,

Ĥ1,0 =
ω2
1

2
Ŝz +

1

8

∑
Bk+Bk−Îkz, Ĥ ′

1 = −ω1

4

∑
(Bk+Îk+Ŝ− +Bk−Îk−Ŝ+).

We have also

Ĥ0 = Ĥ0,0 + Ĥ ′
0, Γ = Γ0 + Γ′,

Ĥ0,0 = λŜz +
∑
k

Ak ÎkzŜz,

Ĥ ′
0 =

∑
j<k

dkj

[
2Îkz Îjz −

1

2

(
Îk+Îj− + Îk−Îj+

)]
,

Γ0 = R
(S)
2

ˆ̂S 2
z +

∑
R

(I)
2

ˆ̂I 2
kz,

Γ′ =
R

(S)
1

4

(
ˆ̂S +

ˆ̂S − + ˆ̂S −
ˆ̂S +

)
+

1

4

∑
R

(I)
1

(
ˆ̂I k+

ˆ̂I k− + ˆ̂I k−
ˆ̂I k+

)
+ Γth. (21)

The superoperators ˆ̂H 0,0,
ˆ̂H 1,0, Γ0 trivially act on LZ . Within the accuracy of ∼ ω−1

I , only the superoperators
ˆ̂H

′

0 ,
ˆ̂H

′

1 contribute to L21, L12. The superoperator

X = −i ˆ̂H 0,0 − Γ0

maps LC to itself with eigenvalues ζ ′k satisfying

Re ζ ′k < 0, |ζ ′k| > min{2R(I)
2 , R

(S)
2 +R

(I)
2 }.

Thus, under the conditions

min
{(

2R
(I)
2

)2

,
(
R

(S)
2 +R

(I)
2

)2 }
≫ max

{ |d2kj |
4

,
|ω1Bk|2

16|ωI |2
,
(
R

(S)
1

)2

,
(
R

(I)
1

)2 }
, (22)

conditions (13) are satisfied and the subspace LC is adiabatically eliminated. We come then to the adiabatic approx-
imation

˙̂σ = LZσ̂, LZ = L0,11 +M′, M′ = −L0,12L0,22
−1L0,21 (23)
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closed in the Zeeman subspace LZ . In accordance with the previous notations,

L0,kj = π′
kL0π

′
j, k, j = 1, 2,

where π′
1,2 are projections onto the subspaces LZ,C respectively.

Using conditions (17) , (22), it can be shown that the right-hand side of (23) is well approximated as

L0,11 = −Γ′ − Γ′′,

M′ = −
∑
j<k

Ĉ ′
kj

ˆ̂X
′2
kj −

∑
k

D̂′
k
ˆ̂Y

′2
k ,

(24)

where Γ′ is given by (21),

Γ′′ =
1

4ω2
I

[
ω2
1R

(S)
2

(
ˆ̂S +

ˆ̂S − + ˆ̂S −
ˆ̂S +

)
+

R
(I)
2

4

∑
k

Bk+Bk−

(
ˆ̂I k+

ˆ̂I k− + ˆ̂I k−
ˆ̂I k+

)]
,

and

X̂ ′
kj =

dkj
2

(Îk+Îj− + Îk−Îj+),

Ŷ ′
k =

ω1

4ωI
(Bk+Îk+Ŝ− +Bk−Îk−Ŝ+),

Ĉ ′
kj =

2R
(I)
2(

2R
(I)
2

)2

+ Ĉ2
kj

, D̂′
k =

R
(S)
2 +R

(I)
2(

R
(S)
2 +R

(I)
2

)2

+ D̂2
k

,

Ĉkj = (Ak −Aj)Ŝz +
1

8ωI
(Bk+Bk− −Bj+Bj−)1̂,

D̂k = λ1̂ +
∑
s̸=k

AsÎsz +
1

8ωI

(
4ω2

1 −Bk+Bk−
)
1̂.

(25)

The advantage of formulas (24) is that they reduce the inversion L0,22
−1 in the subspace LC to the much simpler

problem of inversions Ĉ ′
kj , D̂

′
k of Zeeman operators. The latter are defined in the 2n+1-dimensional Hilbert space and

are diagonal in the usual Zeeman basis.
The last terms in the expressions for Ĉkj , D̂k are the second order corrections with respect to the inverse nuclear

Larmor frequency ω−1
I . For typical random spin geometries, these terms are either quenched by the first order terms

or small simultaneously with them. Hence, these terms can often be neglected.

The Lindblad form

Introducing the notation

D(X̂)ρ̂ ≡ X̂ρ̂X̂† − 1

2

{
ρ̂, X̂†X̂

}
and utilizing the double-commutator character of approximation (24) as well as the thermal correction Γth, it is
straightforward to see that the right-hand side of the Zeeman projected equation (23) is written in the purely Lindblad
form

LZ = Γ
(S)
+ D(Ŝ+) + Γ

(S)
− D(Ŝ−) +

∑
k

(
Γ
(I)
k+D(Îk+) + Γ

(I)
k−D(Îk−)

)
+

+
∑
k

Γ̂
(IS)
k D(Ŷk) +

∑
k<j

Γ̂
(II)
kj D(X̂kj)
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with the constant rates

Γ
(S)
± =

1∓ P0

2
R

(S)
1 +

ω2
1

2ω2
I

R
(S)
2 ,

Γ
(I)
k± =

1

2

(
R

(I)
1 +

|Bk|2

4ω2
I

R
(I)
2

)
related to the single-spin jump operators Ŝ±, Îk±, and the operator rates

Γ̂
(IS)
k =

ω2
1Bk+Bk−

8ω2
I (R

(S)
2 +R

(I)
2 )

(1 + D̂2
k)

−1,

Γ̂
(II)
kj =

d2kj

4R
(I)
2

(1 + Ĉ2
kj)

−1,

D̂k =
λ1̂ +

∑
s̸=k AsÎsz

R
(S)
2 +R

(I)
2

, Ĉkj =
(Ak −Aj)Ŝz

2R
(I)
2

related to the two-spin jump operators

Ŷk = Îk+Ŝ− + Îk−Ŝ+, X̂kj = Îk+Îj− + Îk−Îj+.

Comparison between full Liouville space simulations and kMC simulations

We have carried out a number of comparisons between simulations of the polarization dynamics using the quantum
master equation and our proposed method that involves an adiabatic approximation procedure to obtain a master
equation for the states contained in the Zeeman subspace LZ and the use of a kinetic Monte Carlo (kMC) algorithm
to calculate the polarization dynamics. As long as the parameters are chosen in accordance with the conditions
described in the supplementary material, an excellent agreement between the two simulation methods is achieved. An
example of such a comparison is given in fig. (3) which shows the polarization dynamics in a system containing one
electron and four nuclear spins forming a coupled network. The agreement can be further improved by increasing the
number of averaged trajectories for the kMC method, however this is done on the expense of further increasing the
computational time. The parameters used for the simulation are summarised in the following table.

Parameter Value
Nuclei 1H
B0 3.4 T

Temperature 1 K
Number of trajectories 104

ω1 50 kHZ

nuclear X-coord. 3.51, -2.52, 5.98 -4.01 (Å)

nuclear Y-coord. 0.02, 0.03, 0.00 0.00 (Å)

nuclear Z-coord. 3.56, -4.34, -0.52 0.02 (Å)

electron coord. -0.03, -0.01, -0.01 (Å)
|B+| 0.935 MHz, 0.822 MHz, 92.1 kHz, 22.2 kHz
A 0.318 MHz, 0.794 MHz, -0.352 MHz, -1.26 MHz

d1,2, d1,3, d1,4 -0.055 kHz, -0.660 kHz, 0.048 kHz
d2,3, d2,4, d3,4 0.037 kHz, -1.040 kHz, 0.059 kHz

T1e, T2e, t1n, t2n 1 s, 10 µs, 1 h, 5 ms
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FIG. 3. Comparison between a simulation of the polarization dynamics during SE DNP using the quantum master equation
in the full Liouville space and a simulation based on a master equation for states contained in the Zeeman subspace that was
obtained by adiabatic elimination and solved by kMC. For the kMC simulation 104 trajectories were averaged. The polarization
dynamics is calculated for a system containing one electron (blue) and four coupled nulcei. There is excellent agreement between
both simulations with the coloured lines indicating the results obtained using kMC and the black lines showing the results using
the quantum master equation. The agreement can be further improved by increasing the number of averaged trajectories.

SE DNP and Spin Diffusion

To evaluate the role that the nuclear dipolar interaction plays in the distribution of the polarization within a
larger ensemble of coupled nuclear spins, we have simulated the polarization buildup dynamics in a linear chain of 40
coupled spins with an electron located at one end. The individual buildup curves for the 40 nuclear spins are shown
in fig. (4). The simulation parameters are listed in the following table (they are identical with the parameters used
in [11]) . To investigate the role of the nuclear dipolar coefficient dkj for the distribution of the polarization within

Parameter Value
Nuclei 13C
ωI 36 MHz

Temperature 1 K
Number of trajectories 105

ω1 100 kHz
|B+|e−n1 40 kHz
|B+|e−nj>1 0 kHz

A 0 Hz
⟨d⟩ 7.45 Hz ± 0.82 Hz

T1e, T2e, t1n, t2n 10 ms, 10 µs, 105 s, 1.25 ms

the linear spin chain, we calculated the average polarization buildup and compared it to the buildup obtained when
the diplar coefficient is set to half its value for all nuclei k > 1 (fig. (4)). In further simulations we either set all
dipolar coefficients to half their value or ,in addition, we decreased the pseudo-secular interaction by a factor

√
2.

These changes of the interaction parameters are in analogy to the set of simulations carried out by Hovav et al. in
Ref. [11]. In contrast to their observations, the biggest effect on the average polarization is already brought about
by halving the dipolar interaction strength for all nuclei k > 1, indicating the importance of this interaction for the
diffusive transport. Any additional changes only introduced further small decreases of the average polarization.

We then compared a simple diffusion model ∂p
∂t = Dav

∂2p
∂x2 , where p(x) is the polarization field and a constant source

is assumed for the start of the linear spin chain. The average diffusion constant was obtained from eq. (7). This
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FIG. 4. Polarization buildup in a linear chain of 40 coupled nuclear spins with an electron located at one end. The buildup
curve for each individual nucleus is shown. On the right hand we show the average polarization for the spin chain for the cases
that i) all dipolar constants are given by the spacing between the individual nuclei, ii) the dipolar coupling constants dkj are
halved for bulk nuclei, iii) the dipolar coupling constants are halved for all nuclei and iv) the dipolar couplings are halved for
all nuclei and in addition the pseudo-secular interaction strength between the electron and the first nuclei is reduced by

√
2

diffusion model was solved for two different boundary conditions, either with an absorbing boundary condition or a
reflective boundary condition. The time course of the polarization moving through the linear spin chain is compared
in fig. (5) with a contour plot derived from simulating the polarizationchanges within the linear spin chain using our
method described in the main part of the paper. It is clear evident that the dynamics is reasonably well approximated
by the simple diffusion model if a reflective boundary condition is used. The parameters for this simulation are
provided in the following table.

Parameter Value
Nuclei 13C
B0 3.4 T

Temperature 1 K
Number of trajectories 105

ω1 50 kHz

separation 5 Å ± 5%
angle θ of chain to B0 45◦

T1e, T2e, t1n, t2n 1 s, 10 µs, 108 s, 0.1 ms

FIG. 5. Comparison between a simple diffusion model and the results obtain by kMC simulations. The black contour lines
visualise how nuclear spin polarization at various levels moves in time through a linear nuclear spin chain consisting of 30
dipolar coupled spins during a SE DNP. These results are compared to a simple diffusion model that is based on a polarization
source at the start of the spin chain and an average diffusion constant as described in eq. (7). The solid black line shows how
polarization would move through the linear chain assuming a fully absorbing boundary at the end of the chain and the red line
indicates the time course of the polarization if a reflective boundary condition is assumed.


