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ABSTRACT
We compare cosmological hydrodynamical simulations combined with the homogeneous
metagalactic UV background (UVB) of Haardt & Madau (hereafter HM2012) to observations
of the Lyman α forest that are sensitive to the thermal and ionization state of the intergalactic
medium (IGM). The transition from optically thick to thin photoheating predicted by the
simple one-zone, radiative transfer model implemented by HM2012 predicts a thermal history
that is in remarkably good agreement with the observed rise of the IGM temperature at
z ∼ 3 if we account for the expected evolution of the volume filling factor of He III. Our
simulations indicate that there may be, however, some tension between the observed peak in the
temperature evolution and the rather slow evolution of the He II opacities suggested by recent
Hubble Space Telescope/Cosmic Origins Spectrograph measurements. The HM2012 UVB
also underpredicts the metagalactic hydrogen photoionization rate required by our simulations
to match the observed opacity of the forest at z > 4 and z < 2.

Key words: radiative transfer – methods: numerical – intergalactic medium – quasars: absorp-
tion lines – cosmology: theory.

1 IN T RO D U C T I O N

The thermal state of the intergalactic medium (IGM) at the mod-
erate overdensities probed by the Lyman α forest is generally be-
lieved to be set by the balance of photoheating of hydrogen and
helium by the metagalactic UV background (UVB) and adiabatic
cooling/heating. These competing effects result in a characteris-
tic temperature–density relation of the low-density IGM (Hui &
Gnedin 1997; Valageas, Schaeffer & Silk 2002). Shock heating as
well as collisional cooling processes also contribute, but these oc-
cur mainly at overdensities larger than those probed by the Lyman
α forest (defined here as absorption lines with column densities
NH I � 1014.5 cm−2). The main uncertainties in this picture arise
from radiative transfer effects during the epoch of reionization,
which are difficult to model accurately (Abel & Haehnelt 1999).

In the redshift range best accessible by observations of the for-
est, 2 < z < 4, photoheating during the reionization of He II is
expected to lead to an increase in the IGM temperature above that
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otherwise expected following the completion of H I reionization at
z � 6 (Theuns et al. 2002a; Hui & Haiman 2003). There is a wide
range of evidence from Lyman α forest data to support heating
from He II reionization at z < 6 (Bryan & Machacek 2000; Ricotti,
Gnedin & Shull 2000; Schaye et al. 2000; McDonald et al. 2001;
Zaldarriaga, Hui & Tegmark 2001; Lidz et al. 2010; Becker et al.
2011; Bolton et al. 2012; Garzilli et al. 2012), but see Puchwein
et al. (2012) for possible additional contributions to the observed
heating.

Quantitative modelling of the Lyman α forest and the IGM at
2 < z < 4 in cosmological hydrodynamical simulations without
radiative transfer often relies on boosting the photoheating rates
predicted by homogeneous models of the UVB by factors of or-
der 2 to account for non-equilibrium ionization (e.g. Haehnelt &
Steinmetz 1998; Theuns et al. 1998) and radiative transfer effects
during He II reionization. Such modified heating rates have enabled
these simulations – which often also assume photoionization equi-
librium – to match a particular observational constraint by design
(Wiersma et al. 2009). Alternatively, a range of rescaled heating
rates may be used to marginalize results over a plausible range of
IGM temperatures (Jena et al. 2005; Viel et al. 2013).
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Table 1. Summary of the parameters of the simulations used in this work. The columns list the simulation name, the comoving box size, the
number of particles npart in the initial conditions (half of which are gas and half dark matter particles), the gas particle mass mgas, the dark
matter particle mass mdm, the comoving gravitational softening ε (Plummer equivalent) and the different photoheating models with which
the simulations were performed (see main text for a detailed description).

Simulation Box size npart mgas mdm ε Photoheating models
name (h−1 Mpc) (h−1 M�) (h−1 M�) (h−1 kpc)

L20N128 20 2 × 1283 5.1 × 107 2.7 × 108 6.3 Modified HM1996 eq., HM2012 eq., HM2012 non-eq.,
HM2012 non-eq. no He III, modified HM2012 non-eq.

L20N512 20 2 × 5123 8.0 × 105 4.2 × 106 1.6 HM2012 eq., HM2012 non-eq.
L10N512 10 2 × 5123 9.9 × 104 5.3 × 105 0.78 HM2012 non-eq., modified HM2012 non-eq.

In the last decade, the accuracy of measurements of the ionization
(e.g. Becker et al. 2013, 2015; Syphers & Shull 2014; Worseck et al.
2014) and thermal (e.g. Becker et al. 2011; Rudie, Steidel & Pettini
2012; Boera et al. 2014; Bolton et al. 2014) state of the IGM, as
well as of cosmological parameter constraints (Planck Collaboration
XVI 2014) and synthesis modelling of the UVB (Faucher-Giguère
et al. 2009; Haardt & Madau 2012, hereafter HM2012), have all sub-
stantially improved. It appears then timely to investigate the extent
to which the observations can be explained with accurate numerical
modelling of the thermal and ionization state of the IGM. Cosmo-
logical hydrodynamical simulations with full radiative transfer are
still very challenging (Paschos et al. 2007; McQuinn et al. 2009;
Meiksin & Tittley 2012; Compostella, Cantalupo & Porciani 2013,
2014), and are not yet efficient enough to allow the exploration at
the needed resolution of a large parameter space in boxes of size
comparable to the mean free path of ionizing radiation. Here, we
follow a hybrid approach, where we combine smooth particle hy-
drodynamics (SPH) simulations performed with a non-equilibrium
ionization version of the P-GADGET3 code with state-of-the-art one-
zone radiative transfer calculations of a homogeneous, evolving
UVB.

The paper is structured as follows. We describe the numerical
methods in Section 2, including a more detailed overview of the tran-
sition from optically thick to optically thin heating in the HM2012
UVB model. In Section 3, we present the main results regarding
the thermal state of the IGM in our simulations, and compare these
predictions with the latest data from Lyman α forest observations.
A discussion of our results in the context of previous radiative
transfer simulations of the IGM thermal history at 2 < z < 4 is
presented in Section 4. Finally, we summarize our findings and
conclude in Section 5. In Appendices A and D, we elaborate on
non-equilibrium ionization effects and the relation between spec-
tral curvature (Becker et al. 2011) and flux power spectrum.

2 M E T H O D O L O G Y

2.1 Hydrodynamical simulations

Throughout this work, we make use of a set of cosmological hydro-
dynamical simulations that were performed with the TreePM-SPH
simulation code P-GADGET3, an updated and significantly extended
version of GADGET-2 (Springel 2005). The simulations adopt the
best-fitting Planck+lensing+WP+highL cosmology (Planck Col-
laboration XVI 2014) with �M = 0.305, �� = 0.695, �B = 0.0481,
h = 0.679, σ 8 = 0.827 and ns = 0.962. Runs with different box
sizes and resolutions were performed in order to assess the numeri-
cal convergence of our results. An overview of all simulations used
in this work is provided in Table 1.

All our simulations use a simplified model for star formation. All
gas particles that exceed a density of 1000 times the mean baryon
density and have a temperature below 105 K are converted to stars.
While this model results in unrealistic galaxy populations, it has
been shown to yield the same properties of the IGM at the relatively
low densities probed by the Lyman α forest when compared to more
sophisticated star formation and feedback models (Viel, Haehnelt
& Springel 2004; Davé et al. 2010). The simple scheme adopted
here is numerically much more efficient.

2.2 Equilibrium and non-equilibrium ionization

As discussed in the Introduction, many numerical studies of the
Lyman α forest include photoheating by assuming an IGM that is in
photoionization equilibrium with an external homogeneous UVB.
While photoionization equilibrium is a very good approximation
after reionization, non-equilibrium effects during the reionization
of hydrogen and helium can be significant.

In our analysis here, we compare simulations using the simplify-
ing assumption of ionization equilibrium (referred to as equilibrium
simulations) as well as more realistic simulations in which we drop
this assumption (referred to as non-equilibrium simulations). In
both cases, the heating and cooling rate equations are solved time
dependently. In equilibrium simulations, the ionization fractions of
hydrogen and helium are found using the method described in Katz,
Weinberg & Hernquist (1996). In non-equilibrium simulations, we
integrate the ionization and recombination rate equations (see e.g.
appendix B3 in Bolton & Haehnelt 2007). We follow Oppenheimer
& Schaye (2013) in using the CVODE library1 (Cohen, Hindmarsh
& Dubois 1996; Hindmarsh et al. 2005) for this purpose. This
is well suited for efficiently integrating stiff ordinary differential
equations with variable-order, variable-step backward differentia-
tion formula methods. In the non-equilibrium simulations, CVODE is
used to evolve the ionization states and the corresponding change
in thermal energy of the SPH particles to the next synchronization
point, i.e. the next time when particles require a force computation.
Thus, for each gravity/hydrodynamic simulation timestep and each
SPH particle, effectively a sub-cycling with a variable number of
sub-steps is performed for integrating the rate equations. Further
details on integrating the rate equations are given in Appendix A1.

In both the equilibrium and non-equilibrium simulations, we take
the case A recombination rates from Verner & Ferland (1996), the
dielectric He I recombination rate from Aldrovandi & Pequignot
(1973), the collisional ionization rates from Voronov (1997), the col-
lisional excitation cooling rates from Cen (1992) and the free–free
bremsstrahlung cooling rate from Theuns et al. (1998). Throughout
this work, we use the photoionization and photoheating rates from

1 http://computation.llnl.gov/casc/sundials/main.html
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The photoheating of the IGM 4083

HM2012 in our simulations (see their table 3). There are only two
exceptions. We perform one simulation (shown in Fig. 3) with a
modified Haardt & Madau (1996, hereafter HM1996) background
(Davé et al. 1999), i.e. P-GADGET-3’s default UVB file (see Springel
& Hernquist 2003) to facilitate comparison to the literature. We
perform another run with a modified version of the HM2012 UVB
as will be discussed in Section 3.3.1.

2.3 Photoionization and photoheating from the UVB

The updated, homogeneous, UVB of HM2012 is based on an em-
pirically motivated model for the redshift evolution of the spatially
averaged UV emissivity (of galaxies and quasars) and intergalactic
opacity as a function of frequency. The background flux is obtained
by solving a global radiative transfer equation in an expanding
universe,

(
∂

∂t
− νH

∂

∂ν

)
Jν + 3HJν = −cκνJν + c

4π
εν, (1)

where Jν , H, c, εν , κν , t, and ν are the space- and angle-averaged
monochromatic intensity, Hubble parameter, speed of light, proper
volume emissivity, intergalactic absorption coefficient, cosmic time
and frequency, respectively. As it is the UVB that is responsible for
the photoheating of the IGM on large scales, such a model should
provide a realistic heating rate once the mean free path in the IGM
is larger than the mean separation between the ionizing sources.
The hydrogen and helium photoionization rates are given by


i =
∫ ∞

νi

dν
4πJν

hν
σi(ν), (2)

where h is the Planck constant, the subscript i denotes the relevant
ion species, hν i is the ionization energy and σ i(ν) is the photoion-
ization cross-section. The ensuing spatially uniform photoheating
rate is given by

Hi =
∫ ∞

νi

dν
4πJν

hν
h(ν − νi) σi(ν). (3)

Note that the formula above provides the correct heating rate of
intergalactic gas once the background intensity Jν is properly fil-
tered while propagating through the IGM. The treatment of this
spectral filtering in HM2012 is based on empirical constraints on
the abundance of absorbers as a function of their H I column density
NH I. Local radiative transfer models of the absorbers are used to
relate this H I column density to the He I and He II column densi-
ties of the absorber. Effectively, mean redshift and UVB-dependent
one-to-one conversions between NH I and the He I and He II column
densities NHe I and NHe II are used. This approach is certainly well
motivated after the reionization of the considered species. Remain-
ing uncertainties in the spectral filtering during He II reionization
are discussed in more detail in Appendix C, as well as at in the last
paragraph of this section. Further uncertainties during hydrogen
reionization arise due to the extrapolation of the empirical absorber
column density distribution to high redshifts z � 6.5 where we lack
observational constraints. Due to a ‘loss-of-memory-effect’ caused
by the subsequent cosmic expansion and photoheating (see e.g. Hui
& Haiman 2003) this will not, however, affect IGM temperatures at
the redshifts we are mostly concerned with in this work strongly.

Fig. 1 shows some of the relevant quantities predicted by the
HM2012 model.2 The top panel shows the assumed evolution of
the photon emission rates above 1 and 4 Ry from galaxies and
quasars, as well as the predicted hydrogen and singly ionized he-
lium photoionization rates and the Hubble expansion rate, H(z),
corresponding to the adopted cosmology. Reionization occurs ap-
proximately when the photoionization rate exceeds the expansion
and the radiative recombination rates. The much larger increase with
cosmic time of the photoionization rate compared to the emission
rate is explained by an increase in the photon mean free path. In
the middle panel, we plot the H I and He II photoheating rates from
equation (3). Note that we have not shown the He I rates. The reion-
ization of neutral helium is completed at approximately the same
time as H I reionization, but it has a comparatively small effect on
the thermal state of the IGM. Finally, the bottom panel shows the
excess energy per ionization of hydrogen and He II as a function of
redshift.

For illustrative purposes, we compare the ionization rate, photo-
heating rates and excess energy obtained in the case of an HM2012-
filtered UVB spectrum with the corresponding quantities derived
under the assumption of negligible intergalactic opacity (i.e. κν = 0
in equation 1). Moreover, we display the excess energy in the op-
posite limit of immediate local absorption of ionizing photons (see
Appendix B for details). We shall refer to these limiting cases in the
following as the transparent IGM and local absorption approxima-
tion, respectively. At low redshift, when the Universe is transparent
to ionizing radiation, the HM2012 heating rates are, as expected,
close to the transparent IGM limit. By contrast, at high redshift
the He II heating rate is in good agreement with the local absorp-
tion approximation as the mean free path of �4 Ry photons is small
compared to the Hubble radius. For H I, the mean excess energy also
increases towards the local absorption expectation with increasing
redshift, but does not fully reach it. The reason for falling short
of the local absorption approximation even at early times is due
to the softening of the background spectrum above the hydrogen
ionization threshold associated with recombination radiation from
the IGM (see e.g. fig. 5 c in HM1996).

We remark here that the one-zone radiative transfer calculations
used by HM2012 to generate the UVB follow the propagation of an
external radiation field through slabs of hydrogen and helium gas
over a wide range of column densities, including the low columns
associated with the forest. It is not clear whether such a spatially
homogeneous UVB will correctly predict the characteristic photo-
heating rates during the epoch of reionization, when the low-density
IGM makes the transition from neutral to highly ionized and the
mean free path of ionizing radiation is typically much shorter than
the mean source separation. During this era different regions of the
Universe will be subject to a UV flux whose amplitude and spectral
shape depend on the distance to the nearest sources. There may
also be systematic differences in the spectral shape of the radiation
heating the IGM that depend on (over)density (Abel & Haehnelt
1999; Bolton, Meiksin & White 2004; Tittley & Meiksin 2007). In
the observationally best accessible range 2 < z < 4, the transition
from He II to He III will be particularly problematic in this regard
(Paschos et al. 2007; McQuinn et al. 2009; Meiksin & Tittley 2012;
Compostella et al. 2013, 2014). Nevertheless as the hydrogen inter-
galactic opacity to ionizing radiation is well constrained by Lyman

2 Comoving emissivities, background intensities, photoheating and pho-
toionization rates are made available by Francesco Haardt & Piero Madau at
this URL: http://www.ucolick.org/∼pmadau/CUBA/DOWNLOADS.html.
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4084 E. Puchwein et al.

Figure 1. Top panel: ionizing photon emission and photoionization rates for
hydrogen and singly ionized helium in the HM2012 model. For comparison,
the photoionization rates are also shown in the transparent IGM limit. The
emission rates of H I and He II ionizing radiation are plotted per hydrogen
and helium atom (including all ionization states), respectively. The Hubble
expansion rate H(z) is also indicated. Middle panel: photoheating rates for
H I and He II as a function of redshift in the HM2012 model as well as in the
transparent IGM limit. Lower panel: mean excess energy per H I and He II

ionization in the HM2012 model, as well as in the transparent IGM and
immediate local absorption limits.

α forest and Lyman limit system data, and the modelling of helium
absorption has been greatly improved by recent observations (e.g.
Syphers & Shull 2014; Worseck et al. 2014), it is worthwhile to
investigate the thermal history of the IGM predicted by hydrody-
namical simulations that assume a spatially averaged homogeneous
UVB.

2.4 Synthetic Lyman α forest spectra

We compute synthetic Lyman α forest spectra in post-processing.
This allows us to directly compare the effective optical depth for
absorption as well as other statistics of the simulated spectra to
observations. We select 5000 randomly placed lines of sight through
each output of the simulation box, along directions parallel to one
of the coordinate axes (randomly selected among x, y and z). Each
line of sight is represented by 2048 pixels. We then compute the
neutral hydrogen density, temperature and velocity of the IGM along
these lines of sight by adding up the density contributions and
averaging the temperatures and velocities of all SPH particles whose
smoothing lengths are intersected. Our calculation of the spectra
accounts for Doppler shifts due to bulk flows of the gas as well
as for thermal broadening of the Lyman α line (see e.g. Bolton
& Haehnelt 2007). This yields the optical depth, τ , for Lyman α

absorption as a function of velocity offset along each line of sight,
which can then be easily converted into a transmitted flux fraction,
F = e−τ , as a function of wavelength or redshift.

2.5 Measuring the temperature of the IGM

The thermal state of the IGM cannot be faithfully described by
a single temperature. As has been discussed many times a strong
correlation between density and temperature is expected due to the
balance of photoheating/cooling and adiabatic cooling/heating due
to adiabatic expansion and compression (e.g. Hui & Gnedin 1997;
Theuns et al. 1998; Valageas et al. 2002). This is illustrated in Fig. 2,
where we display the volume-weighted distribution of gas in the
temperature–density plane from two of our simulations. The results
are shown for equilibrium and non-equilibrium ionization with an
HM2012 UVB at z = 3.5, i.e. shortly after the bulk of the He II

has been ionized in these models (see Fig. A1). A strong correlation
between density and temperature is clearly visible in the low-density
IGM. It follows roughly a straight line in this log–log plot. This has
motivated many authors in the past to approximate the temperature–
density distribution by a power-law relation T = T0�

γ − 1 (e.g. Hui
& Gnedin 1997), where T is temperature, � is the IGM density in
units of the mean cosmic baryon density and T0 and γ parametrize
the normalization and slope of the relation. Such power-law fits are
indicated by the purple solid lines in Fig. 2.

However, given the increased accuracy of recent observational
constraints and numerical predictions on the thermal state of the
IGM, it may no longer be justified to use a simple power law to
characterize the temperature–density distribution, as this neglects
the width of the distribution and ignores deviations in the shape of
the relation. Such deviations can arise due to photoheating (see e.g.
Furlanetto & Oh 2008). As shown in Fig. 2, we find them in par-
ticular in our non-equilibrium simulation shortly after He II reion-
ization. There the logarithmic slope of the relation increases with
density (see a more detailed discussion about this in Section 3.1.2).
Deviations from the power-law shape also occur very prominently
in models in which the IGM is heated by TeV blazars (Chang,
Broderick & Pfrommer 2012; Puchwein et al. 2012) as has been
suggested by Broderick, Chang & Pfrommer (2012).

MNRAS 450, 4081–4097 (2015)
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The photoheating of the IGM 4085

Figure 2. The volume-weighted distribution of gas in the temperature–density plane in equilibrium (left-hand panel, run L20N512 HM2012 eq.) and non-
equilibrium (right-hand panel, run L20N512 HM2012 non-eq.) simulations with an HM2012 UVB. The results are given at z = 3.5, i.e. shortly after the bulk
of the He II has been reionized in these models.

Fig. 2 also illustrates that even at fixed density � the defini-
tion of an IGM temperature is ambiguous, as there is a distribution
of temperatures at each density. The width of this distribution in-
creases with increasing density (and also towards lower redshift)
as more of the gas becomes shock heated. At increasing density, it
therefore becomes more and more problematic to neglect the width
of the distribution by assuming a power-law relation. For interpret-
ing the Lyman α forest, this becomes more important at low redshifts
as the forest is sensitive to higher density at lower redshift. Further-
more, although not included in our simulations, additional scatter
in the temperature–density plane from inhomogeneous heating dur-
ing He II reionization will also blur the power-law relationship at
low density (e.g. Meiksin & Tittley 2012; Compostella et al. 2013).
This will further exacerbate the identification of a single power
law which describes the IGM thermal state during and immediately
following He II reionization.

In the remainder of the paper, we will thus distinguish the fol-
lowing definitions of temperature at a given overdensity:

(i) Tmode(�) refers to the mode of the distribution of the loga-
rithms of the temperature at density �. It corresponds to the tem-
peratures at which the distributions shown in Fig. 2 attain the largest
value along lines of constant density. Details about how Tmode is
computed from simulations are given in Appendix E.

(ii) Tmedian(�) refers to the median temperature of all gas particles
(of constant mass) with densities within 5 per cent of �.

(iii) Tmean(�) refers to the (mass-weighted) arithmetic mean of
the temperature of all gas particles with densities within 5 per cent
of �.

(iv) Tpower-law(�) is computed by evaluating a power-law fit to the
temperature–density relation at density �. The power law is defined
by the points (�1 = 10−0.5, Tmedian(�1)) and (�2 = 1, Tmedian(�2)).
This is the same definition of T(�) that has been used in Becker
et al. (2011).

Our different temperature definitions are indicated in Fig. 2. As
expected from the increasing width of the temperature–density dis-
tribution, these definitions differ more strongly at higher density.

The IGM temperature directly affects the Lyman α forest by the
thermal broadening of absorption lines. This makes it possible to
constrain the temperature based on Lyman α absorption spectra.
However, the forest is not only sensitive to the temperature at the
time of absorption, i.e. the instantaneous temperature, but also in-
directly to the temperature at earlier times. The latter affects the
hydrodynamics of the IGM and thereby changes its density distri-
bution on small scales. In particular, the larger pressure at higher
temperature prevents the collapse of gas into small structures. This
is referred to by the term Jeans smoothing (Gnedin & Hui 1998;
Hui & Rutledge 1999; Theuns, Schaye & Haehnelt 2000).

In Section 3, we will also compare our simulation predictions
of the IGM temperature to observational constraints from Becker
et al. (2011). In the following, we will briefly summarize how their
method to constrain the temperature works. The main steps are as
follows.

(i) A set of cosmological hydrodynamical reference simulations
with different (rescaled) photoheating rates are performed. Due to
the different assumptions for the photoheating rates, the simulations
span a range of IGM temperatures at each redshift.

(ii) Synthetic Lyman α forest spectra are computed from the ref-
erence simulations. The curvature of the spectra (defined by equa-
tion D1) is computed.

(iii) Temperatures Tpower-law(�) are computed from the reference
simulations. At each redshift, the density �̄(z) at which the tightest
relation between spectral curvature and Tpower-law(�(z)) occurs is
identified. The spectral curvature is then considered as a proxy for
Tpower-law(�̄(z)).

(iv) The spectral curvature is measured from the observed Lyman
α spectra. It is then converted to a temperature constraint at density
�̄(z) using the curvature–Tpower-law(�̄(z)) relation that was obtained
from the reference simulations.

MNRAS 450, 4081–4097 (2015)
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Figure 3. The IGM temperature at mean density (Tmedian(� = 1)) as a function of redshift. Results for equilibrium and non-equilibrium simulations with
the HM2012 UVB are shown. Almost the same temperatures are found for runs with different numerical resolutions. Also indicated are the temperatures in
an equilibrium run with a modified HM1996 background, as well as the temperatures in a non-equilibrium run with a modified HM2012 background (see
Section 3.3.1 for the latter). Observational constraints from Schaye et al. (2000), Becker et al. (2011), Bolton et al. (2012, 2014) and Boera et al. (2014) are
shown for comparison.

In practice, this method is not only sensitive to the instantaneous
temperature but also to the previous thermal history of the IGM, as
both Doppler broadening and Jeans smoothing affect the curvature
of the spectra. This was already pointed out in Becker et al. (2011)
and will be further discussed in Section 3.3.1.

3 R ESULTS

3.1 The thermal history of the IGM

3.1.1 The temperature at mean density

In Fig. 3, we compare temperature predictions using the HM2012
UVB to observational constraints. To facilitate comparison with
the literature, we do this first at mean density. Note, however, that
depending on redshift the Lyman α forest may be more sensitive to
other densities.

Before we discuss the level of agreement with observations, how-
ever, it is worthwhile to briefly consider the differences between
equilibrium and non-equilibrium simulations. It can be clearly seen
that the non-equilibrium treatment results in a much larger temper-
ature increase during the almost simultaneous H I and He I reioniza-
tion between redshifts ∼15 and ∼12, as well as during He II reion-
ization between redshifts ∼5 and ∼3.5. In the equilibrium treatment,
an increase in the photoionization rates results in an unrealistic in-
stantaneous increase of the ionized fractions as they are directly set
to the new equilibrium value. However, as the photoheating rates are
computed from the abundance of neutral or singly ionized atoms,
this underestimates the photoheating rates (see Appendix A2 for a
more detailed discussion of this). The significant differences in the
temperature re-emphasizes the potential importance of accounting

for out-of-equilibrium ionized fractions in cosmological hydrody-
namical simulations.

Fig. 3 displays a number of observational constraints that are
based on the observed curvature of the Lyman α forest transmitted
flux (Becker et al. 2011; Boera et al. 2014) and the observed Lyman
α absorption line widths (Schaye et al. 2000; Bolton et al. 2012,
2014). Our simulation predictions are in excellent agreement with
the Bolton et al. (2012, 2014) constraints, and also in reasonably
good agreement with the Becker et al. (2011) and Boera et al.
(2014) measurements. Both of these latter studies quote values for
the overdensity3 to which their measurements are sensitive. We can
thus scale the temperature to the mean density using the slope of
the temperature–density relation from our simulations. The rescaled
values are shown both using the slope at mean density from our
equilibrium and our non-equilibrium runs (see Section 3.1.2, and
Appendix E for how the slope is measured).

In the non-equilibrium case, the simulation predictions agree well
with the Schaye et al. (2000) measurements, except for the two data
points at z ∼ 3. We note, however, that these data were obtained
using HYDRA hydrodynamical simulations (Couchman, Thomas &
Pearce 1995) that use outdated cosmological parameters and have
a low dynamic range by present day standards. It is thus somewhat
unclear how instructive the observed level of agreement is. The non-
equilibrium simulations also deviate somewhat from the Becker
et al. (2011) constraints in the redshift range 3 < z < 4.5. In

3 For the purpose of direct comparison in this work, the Boera et al. (2014)
measurements have been recalibrated assuming the same Lyman α effective
optical depth, τ eff(z), as Becker et al. (2011). This increases the characteristic
densities reported by Boera et al. (2014) by 20–40 per cent (Boera, private
communication). Fig. 3 displays both the original and rescaled Boera et al.
(2014) constraints.

MNRAS 450, 4081–4097 (2015)

 at U
niversity of N

ottingham
 on July 5, 2016

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


The photoheating of the IGM 4087

particular, the models predict a slightly earlier and larger increase
in the gas temperature. We will explore the cause of this deviation
in Section 3.3. Surprisingly, the equilibrium runs agree better with
the data at these redshifts. We will, however, show in Section 3.3
that this better agreement is largely a coincidence. Furthermore,
the equilibrium runs underpredict the temperature more strongly at
z < 3. Lastly, note also that the exact location and height of the
temperature peak corresponding to He II reionization do not only
depend on the UVB, but at some level also on the other adopted
rate coefficients in the simulations (see e.g. Iliev et al. 2006; Lukić
et al. 2015).

The overall good agreement between IGM temperatures obtained
by simulations with an HM2012 UVB and observational constraints
is very reassuring. This suggests that when using this UVB model a
rescaling of the photoheating rates that has routinely been employed
in the past to obtain IGM temperatures consistent with observa-
tional data (e.g. Viel et al. 2004; Jena et al. 2005) may no longer
be required. Indeed, the lower temperatures inferred in recent ob-
servational studies, coupled with improved constraints on the un-
derlying cosmology and significantly higher resolution simulations,
may account for most of the discrepancy between the observed and
simulated velocity widths of Lyman α forest absorption lines noted
in the early analyses in this field (e.g. Bryan et al. 1999; Theuns
et al. 1999; Meiksin, Bryan & Machacek 2001).

3.1.2 The slope of the temperature–density relation

We now also investigate how the slope of the temperature–density
relation in our simulations compares to observational constraints,
and discuss differences between the equilibrium and the non-
equilibrium simulations. Fig. 4 shows the logarithmic slope γ − 1

Figure 4. Logarithmic slope γ − 1 of the temperature–density relation at
mean density as a function of redshift. Results for equilibrium and non-
equilibrium simulations with the HM2012 UVB are shown (blue and red
solid lines). Almost the same slopes are found for runs with different numer-
ical resolutions. Observational constraints from Schaye et al. (2000), Ricotti
et al. (2000), McDonald et al. (2001) and Bolton et al. (2014) are shown for
comparison. The dashed and dotted lines show the slopes of the simulated
temperature–density relations at � = 10−0.5 and 100.5, respectively.

of the temperature–density relation at mean density, as well as at
the densities � = 10−0.5 and 100.5. Appendix E explains how these
slopes were measured from the simulations.

During He II reionization, the IGM is photoheated everywhere by
the same spectrum in our simulations with a homogeneous UVB.
We thus initially expect a roughly constant temperature increase, in-
dependent of density. At higher initial (i.e. before He II reionization)
temperature this corresponds to a lower increase in the logarithm
of the temperature, so that the temperature–density relation flattens
in log–log space. We, indeed, observe this behaviour in our non-
equilibrium simulations. In the equilibrium run, however, only a
small reduction in the logarithmic slope is found. This is a conse-
quence of the much lower temperature boost in this run (see Fig. 3).
Furthermore, the heating is always density dependent in the equilib-
rium computation, as the equilibrium ionized fraction on which the
heating rate is based depends on the recombination rate and, thus,
on density. The consequences of this are discussed in full detail in
Appendix A3. The main effect is that the temperature–density rela-
tion retains its power-law shape in the equilibrium treatment with
only a slight reduction of the slope. This can be seen in the volume-
weighted temperature–density phase-space plot shown in the left-
hand panel of Fig. 2. It shows results for z = 3.5, i.e. right after the
bulk of the He II has been reionized. The right-hand panel of Fig. 2
shows the stronger flattening of the relation in the non-equilibrium
treatment. The flattening is also, as expected, more pronounced at
low density, i.e. for lower initial temperature, and causes deviations
of the temperature–density relation from the power-law shape. The
same effects are illustrated by the dashed and dotted lines in Fig. 4,
which show the logarithmic slope γ − 1 of the temperature–density
relation at densities � = 10−0.5 and 100.5, respectively.

Our non-equilibrium simulations are overall in good agreement
with the constraints from Ricotti et al. (2000), McDonald et al.
(2001) and Bolton et al. (2014). The error bars are, however, admit-
tedly large. The Schaye et al. (2000) data favour a flatter or even
inverted temperature–density relation around z ≈ 3, although again
the quoted uncertainties are large and the dynamic range of the
simulations in the earlier studies is low by present day standards.
As for the temperature, the agreement with the constraints on the
slope may improve if He II reionization happened slightly later in
our simulations.

3.2 H I and He II Lyman α effective optical depths

We now turn to analysing the Lyman α forest in our hydrodynamical
simulations. Using the methods outlined in Section 2.4, we have
computed synthetic H I and He II Lyman α absorption spectra for our
equilibrium and non-equilibrium simulations. The effective optical
depths τ eff = −ln (〈F〉) in our equilibrium and non-equilibrium
simulations with an HM2012 UVB are compared to data in Fig. 5.
Here, 〈F〉 is the mean transmitted fraction obtained after continuum
removal.

The left-hand panel of Fig. 5 displays the He II Lyman α effec-
tive optical depths that we obtain with a spatially homogeneous
HM2012 UVB. These appear to be in good agreement with the
slowly rising opacity measurements obtained with FUSE and Hub-
ble Space Telescope at z � 2.8 (Zheng et al. 2004; Fechner et al.
2006; Syphers & Shull 2014; Worseck et al. 2014). At z > 2.8,
the opacity measurements rise more rapidly and spatial fluctua-
tions appear to strongly increase as expected at the tail-end of He II

reionization (although see Khaire & Srianand 2013; Davies &
Furlanetto 2014). The He II opacity data for z � 3.3 thereby sug-
gests that He II reionization occurs too early in our simulations,
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4088 E. Puchwein et al.

Figure 5. Effective optical depths for He II (left-hand panel) and H I (right-hand panel) Lyman α absorption as a function of redshift. The results are based
on equilibrium and non-equilibrium simulations with the HM2012 UV background. Observational constraints on the He II effective optical depth from Zheng
et al. (2004), Reimers et al. (2005), Fechner et al. (2006), Syphers & Shull (2014) and Worseck et al. (2014) are shown for reference. For the H I effective
optical depth, we compare to data from Viel et al. (2004), Fan et al. (2006), Faucher-Giguère et al. (2008b), Becker et al. (2013) and Becker et al. (2015). The
x-axis is linear in log (1 + z) so that a power-law evolution corresponds to a straight line.

consistent with the apparently too early temperature increase found
in Section 3.1.1. Somewhat surprisingly, however, at z > 3.3
Worseck et al. (2014) have recently measured significantly lower
optical depths than our simulations predict. Although the statistical
significance of these data may still be relatively low (Compostella
et al. 2014), our simulations nevertheless suggest that it may be diffi-
cult to reconcile the timing of the temperature increase as measured
by Becker et al. (2011) with the slow evolution of He II opacities
found in Worseck et al. (2014). If both measurements are confirmed
by future studies, this may indicate that it is not (only) the pho-
toheating of He II that is responsible for the observed temperature
increase. We will discuss the timing of He II reionization in more
detail in the next section.

In the right-hand panel of Fig. 5, we compare the H I opacity in
our simulations with observation. The overall agreement is good,
but there are also significant differences. As already noted by Becker
& Bolton (2013), the HM2012 UVB model appears to significantly
underpredict the photoionization rate at z > 4. This results in sim-
ulated opacities which are too large at these redshifts. Similarly to
what is seen for He II at z � 2.8, fluctuations in the H I effective
optical depth start to increase rapidly at z > 5.5, presumably due to
the large spatial fluctuations in the UVB flux expected at the tail-
end of reionization in the immediate aftermath of the percolation of
ionized regions (Miralda-Escudé, Haehnelt & Rees 2000; Fan et al.
2006; Wyithe & Loeb 2006; Becker et al. 2015). The H I Lyman
α effective optical depth is in good agreement with the data in the
range 2.5 � z � 4. As noted recently by Kollmeier et al. (2014),
the photoionization rate in the HM2012 model appears to be too
low to reproduce the column density distribution of the low-redshift
Lyman α forest at z ∼ 0.1. We, thus, expect our simulations to over-
predict the H I opacity at low redshift. This is indeed observed for
z < 2.5.

Lastly, comparing the equilibrium and non-equilibrium results,
we note that in the latter run the larger temperatures due to the more
efficient He II photoheating translate to somewhat smaller effective
optical depths in the H I Lyman α forest. However, as this effect is

present over a large range in redshift, roughly 2 � z � 4.5, no sharp
features are predicted in the redshift evolution of the H I Lyman
α effective optical depth (cf. Theuns et al. 2002b; Bernardi et al.
2003; Dall’Aglio, Wisotzki & Worseck 2008; Faucher-Giguère et al.
2008a). In particular, there is no evidence for a dip in the effective
optical depth evolution associated with He II reionization (see also
Bolton, Oh & Furlanetto 2009b).

3.3 What causes the remaining discrepancies between
simulations and observations?

In the analysis above, we have demonstrated that the predicted
IGM temperatures are overall in good agreement with observations.
We shall discuss further why this is the case in Section 4. Some
deviations from the Becker et al. (2011) constraints were, however,
found during He II reionization. Furthermore, the predicted He II

effective optical depths are somewhat different than observed. We
will investigate two possible causes for these deviations. (1) The
curvature method used by Becker et al. (2011) may not be able to
reproduce sharp peaks in the temperature evolution well. (2) He II

reionization may not happen at the correct time in our simulations.

3.3.1 Comparing directly to the temperature measurements
obtained with the curvature method

In Fig. 3, we scaled the Becker et al. (2011) temperature constraints
to the mean density. Here, we perform a more direct comparison, i.e.
we apply the method that Becker et al. (2011) used to constrain the
IGM temperature to our simulations. More precisely, we compute
synthetic Lyman α forest spectra from our simulations as detailed in
Section 2.4. For the results presented in this sub-section, we rescale
the optical depths such that the mean transmission is in agreement
with the values measured by Becker et al. (2013). We then apply
the curvature–temperature method as described in Section 2.5 to the
synthetic spectra. That is, we calibrate a relation between spectral
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Figure 6. Comparison of IGM temperatures computed directly from the
simulations (dashed, indicating Tpower-law in the L10N512 runs) and obtained
from the curvature of synthetic Lyman α forest spectra (solid). The temper-
atures are shown at the densities �̄(z) to which the curvature method is most
sensitive. Results for a non-equilibrium simulation with the HM2012 UVB
are shown by red lines. The blue lines indicate results for a non-equilibrium
run with the modified HM2012 background in which H I and He I reioniza-
tion happen later. The Becker et al. (2011) observational constraints (green
circles and error bars) are shown for reference. The temperatures in the
reference simulations, which these authors used to calibrate a curvature–
temperature relation, are indicated by the grey dotted lines.

curvature and IGM temperature at the density �̄(z) at which it was
measured by Becker et al. (2011, see their table 3) using exactly
the same reference simulations they employed. Finally, we use this
relation to measure the IGM temperature in our new simulations.
This procedure allows us to directly compare our simulated spectral
curvature–temperatures to the observational constraints.

This is illustrated in Fig. 6. The red dashed line indicates the
temperature Tpower-law(�̄(z)) in our non-equilibrium simulation with
an HM2012 UVB. The red solid line shows the temperature that
is estimated from the synthetic spectra using the curvature method.
At redshifts larger than ∼4 the curvature method overestimates the
temperature in our simulation, while it is slightly underestimated in
the range 2.5 � z � 3.7.

A difference in the amount of Jeans smoothing in our simula-
tion compared to the reference simulations used in Becker et al.
(2011) could cause such a discrepancy, as it will change the spectral
curvature even for identical instantaneous temperatures. In order
to assess whether this can indeed explain the deviations, we have
performed a non-equilibrium simulation with a modified HM2012
background. The modification was chosen such that the instanta-
neous temperature below redshift 6 is unchanged, while shifting H I

and He I reionization to a lower redshift, z ∼ 10, thereby reducing
the amount of Jeans smoothing. This brings our simulation much
closer to the reionization redshift, z ∼ 9, used in the Becker et al.
(2011) reference runs and should, thus, result in a more similar
Jeans smoothing.

As shown in Fig. 6, the discrepancy between the temperature in
the simulation and measured from synthetic spectra at z > 4 is alle-

viated with this modified UVB, albeit some difference remains. This
indicates that the discrepancy was indeed at least partially caused
by a difference in Jeans smoothing and highlights that the curvature
method is not only sensitive to instantaneous temperature, but to a
combination of instantaneous temperature and Jeans smoothing, as
has already been discussed in Becker et al. (2011).

To understand this degeneracy better, we have investigated to
which spatial scales the spectral curvature is most sensitive and to
what extent they are affected by Jeans smoothing. Full details are
given in Appendix D. Our main finding is that the contribution of
a specific scale to the mean square of the curvature κ is roughly
given by d〈κ2〉/d(ln k) ∝ k5P(k), where k is the wavenumber corre-
sponding to that scale and P(k) is the flux power spectrum. Most
of the contribution comes indeed from scales that are too large to
be fully dominated by the thermal cut-off, so that Jeans smoothing
also plays a significant role. This suggests that for spectra with suf-
ficiently high resolution, it might be favourable to apply a window
function to the power spectrum that gives more weight to smaller
scales to get a more accurate proxy of instantaneous temperature.
Metal contamination may, however, be a more severe problem there.

At redshifts 2.5 � z � 3.7, the curvature method somewhat
underpredicts the simulated temperature, both for the original and
the modified HM2012 background. This is most likely also caused
by differences in the Jeans smoothing compared to the reference
simulations. In particular, the reference runs used in Becker et al.
(2011) have a fairly smooth thermal evolution, as shown by the grey
dotted lines in Fig. 6. Our runs exhibit instead a significant heating
due to He II reionization. Thus, after He II has been reionized, we
effectively compare the curvatures to a reference model that has
much higher temperature before He II reionization and, thus, more
Jeans smoothing. This biases the curvature temperatures slightly
low.

However, comparing the curvature temperatures from our syn-
thetic spectra to the observational constraints, we still find that the
temperature increase due to He II reionization happens somewhat
too early in our simulations even if we account for possible differ-
ent amounts of Jeans smoothing. This will be discussed in more
detail in Section 3.3.2. At low redshift, i.e. z � 3, the observed
curvature temperature is larger than the value computed from the
simulations. Thus, additional heating may be required there. This
suggests that either photoheating may be more efficient than in
our non-equilibrium simulations, or perhaps that there is another
source of IGM heating like TeV blazars (Broderick et al. 2012). It
was shown by Puchwein et al. (2012) and Boera et al. (2014) that
the latter could be responsible for this.

3.3.2 Did He II reionization happen somewhat later?

The temperatures and ionization fractions which we have shown
so far were based on the photoionization and photoheating rates
presented in HM2012, i.e. in their table 3 (the only exceptions
being the results based on the modified HM1996 and the modified
HM2012 backgrounds). The comparison to the Becker et al. (2011)
constraints indicates that He II reionization may happen somewhat
too early in our simulations. The same conclusion was found by
comparing the effective optical depth of the He II Lyman α forest
to observational constraints, although interestingly there are some
recent measurements from Worseck et al. (2014) at z � 3.3 which
contradict this.

It is however, not obvious that our simulations do actually pre-
dict an He II reionization history consistent with the evolution of the
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ionizing emissivity, εν , assumed in HM2012; applying the HM2012
photoionization and heating rates as a spatially uniform UVB model
does not account properly for the consumption of photons in over-
dense regions due to recombinations. This effectively assumes that
the mean free path of He II ionizing photons is much greater than
the size of the simulation box, which is not true during reionization.
Furthermore, the ionized fractions in our simulations are inconsis-
tent with what one would expect based on the ionizing emissivity
and the estimated number of recombinations as also calculated in
HM2012 in their ‘Minimal reionization model’. This suggests that
either the mean free path, λν , adopted in the HM2012 calculation
to convert emissivity to photoionization rate, i.e. 
i ∝ ενλν , differs
from the mean free path in our simulations or that the number of
recombinations is incompatible. In the following, we try to account
and correct for this in an approximate manner by using the volume
filling factor of He III regions computed in the ‘Minimal reionization
model’ in HM2012.

Following HM2012, we assume that the ionized, i.e. He III, vol-
ume fraction QHe III evolves according to

dQHe III

dt
= ṅHe III,ion

〈nHe〉 − QHe III

〈tHe III,rec〉 , (4)

where t is time, ṅHe III,ion is the production rate of He II ionizing
photons per unit volume, 〈nHe〉 is the mean He II number density
and 〈tHe III,rec〉 is the mean He III recombination time, which is based
on a clumping factor CIGM = 1 + 43z−1.71 obtained from simulations
by Pawlik, Schaye & van Scherpenzeel (2009). This model, hence,
explicitly accounts for the production and consumption of ionizing
photons.

This model results in a somewhat later reionization of He II. We
correct the thermal evolution to account for this in the following
way. We start with a non-equilibrium simulation in which He II ion-
ization is turned off, i.e. for which the He II photoionization and
photoheating rates are set to zero. The thermal evolution of the
IGM in this simulation T0,no He III(z) is indicated in Fig. 7 by the red
dashed curve. Next, we modify this temperature by the following
procedure. Starting before He II reionization, we compute for each
timestep the change in QHe III implied by the HM2012 ‘Minimal
reionization model’.4 We then compute the change in the average
temperature at mean density by assuming that the newly reionized
volume fraction was heated by a temperature �THe II reion(z). The
latter is computed using the excess energy per He II reionization
implied by the HM2012 model, i.e. using the ratio of photoheat-
ing to photoionization rates, and accounting for the change in the
particle number due to He II reionization. Finally, we integrate the
temperature changes to get the overall increase �T0(z) of the aver-
age temperature at mean density due to He II reionization. This is
done according to

�T0(zi+1) = �T0(zi)

(
1 + zi+1

1 + zi

)2

+ [QHe III(zi+1) − QHe III(zi)] �THe II reion(zi)

+QHe III

[
�Theat−cool,He III − �Theat−cool,He II

]
, (5)

for the timestep from redshift zi to zi + 1. The first term on the
right-hand side accounts for adiabatic cooling due to the Hubble
expansion. The second term on the right-hand side describes the

4 This was achieved by interpolating a table of the volume fill-
ing factors that is provided by Francesco Haardt & Piero Madau:
http://www.ucolick.org/∼pmadau/CUBA/Media/Q.out.

Figure 7. The IGM temperature at mean density (Tmedian(� = 1)) as a
function of redshift. The blue solid and red solid curves, as well as the
Becker et al. (2011) observational constraints are the same as in Fig. 3.
Additionally, the red dashed curve shows a simulation in which the ionization
of He II and associated heating was turned off. Based on the latter simulation,
the HM2012 He III volume filling factor and the excess energy per He II

ionization, we compute an estimate of the temperature at mean density
(purple), which is in very good agreement with the observations.

heating by He II reionization. The third term accounts for the differ-
ence in heating and cooling between He II and He III regions at fixed
volume fraction. Full details how this term and �THe II reion are com-
puted are given in Appendix F. Also note that equation (5) assumes
that the fraction of mean density regions in which He II has already
been ionized traces the volume filling factor QHe III. In reality, small
deviations might exist but they are unlikely to be larger than other
uncertainties in the HM2012 ‘Minimal reionization model’. The
purple curve in Fig. 7 shows the sum of the temperature obtained in
the run without He II reionization and the average heat boost due to
He II reionization, i.e. T0(z) = T0,no He III(z) + �T0(z). It thus shows
an estimate of the average IGM temperature at mean density that
is based on the HM2012 He III volume filling factor, which is com-
puted with their ‘Minimal reionization model’, and excess energy
per He II ionization.

As can be clearly seen, the later reionization of He II in this
model results in a temperature evolution that is in remarkably good
agreement with the Becker et al. (2011) constraints. This illustrates
that the thermal evolution of the IGM between redshifts 5 and
2.5 is very sensitive to when He II is reionized. It also suggests
that the He III volume filling factor as estimated in HM2012 is
broadly consistent with the observed thermal history. It is also worth
noting that in the light of these findings the better agreement of the
equilibrium run (compared to the non-equilibrium run) with the
Becker et al. (2011) temperature constraints in the redshift range
3 < z < 4.5 (as shown in Fig. 3) appears to be a coincidence. In
particular, the artificial delay between reionization and photoheating
that is present in the equilibrium run mimics a later reionization of
He II.
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4 D ISCUSSION

Should our cosmological hydrodynamical simulations with a ho-
mogeneous UVB reproduce the temperature measurements of the
IGM at 2 < z < 5 as well as they do? There are some aspects of the
problem this calculation will not capture adequately. However, as
we have demonstrated in Section 2.3, although the HM2012 rates
are applied as a homogeneous UVB in our simulations, they do
self-consistently follow the transition from optically thick to thin
heating. Nevertheless, it is not entirely clear how well this captures
the volume average of the inhomogeneous reionization process.
When incorporating non-equilibrium effects, as shown in Figs 3
and 4, the HM2012 model predicts a temperature increase for a gas
parcel at mean density of �T ≈ 7000 K and γ − 1 ∼ 0.3 follow-
ing He II reionization. In comparison5 radiative transfer simulations
typically find a somewhat larger average boost of �T ∼ 10 000–
12 000 K (McQuinn et al. 2009; Compostella et al. 2013) and γ

− 1 ∼ 0.2–0.3. The volume of the IGM which is photoheated to
significantly higher temperatures than this is generally expected to
be small. Furthermore, many of the hard photons may deposit their
energy in dense regions which will cool rapidly and are not probed
by the Lyman α forest measurements (Bolton, Oh & Furlanetto
2009a). These high column density systems are currently not well
captured in radiative transfer simulations of He II reionization, and
must be accounted with sub-grid models or a global clumping factor
for the gas.

On the other hand, where homogeneous UVB models break down
is correctly modelling the patchy nature of the heating during He II

reionization. The inhomogeneous heating of the IGM will lead to
significant spatial variations in the flux and spectral shape of the
UVB, and most likely also substantial temperature fluctuations.
Note, however, observational evidence for the latter appears to be
difficult to obtain from line-of-sight Lyman α forest measurements
(Theuns et al. 2002a; Lai et al. 2006; McQuinn et al. 2011). One
should keep in mind though that some of the measurements of the
IGM temperature, in particular those that are based on the lower cut-
off of the line width distribution, are susceptible to being biased low
in the presence of spatial temperature fluctuations. Despite the good
agreement between IGM temperatures in optically thin simulations
and observations, we thus cannot rule out the possibility that both
are biased low to some extent. Spatially fluctuating heating will cer-
tainly lead to an increased scatter in the temperature–density plane
that is not captured well in simulations with a homogeneous UVB.
It might also bias the mean temperature at some level. Such models
are therefore still not a substitute for performing full radiative trans-
fer calculations in large volumes, which capture these effects. As
already discussed, there may furthermore be additional heating pro-
cesses (such as e.g. the TeV blazar heating we have already briefly
mentioned) that are not accounted for in the simulations.

However, the surprising success of our modelling presented here
is attributable to two reasons. First, it requires capturing the timing
of the reionization of He II as measured by the He III volume filling
factor, which in the HM2012 model is controlled by the assumed
ionizing emissivity due to quasars and the modelling of the spatially
averaged number of recombinations based on the clumping factor
description of Pawlik et al. (2009). Secondly, the spatial averaging
performed in HM2012 to calculate photoionization and photoheat-
ing rates accounts – at least in a volume-averaged sense – for the

5 Note that both HM2012 and the radiative transfer simulations of McQuinn
et al. (2009) and Compostella et al. (2013) assume that He II reionization is
driven by quasars with UV spectra Lν ∝ ν−1.6 (Telfer et al. 2002).

transition from optically thick to thin heating. This results in a ther-
mal history in good agreement with measured temperatures from
the Lyman α forest.

5 SU M M A RY A N D C O N C L U S I O N S

We have performed here cosmological hydrodynamical simulations
with a non-ionization-equilibrium version of P-GADGET3 and the
HM2012 UVB flux. We carefully compare the thermal state of the
IGM, as well as H I and He II Lyman α forest opacities, to the latest
observational constraints. Our main results are as follows:

(i) The IGM temperature in the simulations are in good agree-
ment with recent observational constraints. The agreement becomes
excellent once we correct for the timing of He II reionization based
on the volume filling factor predicted by spatially averaged emissiv-
ities and recombination rates assumed in HM2012. The predicted
IGM temperature at z � 3 is somewhat lower than observed. This
may suggest that either photoheating is more efficient than in our
simulations or alternatively leaves room for not yet accounted addi-
tional heating processes, like, e.g. heating by TeV blazars (Puchwein
et al. 2012).

(ii) Our numerical simulations predict He II Lyman α forest opac-
ities that are somewhat lower than observed for 2.5 � z� 3.3. Taking
the spatial variations expected at the tail-end of He II reionization
into account will also be important. On the other hand, at z � 3.3, our
predicted He II opacities are significantly larger than the measure-
ments by Worseck et al. (2014, see also Compostella et al. 2014).
If these new data are confirmed with further observations, this may
suggest there is significant tension between the measured evolution
of temperature and He II opacity that merits further investigation.

(iii) The effective optical depth of the hydrogen Lyman α forest
predicted by our simulations at redshifts 2.5 � z � 4 matches
observations well. However, we confirm that at lower and higher
redshifts, the optical depth is overpredicted. This suggests that the
photoionization rate in the HM2012 model is too low at both z � 2.5
and z � 4.

(iv) A comparison of our equilibrium and non-equilibrium simu-
lations corroborates previous findings that non-equilibrium effects
are indeed significant, even when modelling photoheating with a ho-
mogeneous UVB. They, thus, ideally need to be taken into account
in cosmological hydrodynamical simulations as standard.

Finally, we remark that the good overall agreement of our simu-
lations with the data is encouraging, as it suggests that with some
further modest adjustments to the emissivities and mean free paths
in the HM2012 model, it should be possible to obtain a physical
model that allows faithful forward modelling of the Lyman α forest
with hydrodynamical simulations that is in agreement with both
observed temperatures and Lyman α opacities. This should render
the ad hoc adjustments of the heating rates used in the past for many
applications unnecessary.
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APPENDIX A : N ON-EQU ILIBRIUM EFFECTS
O N T H E TH E R M A L A N D I O N I Z AT I O N
H I S TO RY O F T H E I G M

Non-ionization-equilibrium effects play an important role for the
photoheating and thus the thermal state of the low-density IGM
(e.g. Hui & Gnedin 1997; Theuns et al. 1998). In this appendix, we
will discuss these effects in detail.

A1 Integration of the rate equations

The system of rate equations that we integrate in our non-
equilibrium code is of the form ẏ = f ( y) where y is a
vector with the independent variables that we use, i.e. y =
(u, ne, nH I, nH II, nHe I, nHe II, nHe III). Here u is the specific internal
energy and the other variables are the individual abundances of
free electrons, as well as of all ionization states of hydrogen and
helium. The function f is determined by our choice of rate coeffi-
cients (see Section 2.2). Note, that during the integration with the
CVODE library, we consider the individual abundances as independent
variables. The number conservation of electrons and hydrogen and
helium nuclei is then used as an independent check of the integra-
tion accuracy during an individual gravity/hydrodynamic timestep.
At the end of each gravity/hydrodynamic timestep, we renormalize
the values to restore exact conservation. We adopt the same error
tolerance in the integration as Oppenheimer & Schaye (2013), i.e. a
relative error tolerance of 10−7 for the abundances of the different
ionization states of hydrogen and helium, as well as for the free
electron abundance. We also use CVODE’s backward differentiation
formula scheme and Newton iteration.

As an additional test, we have compared CVODE’s solution for a
gas particle at mean cosmic density to the results of an explicit
integration of the rate equations with an extremely large number of
timesteps. The results are in excellent agreement.

A2 The IGM temperature

Fig. 3 compares the temperature at mean density, or more precisely
Tmedian(� = 1), between different simulations, as well as to obser-
vations. It can be clearly seen that the non-equilibrium treatment
results in a much larger temperature increase during the almost
simultaneous H I and He I reionization between redshifts ∼15 and
∼12, as well as during He II reionization between redshifts ∼5 and
∼3.5.

In the equilibrium computation, the heating rates are biased low
as they are directly proportional to the H I, He I and He II abundances.
More precisely, the photoheating rate per volume is given by (see
e.g. Katz et al. 1996)

H = nH IHH I + nHe IHHe I + nHe IIHHe II, (A1)

where nH I, nHe I and nHe II are the particle number densities for the
different ionization states.HH I,HHe I andHHe II are the photoheating
rates per particle, which depend only on the UVB. We use the values
given in table 3 in HM2012. Thus, any underestimate of the neutral
hydrogen and helium or singly ionized helium abundance will re-
sults in an underestimate of the photoheating rate and consequently
of the IGM temperature.

In the equilibrium treatment, an increase in the photoionization
rates results in an unrealistic instantaneous increase in the ionized
fractions as they are directly set to the new equilibrium values. In the
non-equilibrium calculation instead, it takes a while until enough
neutral or singly ionized atoms are photoionized and the new equi-

Figure A1. Ionization fractions as a function of redshift for simulations
with equilibrium and non-equilibrium photoheating. The results are based
on the HM2012 UVB. Shown are the ratios of the number of H I to the
number of all hydrogen atoms and of the number of He II to all helium
atoms. The L20N512 simulation is in excellent agreement with the other
runs and not shown for clarity.

librium state is approached. Thus, during reionization the degree
of ionization will be overestimated in the equilibrium calculation.
The corresponding underestimate of the neutral or singly ionized
fractions is illustrated in Fig. A1. It shows how the neutral hydrogen
and the He II fraction evolve as a function of redshift, both in the
equilibrium and the non-equilibrium calculation.

As expected the H I fraction is underpredicted during hydrogen
reionization in the equilibrium model. This results in an under-
estimate of the photoheating of hydrogen. The He I fraction is
also biased low during He I reionization, while the He II fraction
is overestimated under the assumption of ionization equilibrium.
As HHe I 
 HHe II in the HM2012 model, the photoheating of he-
lium is also underpredicted in the equilibrium treatment. Together,
this explains the difference in IGM temperature during and after H I

and He I reionization between the non-equilibrium and equilibrium
simulation.

At z ≈ 11, the ionization fractions are back in equilibrium even
in the non-equilibrium run. It takes, however, until z ≈ 7 for the
temperature difference to disappear. At z < 5, a similar effect can be
seen due to He II reionization. The He II abundance and the implied
photoheating are underpredicted in the equilibrium model. A much
larger temperature boost is observed in the non-equilibrium calcu-
lation. It takes until z ≈ 1 for the equilibrium and non-equilibrium
IGM temperatures predictions to get back into agreement.

A3 The slope of the temperature–density relation

In the following, we will discuss how the temperature–density re-
lation differs between the equilibrium and non-equilibrium simu-
lations. The logarithmic slope γ − 1 of the temperature–density
relation at mean density is shown in Fig. 4. Details about how the
slopes are measured from the simulations are given in Appendix E.

MNRAS 450, 4081–4097 (2015)

 at U
niversity of N

ottingham
 on July 5, 2016

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


4094 E. Puchwein et al.

During H I and He I reionization the temperature–density relation
is almost isothermal in the non-equilibrium simulation. The reason
for this is that regions of different density are photoheated by the
same spectrum in our simulations with a homogeneous UVB. This
results in a roughly constant temperature during and shortly after
reionization. In the equilibrium run instead, the amount of heating
is proportional to the equilibrium neutral fraction, which is higher
in high-density regions due to the larger recombination rate. As
a consequence, the temperature–density relation quickly attains a
positive slope. In the non-equilibrium calculation, the difference in
recombination rate only becomes important once it becomes com-
parable to the photoionization rate, i.e. once ionization equilibrium
is approached. This happens around redshift 12 (see Fig. A1). From
that point on the temperature–density relation also steepens in the
non-equilibrium run, mostly by a decrease of the temperature in
low-density regions in which the photoheating can no longer offset
the inverse-Compton cooling by the cosmic microwave background.
Note, that in both cases, the slope of the temperature–density rela-
tion during H I and He I reionization is not mainly set by adiabatic
compression and expansion, but by the difference in the effective-
ness of photoheating.

As expected and as discussed in Section 3.1.2, the temper-
ature boost during He II reionization translates into a signifi-
cant flattening of the temperature–density relation in the non-
equilibrium simulation. The flattening is stronger in regions that
have a lower initial temperature, i.e. in regions with a lower
density.

In the equilibrium simulation, instead, we do not observe a
large change in the logarithmic slope, nor a steepening of the
temperature–density relation with increasing density. This can
be understood in the following way. Reionization proceeds very
quickly in the equilibrium computation as an increase in the pho-
toionization rate results in an unrealistic instantaneous increase in
the ionized fraction. The photoheating is, however, not directly
coupled to the change in the ionized fraction but happens with
some delay, i.e. at a time when the IGM is already largely ion-
ized. According to equation (A1) the heating rate is given by
H ≈ nHe IIHHe II, where we have ignored the sub-dominant contri-
bution from H I and He I during He II reionization. Next, we note
that the He III recombination rate in the relevant range is roughly
proportional to ∝ T−0.7. Thus, when also ignoring collisional ion-
ization, which is not important at low-density, ionization equilib-
rium corresponds to a balance of photoionization and recombina-
tion, i.e. nHe II
He II ∝ nHe IIIneT

−0.7. Once He II is mostly ionized,
we have nHe III ∝ ne ∝ ρ. Therefore, the heating rate satisfies the
following proportionality relation, H ≈ nHe IIHHe II ∝ ρ2T −0.7. Af-
ter a period of heating the temperature change is then propor-
tional to �T ∝ H/ρ ∝ ρT −0.7 ∝ ρ1−0.7(γ−1) ∝ ρ1.7−0.7γ , where we
have assumed that the initial temperature–density relations has
a logarithmic slope γ − 1. The relative change hence satisfies
�T/T ∝ ρ1.7 − 0.7γ − γ + 1 ∝ ρ2.7 − 1.7γ , so that for an initial value of
γ − 1 ≈ 2.7/1.7 − 1 ≈ 0.59 the slope of the temperature–density
relation does not change by photoheating when followed under
the assumption of ionization equilibrium. As the slope before He II

reionization is quite close to this value, no significant change of the
slope is observed.

Note that as the recombination rate of hydrogen is also roughly
∝ T−0.7, a similar calculation holds for the photoheating after hydro-
gen reionization. The photoheating, thus, pushes the temperature–
density relation towards the stable slope of ≈0.59, thereby explain-
ing the much quicker increase of γ − 1 at redshifts 15–12 compared
to the non-equilibrium simulation (see Fig. 4).

As a final remark, we would like to point out that the relatively flat
slope of the temperature–density relation at � = 100.5 and z � 6 (as
shown by the dotted curves in Fig. 4) is a consequence of radiative
cooling. Such a flattening at high density can also be seen in Fig. 2
for z = 3.5 and � � 10. Due to the larger value of the mean density
at higher redshift this becomes important at lower � values there.

A P P E N D I X B : T H E L O C A L A B S O R P T I O N
APPROX I MATI ON

For the immediate local absorption approximation (discussed in
Section 2.3), the excess energy is computed assuming that all emit-
ted ionizing radiation above the ionization threshold with a mean
free path shorter than the Hubble radius is absorbed. The latter crite-
rion translates to a high-energy cut-off to the UVB spectrum which
decreases towards lower redshift. This cut-off is relevant only for
the He II excess energy, which is, however, also fairly insensitive
to its exact value as long as the ∼30 keV bump in the HM2012
quasar emissivity is excluded. For simplicity, we, thus, derive the
mean free path that enters the computation of the cut-off energy for
a homogeneous universe with the same ionization fractions as our
non-equilibrium runs.

If there were only one single species of absorbers, it would be
sufficient to weight the emitted spectrum with a constant weight
between the ionization threshold and the high-energy cut-off and
compute the mean excess energy. However, for multiple species –
we consider absorption by H I, He I and He II – one has to keep track
of what fraction of the radiation is absorbed by each species in order
to obtain a mean excess energy for each species separately. We do
this by assuming that the fraction absorbed by each species at a
specific wavelength is proportional to the product of the species’
number density and its photoionization cross-section at that wave-
length. For the number densities, we use the ionization fractions in
the non-equilibrium simulations (see Fig. A1).

Note that in Fig. 1 the local absorption estimates are truncated at
the redshift where the upper energy cut-off adopted for the spectrum
becomes less than twice the ionization threshold.

APPENDI X C : H E I I A B S O R B E R S IN T H E
H A A R D T & MA DAU (2 0 1 2 ) MO D EL

The thermal evolution of the IGM during He II reionization is obvi-
ously sensitive to the spectrum of the UVB by which it is ionized. In
this work, we employ the HM2012 UVB model. In the following,
we discuss some of the uncertainties in this model and how they
affect the thermal evolution during He II reionization. Critical in-
gredients in predicting the He II ionizing background are the spectra
of the ionizing sources, as well as the spectral filtering by the in-
tervening IGM. In the HM2012 model, the latter is described by an
empirical absorber H I column density distribution and a prescrip-
tion for converting the H I column density NH I of an absorber to its
He II column density NHe II. The opacity of the He II is then taken
into account when integrating the evolution equation of the UVB.
The H I column density distribution is constrained rather well from
observations at the redshifts relevant for He II reionization (see e.g.
Kim et al. 2013; O’Meara et al. 2013; Rudie et al. 2013). In the
remainder of this section, we thus focus on the uncertainties in the
NH I to NHe II conversion.

In HM2012, this conversion is based on a radiative transfer cal-
culation in which absorbers are treated as semi-infinite slabs which
are illuminated by the external UVB. The NHe II/NH I ratio obtained
in this way of course depends on the spectrum of the UVB, as
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Figure C1. The left-hand panel illustrates the conversion from the H I to the He II column density of an absorber in the HM2012 model. In particular, it shows
how the conversion depends on the assumed size of the absorber in units of the Jeans length. Results are shown for absorber sizes of 0.25, 1 and 4 times the
Jeans length at z = 4.1. The right-hand panel shows how the evolution of the IGM temperature at mean density depends on the assumed absorber size. The
curves are based on a non-equilibrium treatment of photoheating.

well as on the assumed thickness of the absorber. In the HM2012
calculation, the UVB and the absorber properties are coupled self-
consistently, as the opacity of the absorbers is taken into account
when evolving the UVB. The main additional assumption that is
required concerns the thickness of the absorber. HM2012 assume
that the absorber size is given by the Jeans scale, which can be
theoretically motivated for overdense absorbers in local hydrostatic
equilibrium (Schaye 2001). We now explore how sensitive results
are to this assumption.

The left-hand panel of Fig. C1 shows the NHe II–NH I relation in
HM2012 (black curve) during He II reionization at z = 4.1. Also
shown are results for four times thicker (red) and four times thinner
(blue) absorbers. These changes in absorber size result in factor
of 2–3 changes in He II column density. The increased absorption
by He II when assuming larger absorbers results in a softer UVB
which slightly delays He II reionization. Due to the then lower ex-
cess energy per ionization event this also somewhat decreases the
temperature boost as illustrated in the right-hand panel of Fig. C1,
which shows the evolution of the IGM temperature at mean density
for the three different assumed values of absorber size. Despite the
significant changes in absorber size, the effect on the thermal his-
tory of the IGM is rather small compared to the difference between
an equilibrium and a non-equilibrium treatment of photoheating.

In reality, the patchy nature of He II reionization will result in
scatter in the properties of the ionizing background to which ab-
sorbers are exposed. This translates into scatter in the NHe II–NH I

relation, which might further modify the thermal evolution. In a
homogeneous UVB model like HM2012, this cannot be followed
faithfully. Fig. C1 at least gives some idea how sensitive the thermal
evolution is to changes in the NHe II distribution.

For those readers interested in the details of the NH I to NHe II

conversion in HM2012, we will in the remainder of Appendix C
shed some light on the processes that shape the relation between
the column densities. In the optically thin limit, at low column
densities, NH I and NHe II are simply proportional to each other (see
the discussion in HM2012). The proportionality constant depends
on the hardness of the UVB. The different optically thin values of
NHe II in the left-hand panel of Fig. C1 (also shown by the dotted

curves) are a consequence of the different UVB implied by the self-
consistent coupling of absorbers and UVB evolution. For larger
absorbers the softer UVB translates into larger NHe II values in this
regime.

At higher column density when He II becomes optically thick
(indicated by the horizontal dashed line), the NHe II/NHe ratio ap-
proaches unity, where NHe is the total helium column density
independent of ionization state. Depending on absorber size the
NHe II/NHe ratio starts out from different optically thin values. This
translates to different slopes of the NHe II–NH I relations during the
transition to NHe II/NHe ≈ 1. In Fig. C1, this happens in the range
1014 � NH I � 2 × 1015. For even higher column densities (NH I �
2 × 1015) NHe II is roughly proportional to ∝ N

1/3
H I . This corresponds

to NHe II/NHe ≈ 1 and NH I/NH still being in the optically thin
regime, so that NHe II ∝ NHe ∝ NH and NH I ∝ NHne ∝ NHN

2/3
H I ,

where the electron density ne affects the number of recombina-
tions to H I and the proportionality ne ∝ N

2/3
H I assumes a constant

size of the absorber in units of the Jeans length (see equation 30 in
HM2012). It then follows that NHe II ∝ NH ∝ N

1/3
H I . This holds until

H I also becomes optically thick at NH I ≈ 1017cm−2. At this point,
a large increase in NH I is caused by a small increase in NH ∝ NHe II

so that the NHe II–NH I becomes very flat.
At even larger column density, He I becomes optically thick as

well. In Fig. C1, this happens between NH I ≈ 1018 and 1019 cm−2

and results in helium becoming increasingly neutral. This effect
alone would result in NHe II levelling off. However, hydrogen also
becomes largely neutral at these column densities so that NH I ≈ NH.
For an absorber with a size that is a fixed multiple of the Jeans scale,
a further increase in NH I then corresponds to an increase in particle
number density that boosts recombination rates. As a consequence
NHe II decreases with a further increase in NH I.

A P P E N D I X D : T H E C O N N E C T I O N B E T W E E N
S P E C T R A L C U RVAT U R E A N D T H E FL U X
POWER SPECTRU M

Becker et al. (2011) use the mean curvature of the Lyman α absorp-
tion spectra as a proxy for the IGM temperature. They define the
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curvature by

κ =
d2F
dv2[

1 km−2 s2 + (
dF
dv

)2
]3/2 , (D1)

where F is the transmitted flux fraction and v is the velocity offset.
To obtain temperatures, simulations are used to calibrate a relation
between the mean of the absolute value of κ , i.e. 〈|κ|〉, and the
temperature at a characteristic overdensity (see also Section 2.5).
The mean is calculated for all pixels with 0.1 < F < 0.9. This
relation can then be used to translate the curvature of an observed
spectrum to an IGM temperature.

We would like to better understand what spatial scales dominate
the mean curvature. To this end, we try to relate it to the flux power
spectrum. This is possible when using three simplifications:

(i) Employing a root mean square average of κ rather than the
mean of the absolute value.

(ii) Including all pixels, i.e. also those with F < 0.1 and F > 0.9.
(iii) Assuming ( dF

dv
)2 � 1 km−2 s2 in the denominator of equa-

tion (D1). This is typically well satisfied. Neglecting the ( dF
dv

)2 term
does, thus, not change the value of κ significantly.

The root mean square value of κ is then given by

〈κ〉RMS =
√√√√ 1

N

N−1∑
n=0

κ2
n =

√√√√ 1

N2

N−1∑
l=0

κ̂2
l , (D2)

where n is the pixel index and N is the number of pixels in the spec-
trum. In the second equality, we use Parseval’s theorem to rewrite the
mean curvature in terms of the discrete Fourier transform (denoted
byˆ) of κ . Neglecting the ( dF

dv
)2 � 1 km−2 s2 in the denominator of

equation (D1), this can be easily related to the Fourier transform of
F. We note that

κ̂l ≈
(

d2̂F

dv2

)
l

= −k2
l F̂l , (D3)

where kl = 2π/�v × min(l, N − l) with �v being the length of
the spectrum in velocity space. Using this, we can rewrite equation
(D2) as

〈κ〉RMS ≈
√√√√ 1

N2

N−1∑
l=0

k4
l F̂

2
l =

√√√√ 1

�v

N−1∑
l=0

k4
l Pl, (D4)

i.e. in terms of the flux power spectrum Pl ≡ �vF̂ 2
l /N2.

In other words, the contribution of a specific scale to 〈κ2〉 is
proportional to k4

l Pl or when writing this in a continuous form
∝ k4P(k) dk = k5P(k) d(ln k). The latter quantity rescaled by a factor
of 100 for clarity, i.e. 100 × k5P(k) ∝ d〈κ2〉/dln (k), is shown in
Fig. D1 for non-equilibrium simulations with the HM2012 back-
ground and the modified HM2012 background. The latter was
modified such that H I and He I reionization happen significantly
later, while leaving the thermal state at z < 6 unchanged (see Sec-
tion 3.3.1). These two models have, thus, the same instantaneous
temperature, but the modified HM2012 background results in less
Jeans smoothing, in particular for z � 3.5. Also shown are flux
power spectra both for the two models just described, as well as for
some of the reference simulations used in Becker et al. (2011).

The figure illustrates that Jeans smoothing mostly affects interme-
diate scales 0.05 km−1 s � k � 0.4 km−1 s. Larger scales are not very
sensitive to Jeans smoothing, but also not to instantaneous temper-
ature. The latter can be seen from the grey dotted curves, which all

Figure D1. Flux power spectrum and dominating scales in the spectral
curvature at z = 4.6. The power spectra are shown for non-equilibrium
simulations (L10N512) with the HM2012 background and the modified
HM2012 background that is discussed in Section 3.3.1, as well as for some of
the simulations that were used in Becker et al. (2011) to calibrate the relation
between spectral curvature and IGM temperature (A15, AB15, B15, C15; top
to bottom, grey dotted curves). The differential contribution to the spectral
curvature d〈κ2〉/dln (k) ∝ 100 × k5P(k) is indicated for the non-equilibrium
simulations with the HM2012 and modified HM2012 backgrounds.

correspond to different normalizations of the temperature–density
relation. On small scales, the flux power spectrum has a weak de-
pendence on the Jeans smoothing but a strong dependence on the
instantaneous temperature.

The largest contribution to the spectral curvature comes from the
same scales on which we find the largest sensitivity to the amount of
Jeans smoothing. This can be most easily seen by comparing the two
dashed curves which have the same relative difference as the power
spectra, but show at the same time the scales that contribute most
to the curvature. This makes clear that spectral curvature measures
a combination of Jeans smoothing and instantaneous temperature.
It also suggests that using the full information in the flux power
spectrum, i.e. including smaller scales, may help to break this de-
generacy.

A P P E N D I X E : M E A S U R I N G T H E SL O P E A N D
N O R M A L I Z ATI O N O F TH E ρ– T R E L AT I O N
I N SI MULATI ONS

We measure the slope and normalization of the temperature–density
relation at density � (in units of the mean baryon density) by
finding the mode of the volume-weighted log10(T) distribution at
fixed density at sampling points �1 = �/1.25 and �2 = � × 1.25.
At both densities, we have to use a finite bin size to compute the
mode from a suitably large number of gas particles. More precisely,
we use all gas particles with densities within 5 per cent of �1 or �2.

This can, however, slightly bias the value of the mode as one can
essentially end up with any temperature value on the ridge of the
temperature–density relation within the density range given by the
bin size. To avoid this problem, we scale the temperatures of all
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particles within the bin to the bin centre using an initial guess of
the slope of the temperature–density relation. We then compute the
mode of the distribution of the rescaled logarithmic temperatures
with the half-sample mode estimator (Bickel & Fruehwirth 2006).
This yields the logarithmic temperatures log10T1 and log10T2. The
logarithmic slope γ − 1 is then computed in a straightforward way
by

γ − 1 = log10 T2 − log10 T1

log10 �2 − log10 �1
. (E1)

The disadvantage of this procedure is that the measured mode values
log10T1 and log10T2 mildly depend on the initial guess for γ − 1.
We, thus, repeat the procedure described above iteratively until the
value of γ − 1 has converged. More precisely, we stop the iteration
once γ − 1 changes by less than 10−6 in one iteration.

Using the final value of γ − 1, we scale the logarithmic temper-
atures of all gas particles within 5 per cent of density � to density
�. The normalization of the temperature–density relation is then
obtained by computing the mode of these rescaled logarithmic tem-
peratures. We refer to the temperature obtained in this way also by
Tmode(�).

By overplotting the measured temperature–density relations on
phase-space diagrams, i.e. plots similar to Fig. 2, we have confirmed
that the method described here reliably recovers the position and
slope of the ridge of the temperature–density relation.

A P P E N D I X F: C O M P U T I N G T H E T H E R M A L
E VO L U T I O N FRO M TH E H E I I I O N I Z AT I O N
H I S TO RY

In Section 3.3.2, we predict the thermal evolution during He II reion-
ization for a given evolution of the He III volume filling factor
QHe III(z) based on equation (5) and the temperature in a simu-
lation without He II reionization T0,no He III (He II photoheating and
photoionization rates have been set to zero in this run). We addi-
tionally assume that the mean excess energy per ionization is well
described by the HM2012 UVB model. For ion species i it is, thus,
given by

Ei(z) = Hi(z)


i(z)
, (F1)

where Hi and 
i are the photoheating and photoionization rates in
the HM2012 model (see their table 3). If He II is newly reionized in
a region, the temperature there increases by

�THe II reion(z) = T0,no He III(z)

(
nHe II region

nHe III region
− 1

)

+ EHe II nHe
3
2 k nHe III region

, (F2)

where k is the Boltzmann constant, nHe is the number density of he-
lium nuclei and nHe II region and nHe III region are the total particle number
densities in He II and He III regions, respectively. For the assumed
hydrogen mass fraction of 0.76, the number density ratios are hence
given by nHe II region/nHe III region ≈ 0.965 and nHe/nHe III region ≈ 0.035.
The first term on the right-hand side of equation (F2) accounts for
the temperature change at fixed thermal energy due to the increase
in particle number, while the second term accounts for the energy
deposition by photoionization.

In addition to the direct heating by photoionization by the ad-
vancing He II reionization, we also need to account for the fact that
cooling and heating rates in He II and He III regions differ even when
the volume filling factor does not change. This difference arises due
the temperature and particle number density dependence of these
rates. Accounting for it has only a minor effect on the tempera-
ture increase during He II reionization but is critical for getting the
correct evolution, i.e. thermal asymptote, afterwards.

Note that cooling and heating in He II regions is already followed
in the simulation without He II reionization. We therefore do not
have to worry about it when computing �T0(z). For He III regions
instead cooling and heating is not followed correctly in the sim-
ulation, as the rates are computed based on T0,no He III(z) and the
number densities in He II regions. The difference in the heating due
to recombinations and subsequent photoionization depends on the
average recombination time at mean density. For ion species i and
region j (being either an He II or He III region) it is given by

trec,j ,i(z) = 1

ne,j (z)αi(Tj (z))
, (F3)

where ne, j(z) is the electron number density in region j and αi the
recombination rate coefficient of ion species i which depends on
temperature (see Section 2.2 for our choice of rate coefficients).
The recombination-induced photoheating rate in region j is then
given by

�Theat−cool,j =
∑

i

(
Ei − 3

2 kfcoolTj

)
3
2 k

ni,j

nj

�t

trec,j ,i(z)
, (F4)

where the sum goes over species H II and He III for He III regions and
over H II and He II for He II regions. The term − 3

2 kfcoolTj accounts
for thermal energy loss by recombination radiation. As slower par-
ticles are more likely to recombine fcool is smaller than one. We
assume a value of fcool = 0.5 which is a good approximation for
the relevant temperature range (see e.g. chapters 5 and 6 of Spitzer
2007 for a detailed discussion). ni, j�t/trec, j, i is the number density
of ion–electron pairs that recombine during the time �t correspond-
ing to the current step in redshift. The number densities ni, j of ion
species i in region j and nj of all particles in region j are computed
based on the assumed hydrogen mass fraction and the ionization
state of the region. The temperature Tj that affects αi(Tj) and en-
ters equation (F4) is given by T0,no He III in He II regions and by
T0,no He III + �T0/QHe III in He III regions. In the last term dividing
by QHe III converts the average overall temperature increase to the
average temperature increase in He III regions. As discussed above
the computation here is only relevant for �T0(z) due to its effect
on He III regions. In particular, the simulation correctly accounts
for the He II regions. Thus, the recombination-induced photoheat-
ing rates derived above are weighted with QHe III in the last term of
equation (5) to get the contribution to the overall average. Finally,
we also account for the difference in inverse-Compton cooling rates
in Theat-cool, j. This is however a very minor effect at the considered
redshifts.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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