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Abstract. The travel time functional measures the time taken for a particle trajectory to travel4
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1. Introduction. Over the last few decades, control of the discretisation error17

generated by the numerical approximation of partial differential equations (PDEs)18

has witnessed significant advances due to contributions in a posteriori errror analysis19

and the use of adaptive mesh refinement techniques. Such algorithms aim to save20

computational resources by refining only a certain subset of elements, making up part21

of the underlying mesh, that contribute most to the error in some sense. In particular,22

we refer to the early works [1, 3, 4], and the references cited therein.23

Typically, in applications we are not concerned with pointwise accuracy of the24

numerical solution of PDEs themselves, but rather quantities involving the solution25

(which we will refer to as being goal quantities, or quantities of interest); in this set-26

ting goal–oriented techniques are employed to bound the error in the given quantity of27

interest. Work in this area was first pioneered by [8, 9] and [32], which established the28

general framework [51, 55] of the dual, or adjoint, weighted–residual method (DWR).29

When the quantity of interest is represented by a nonlinear functional, a linearisation30

about the numerical solution is employed in order for the problem to become tractable31

and computable; hence, the nonlinear functional must be differentiated. Solving a dis-32

crete version of this linearised adjoint problem allows for an estimate of the discreti-33

sation error induced by the quantity of interest, which may be decomposed further34

to drive adaptive refinement algorithms. Unweighted, residual–based estimates can35

be derived based on employing certain stability estimates [30], but this results in36

meshes independent of the choice of quantity of interest. The DWR approach has37

been applied to a vast number of different applications including the Poisson problem38

[8], nonlinear hyperbolic conservation laws [34], fluid–structure interaction problems39

[56], application to Boltzmann-type equations [36], as well as criticality problems in40

neutron transport applications [33].41

In this paper, our motivation is in the post–closure safety assessment of facilities42

intended for use as deep geological storage of high–level radioactive waste [24, 50, 48,43
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44]. Here, we are solely interested in the time–of–flight for a non–sorbing solute (which44

has leaked from the repository) to make its way to the surface, or boundary, of the45

domain; this time is represented by the (nonlinear) travel time functional. Previously,46

work undertaken in [24] employed goal–oriented a posteriori error estimation for this47

functional, relying on a finite–difference approximation of its Gâteaux derivative.48

The work presented in this article derives an exact expression for the Gâteaux49

derivative of the travel time functional, based on employing a backwards–in–time50

initial–value–problem (IVP) considered adjoint to the trajectory of the leaked solute.51

The use of such linearisation allows for an easy implementation of the adjoint prob-52

lem required for the goal–oriented error estimation of the travel time functional. In53

comparison with the previous approximate linearisation, in the case of a lowest–order54

approximation for the driving velocity field, there is now no need for time–stepping55

techniques to evaluate the derivative of the travel time functional, which are often56

slow and computationally expensive. Moreover, we emphasise that the main result57

of this paper, given by Theorem 3.1, gives a way to compute the Gâteaux derivative58

exactly. Thus, utilising the previous finite–difference approximation can only result59

in error estimates of inferior, or close to equal, quality when compared with those60

computed within this article in Section 4. Indeed, employing a Raviart–Thomas im-61

plementation, [24] showed that the error estimates and resulting effectivity indices62

(on all adaptively refined meshes) were of excellent quality; therefore, one should ex-63

pect results closely matching those within this article when the approximation of the64

derivative is replaced by its exact evaluation. Finally, we note that if one considers65

a higher–order approximation of the driving velocity field, the adjoint IVP given in66

both Theorem 1.1 and Theorem 3.1 would perhaps need to be approximated using67

time–stepping techniques (since the matrix–gradient of the primal velocity is no longer68

piecewise constant). However, since the resulting modelling error involved in real–life69

application is typically large, approximation using higher–order spaces is arguably not70

required in this context.71

Before we proceed, we first introduce the travel time functional for generic velocity72

fields; in addition a preliminary version of the main result of this work is presented:73

the Gâteaux derivative of the travel time functional for continuous velocity fields.74

Next we briefly discuss some of the literature relating to Darcy’s equations as a model75

for groundwater flow, other potential models that could be used for more realistic76

simulations, and the a posteriori error analysis that has been developed within these77

areas. Finally, we outline the content of the rest of this article.78

1.1. The Travel Time Functional. Within this section, we define the travel79

time functional for generic velocity fields and address briefly the difficulties involved80

with its linearisation. To this end, consider an open and bounded Lipschitz domain81

Ω ⊂ Rd, d = 2, 3, with polygonal boundary ∂Ω, and the semi–infinite time interval82

I = [0,∞). Let us suppose we have a generic velocity field u = u(x, t) : Ω×I → Rd.83

For a user–defined initial position x0 ∈ Ω, the particle trajectory X ≡ Xu, due to u,84

is given by the solution of the following IVP:85

dX

dt
(t) = u(X(t), t) ∀t ∈ I,86

X(0) = x0.8788

The so–called travel time of the velocity field, T (u; x0), is defined to be the time–of–89

flight of the particle trajectory Xu from its initial position x0 to, if ever, its first exit90
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point out of the domain Ω. Thereby, the functional T (u; x0) is defined by91

(1.1) T (u; x0) = inf{t ∈ I : Xu(t) 6∈ Ω}.92

Alternatively, we can write this in the equivalent form:93

T (u; x0) =

∫
P (u;x0)

ds

‖u‖2
,94

where ‖ · ‖2 denotes the standard Euclidean 2–norm and P (u; x0) is the curve traced95

by the particle trajectory from its initial position to the first boundary contact:96

P (u; x0) = {Xu(t) ∈ Ω : t ∈ [0, T (u; x0)]}.97

The integral version of the functional clearly highlights the difficulty concerning the98

demonstration of its differentiability. Indeed, the nonlinearity occurs within the inte-99

grand and the curve in which the integral is taken over depends itself on the velocity100

field. The travel time functional cannot clearly be globally continuous and therefore101

not globally Fréchet differentiable. We shall see, however, that it is possible to evalu-102

ate its Gâteaux derivative (Theorem 3.1). The regularity of the functional itself will103

not be addressed within this work.104

Additionally, evaluating the travel time functional itself involves the computa-105

tion of the velocity streamlines, or particle trajectories Xu(t). Within this work,106

we follow the techniques outlined in [38] for streamline computation; furthermore, a107

streamfunction approach can indeed be employed when the considered fluid flow ap-108

proximations are divergence–free [43], and it is even possible for high–order velocity109

approximations, when also divergence–free, to have accurate streamline tracing [37].110

1.2. Linearisation in the Continuous Case. A preliminary result for the111

linearisation of the travel time functional involves assuming that the velocity field u112

satisfying the underlying flow problem is continuous on Ω. When this is the case, then113

the Gâteaux derivative of the travel time functional may be evaluated and computed114

as an integral, in time, weighted by a variable Z which may be considered as being115

adjoint to the particle trajectory Xu. The theorem below presents such a preliminary116

version of the main result of this paper. Here, for a sufficiently smooth functional117

Q : V → R, we use the notation Q′[w](·) to denote the Gâteaux derivative of Q(·)118

evaluated at some w in V , where V is some suitably chosen function space. As usual,119

given w ∈ V , if the limit120

(1.2) Q′[w](v) := lim
ε→0

Q(w + εv)−Q(w)

ε
121

exists for all v ∈ V , and the mapping v 7→ Q′[w](v) is linear and continuous, then Q is122

said to be Gâteaux differentiable at w, and the quantity Q′[w](·) : V → R is referred123

to as being the Gâteaux derivative of Q, evaluated at w.124

Theorem 1.1. Suppose that the velocity field u(x, t) is continuous on Ω. Let125

n = n(x) be the unit outward normal vector to ∂Ω. Assume ∂Ω is flat in some126

neighbourhood of the exit point Xu(T (u; x0)), and that the particle trajectory is such127

that u(Xu(T (u; x0)), T (u; x0)) · n(Xu(T (u; x0))) 6= 0. Let Z be the solution of the128
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IVP:129

−dZ
dt

(t)− [∇u(X(t), t)]>Z(t) = 0 ∀t ∈ [0, T (u; x0)),130

Z(T (u; x0)) = − n

u(X(T (u; x0)), T (u; x0)) · n
.131

132

Then, the Gâteaux derivative of the travel time functional may be evaluated as133

T ′[u](v) =

∫ T (u;x0)

0

Z(t) · v(X(t), t) dt.134

The above result can be used to evaluate the derivative required for the implementa-135

tion of DWR a posteriori error estimators, where here the velocity field u is replaced136

with its discrete approximation uh. However, such approximations are usually ob-137

tained via finite element methods, and the continuity of uh at element interfaces is138

not always guaranteed. In this case, Theorem 1.1 must be generalised to allow for139

such discontinuity; this is addressed as part of Section 3, where Theorem 3.1 is de-140

rived without such a continuity assumption. Moreover, Theorem 3.1 presents a more141

general result in which Theorem 1.1 may be recovered easily by setting the resulting142

jump terms equal to zero.143

1.3. Related Literature. Groundwater flow, governed by Darcy’s equations,144

represents a viable simplified model for the fluid flow [44, 24] and will be exploited145

within this paper. It is assumed that whilst the surrounding rocks may not be sat-146

urated while the repository is being built, they will eventually become saturated in147

its operational lifetime; thus, it is sufficient that in a post–closure assessment we can148

consider saturated conditions, and therefore use the time independent Darcy’s equa-149

tions as our model, rather than the usual Richards equations for capillary flow [25, p.150

3]. Of course, within this context and in many others, there are more sophisticated151

models, cf. [53, 63, 54, 42, 14, 49, 31, 28, 46, 12] and the references cited therein,152

where large–scale structures and complex topographical features, such as fracture net-153

works or vugs and caves, are considered as parts of the domain. The solution–based a154

posteriori error estimation for these more sophisticated models may be found in, for155

example, the articles [23, 21, 22, 62, 35, 57, 45] and the references cited therein.156

An energy norm based approach can also be found in [18], where adaptive mesh157

refinement is employed to accurately compute streamlines via a streamfunction ap-158

proach. More generally, the goal–oriented error estimation for linear functionals of159

Darcy’s equations can be found in [47] which employs equilibrated–flux techniques in160

order to achieve a guaranteed bound. Furthermore, [41] extends this work to bound161

higher–order terms to demonstrate that the a posteriori bounds are asymptotically162

exact, as well as taking into account the error induced by inexact solvers.163

For a set of slightly different homogenised problems, [19] presents the goal–164

oriented error estimation for general quantities of interest. We also point out the165

existing literature for goal–adaptivity in the context of contaminant transport, pre-166

sented in the articles [10, 39], but which differs slightly from the work presented here.167

For the numerical experiments presented in Section 4, for example, following [13],168

we employ a mixed finite element method using the Brezzi–Douglas–Marini (BDM)169

elements. These elements, introduced originally in [17], ensure H(div)–conformity in170

order to retain physical results in the streamline computation: that is, ensuring the171

continuity of the normal traces of velocity fields across element interfaces.172
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The original solution–based a posteriori error analysis for Darcy’s equations, em-173

ploying Raviart–Thomas elements, was undertaken by Braess and Verfürth in [15]; we174

also refer to [7, 6] which consider augmented, stabilised versions of Darcy’s equations,175

whose original L2–bound analysis was given in the article [40]. Moreover, there is a176

vast literature for the a posteriori error analysis for Darcy’s equations in a variety of177

contexts. For example, [11, 52] presents the analysis for time–dependent Darcy flow;178

[29] uses the finite volume method for two–phase Darcy flow; and [5] uses an aug-179

mented discontinuous Galerkin method. For the (residual) norm–based a posteriori180

error analysis for Darcy’s equations, and mixed finite element methods in general, we181

refer to the articles [59, 60] by Vohraĺık, and the references cited therein. In [58],182

similar to [20], residual–based a posteriori error bounds are derived by considering183

a Helmholtz decomposition in order to overcome the need for a saturation assump-184

tion previously assumed by [15]. Moreover, in [2] an enhanced velocity mixed finite185

element method is used instead.186

Lastly, problems modelled by Darcy’s equations often lend themselves for investi-187

gation in the realm of uncertainty quantification; more specifically, in real–life there is188

uncertainty regarding the properties of the sub–surface rock making up the domain.189

While not the focus of this work, we refer to [25], and the references cited therein,190

where substantial work has been undertaken in a random setting.191

1.4. Outline of the Paper. In Section 2.1 we introduce Darcy’s equations for192

a simple model of saturated groundwater flow and their classical mixed formulation.193

Section 2.2 presents the numerical approximation of Darcy’s equations via the mixed194

finite element method. The DWR method is presented in Section 2.3; here, an a195

posteriori error estimate is established and decomposed into element–wise indicators.196

Section 3 represents the main contribution of this paper which is presented for piece-197

wise discontinuous velocity fields. The remainder of this section proves the main198

linearisation result, given by Theorem 3.1, for the travel time functional. Applying199

the linearisation result to groundwater flow and Darcy’s equations is addressed in200

Section 3.2, and the following Section 3.3 provides some brief implementation de-201

tails when the velocity field under consideration is piecewise linear. Three numerical202

experiments are conducted in Section 4: two simple, academic–style examples aim203

to build confidence in the proposed a posteriori error estimate, while the last one204

adaptively simulates the leakage of radioactive waste within a domain inspired by the205

(albeit greatly simplified) Sellafield site, located in Cumbria, in the UK. This final,206

physically motivated example, matches the experiment conducted in [24] but uses the207

new linearisation result instead. Lastly, some concluding remarks are discussed in208

Section 5.209

2. Darcy Flow, FE Approximation, and A Posteriori Error Estimation.210

2.1. The Model for Groundwater Flow. For illustrative purposes, a Darcy211

flow model is adopted in this paper in order to demonstrate the main Gâteaux de-212

rivative result (Theorem 3.1) in the context of goal–oriented adaptivity. To this end,213

Darcy’s equations are given by the following system of first–order PDEs, whereby we214

seek the Darcy velocity u and hydraulic head (or pressure) p such that:215

K−1u +∇p = 0 ∀x ∈ Ω,(2.1)216

∇ · u = f ∀x ∈ Ω,(2.2)217

p = gD ∀x ∈ ∂ΩD,(2.3)218

u · n = 0 ∀x ∈ ∂ΩN .(2.4)219220
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Here, Ω ⊂ Rd, d = 2, 3, is an open and bounded domain with polygonal boundary ∂Ω,221

partitioned into so–called Dirichlet and Neumann parts ∂Ω = ∂ΩD ∪ ∂ΩN ; the unit222

outward normal vector to the boundary is denoted by n. Furthermore, f ∈ L2(Ω) is223

a source/sink term and gD ∈ H
1
2 (∂ΩD) is Dirichlet boundary data for the pressure.224

Such regularity assumptions allow for the existence of a unique weak solution to225

Darcy’s equations, discussed very briefly in Section 2.1.1. Lastly, the matrix K(x) ∈226

Rd×d represents the hydraulic conductivity of the surrounding rock in the groundwater227

model; it is given by K := ρg/µk, where ρ is the density of water, g is the acceleration228

due to gravity, µ is the viscosity of water, and k is the permeability of the surrounding229

rock. It is assumed that the eigenvalues of K, λ± (0 < λ− ≤ λ+) satisfy230

(2.5) λ−|y|2 ≤ y>Ky ≤ λ+|y|2 ∀x ∈ Ω ∀y ∈ Rd.231

In particular, the condition (2.5) implies that K is invertible.232

2.1.1. Weak Formulation. Firstly, we introduce the following function spaces:233

H(div,Ω) := {v ∈ [L2(Ω)]d : ∇ · v ∈ L2(Ω)},234

H1
0,D(Ω) := {ψ ∈ H1(Ω) : ψ|∂ΩD

= 0},235

H0,N (div,Ω) := {v ∈ H(div,Ω) : 〈v · n, ψ〉∂Ω = 0 ∀ψ ∈ H1
0,D(Ω)}.236237

The space H0,N (div,Ω) is a subspace of H(div,Ω) with vanishing normal–trace on238

the Neumann part of the boundary ∂ΩN . The duality pairing between H−
1
2 (∂Ω) and239

H
1
2 (∂Ω) is denoted by 〈·, ·〉∂Ω and is given by the following Green’s formula.240

Proposition 2.1. For v ∈ H(div,Ω),241

〈v · n, ψ〉∂Ω =

∫
Ω

v · ∇ψ +

∫
Ω

ψ∇ · v ∀ψ ∈ H1(Ω).242

By multiplying (2.1) by a test function v ∈ H0,N (div,Ω) and (2.2) by a test function243

q ∈ L2(Ω), and applying Proposition 2.1 to the latter, we arrive at the saddle–point244

problem: find (u, p) ∈ H := H0,N (div,Ω)× L2(Ω) such that245

a(u,v) + b(v, p) = G(v) ∀v ∈ H0,N (div,Ω),(2.6)246

b(u, q) = F (q) ∀q ∈ L2(Ω).(2.7)247248

The bilinear forms are given by a(u,v) :=
∫

Ω
K−1u · v, b(v, p) := −

∫
Ω
p∇ · v, and249

the linear functionals are defined as G(v) := −〈v · n, gD〉∂Ω, F (q) := −
∫

Ω
fq. For250

simplicity of presentation, we rewrite (2.6)–(2.7) in the following compact manner:251

find (u, p) ∈ H such that252

(2.8) A ((u, p), (v, q)) = L ((v, q)) ∀(v, q) ∈ H,253

where254

A ((u, p), (v, q)) := a(u,v) + b(u, q) + b(v, p),(2.9)255

L ((v, q)) := G(v) + F (q).(2.10)256257

Such a weak formulation admits a unique solution (u, p) ∈ H according to standard258

theory (see [13], for example). That is, since the functionals G and F are clearly259
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continuous; the pair of solution spaces satisfy the well known Banach–Nečas–Babǔska,260

or inf–sup, compatibility condition261

0 < β := inf
06=ϕ∈L2(Ω)

sup
06=v∈H0,N (div,Ω)

b(v, ϕ)

‖v‖H(div,Ω)‖ϕ‖L2(Ω)
,262

(as a result of the divergence operator B : H0,N (div,Ω)→ L2(Ω) (w 7→ ∇ ·w) being263

surjective); and the bilinear form a(·, ·) being coercive on the kernel of the divergence264

operator B. Indeed, the surjectivity of B follows immediately from the application of265

the Lax–Milgram Lemma to a standard Poisson problem, giving the unique existence266

of ϕ ∈ H1(Ω) such that267

−∆ϕ = q ∀x ∈ Ω,268

ϕ = 0 ∀x ∈ ∂ΩD, ∇ϕ · n = 0 ∀x ∈ ∂ΩN ,269270

for any q ∈ L2(Ω); ϕ admits the function w = −∇ϕ ∈ H0,N (div,Ω) with ∇ ·w = q.271

2.2. Mixed Finite Element Approximation. The numerical approximation272

of Darcy’s equations employed in this paper will be based on a mixed finite element273

method. To this end, let Th be a shape–regular simplicial partition of Ω with h the274

mesh–size parameter. Extensions to more general meshes, including polytopic meshes,275

may be considered based on exploiting, for example, the virtual–element–method, cf.276

[27, 61], for example. We use the terminology face to refer to a (d − 1)–dimensional277

simplicial facet which forms part of the boundary of an element κ ∈ Th. Consider the278

finite–dimensional subspaces Vh ⊂ H0,N (div,Ω) and Πh ⊂ L2(Ω). To achieve such279

H(div,Ω)–conformity is paramount; indeed, such approximations will have continuous280

normal–traces across element faces (for example, see [13]), allowing for the computa-281

tion of physical streamlines, vital to real–life applications. Conversely, nodal–based282

elements should not be implemented since they often result in unphysical stream-283

lines, as well as there being a lack of mass conservation at an elemental level [26].284

Typically, such conformity is achieved by utilising the well known Raviart–Thomas285

(RT) or Brezzi–Douglas–Marini (BDM) finite elements. For the pressure space Πh286

we employ discontinuous piecewise–polynomial functions. However, we stress that287

any approximation spaces can be used as long as they are H(div,Ω) and L2(Ω) con-288

forming, respectively, and are a stable pair in the inf–sup sense. Hence, the discrete289

problem is: find (uh, ph) ∈ Hh := Vh ×Πh such that290

(2.11) A ((uh, ph), (vh, qh)) = L ((vh, qh)) ∀(vh, qh) ∈ Hh.291

2.3. Goal–Oriented Error Estimation. In this section we briefly present the292

general DWR theory for the a posteriori error estimation for a general nonlinear293

functional Q : H→ R for the flow problem (2.8); for simplicity of presentation, here294

the underlying PDE problem is linear, though we stress that the proceeding analysis295

naturally generalises to the nonlinear setting.296

To this end, given (2.8) and its corresponding finite element approximation defined297

by (2.11), we define the error in the quantity of interest Q(u, p), by298

(2.12) EQh := Q(u, p)−Q(uh, ph).299

To estimate this quantity we introduce the following sequence of adjoint or dual300

problems, relative to the variational problem (2.8), with respect to the functional Q:301
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Adjoint problem I: find (z, r) ∈ H such that302

(2.13) A ((v, q), (z, r)) = Q((u, p), (uh, ph); (v, q)) ∀(v, q) ∈ H,303

where the mean–value linearisation of Q(·), evaluated at (v, q) ∈ H, is defined as304

(2.14) Q((u, p), (uh, ph); (v, q)) :=

∫ 1

0

Q′[ϑ(u, p) + (1− ϑ)(uh, ph)]((v, q)) dϑ,305

and where Q′ is the Gâteaux derivative of Q, given by (1.2).306

Adjoint problem II: find (z?, r?) ∈ H such that307

(2.15) A ((v, q), (z?, r?)) = Q′[(uh, ph)]((v, q)) ∀(v, q) ∈ H.308

Discrete adjoint problem II: find (zh, rh) ∈ Wh such that309

(2.16) A ((vh, qh), (zh, rh)) = Q′[(uh, ph)]((vh, qh)) ∀(vh, qh) ∈ Wh.310

Here, the finite–dimensional space Wh can be any space such that Wh ⊂ H but so that311

Wh 6⊂ Hh, for reasons relating to Galerkin orthogonality that we shall see later. If312

hierarchical bases are used within the finite element method, then a popular choice is313

to have Wh defined on the same mesh Th as Hh, but employ higher–order polynomials.314

We also see already here the need to be able to evaluate the Gâteaux derivative of the315

nonlinear functional representing the quantity of interest, since it appears in both of316

the adjoint problems (2.15) and (2.16).317

Defining the residual by318

(2.17) Rh(v, q) := L ((v, q))−A ((uh, ph), (v, q)),319

we have, by employing standard arguments, the following error representation formula.320

Proposition 2.2 (Error Representation). Let (u, p) denote the solution of the321

primal problem (2.8), (uh, ph) solve the discrete, primal problem (2.11) and (z, r) be322

the solution of the adjoint problem (2.13). Then, the following equality holds323

(2.18) EQh = Rh(z− zI , r − rI)324

for all (zI , rI) ∈ Hh.325

In particular, (2.18) is relevant for decomposing an estimate of the error representa-326

tion, in order to potentially drive mesh adaptivity. Of course, (2.18) is not computable327

since the formal adjoint solutions (z, r) are not, in general, computable themselves.328

We must instead use the approximate linearised adjoint problem, and its discretisa-329

tion, in order to approximate the error (2.12).330

To this end, we can see easily that, for all (zI , rI) ∈ Hh, the residual may be331

decomposed into the three parts332

EQh = Rh(z− z?, r − r?) + Rh(z? − zh, r? − rh) + Rh(zh − zI , rh − rI).333334

The first term Rh(z − z?, r − r?) represents the error induced by the approximate335

linearisation of the formal adjoint problem; the second term Rh(z?− zh, r?− rh) rep-336

resents the error induced by discretising the approximate linearised adjoint problem.337

The last term, Rh(zh − zI , rh − rI) is most useful since it is computable. If we as-338

sume that the other, non–computable, residuals converge to zero with an asymptotic339
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rate faster than this latter term, we can simply estimate the error in the quantity of340

interest with the computable part directly by341

(2.19) EQh ≈ Rh(zh − zI , rh − rI).342

Typically, the functions zI and rI are chosen to be projections of the discrete linearised343

adjoint solutions zh and rh. We stress that the presence of these interpolants are344

essential to ensure that the double rate of convergence expected in optimal goal–345

oriented adaptive regimes is retained when element–wise error indicators are defined346

based on (2.19), cf. below.347

Under mesh refinement, whether it be uniform or adaptive, the estimate (2.19)348

converges to the true error if the effectivity index θh := EQh /Rh(zh − zI , rh − rI)→ 1349

as the mesh is refined. Section 4 showcases numerical evidence of this behaviour for350

both simple and more complex examples, under uniform and adaptive refinement.351

2.3.1. Estimate Decomposition for Darcy’s Equations. In this section we352

decompose the error estimate (2.19) into element–based indicators on the mesh Th,353

based on the usual, integration–by–parts approach. To this end, writing the right–354

hand–side of (2.19) as a sum over the mesh Th, we get355

EQh ≈
∑
κ∈Th

(
− 〈(zh − zI) · nκ, gD〉∂κ∩∂ΩD

−
∫
κ

(rh − rI)f356

−
∫
κ

K−1uh · (zh − zI) +

∫
κ

ph∇ · (zh − zI) +

∫
κ

(rh − rI)∇ · uh
)
,(2.20)357

358

where nκ denotes the unit outward normal vector to element κ ∈ Th. Employing the359

Green’s formula stated in Proposition 2.1, we see that in particular360 ∫
κ

ph∇ · (zh − zI) = −
∫
κ

(zh − zI) · ∇ph + 〈(zh − zI) · nκ, ph〉∂κ.361

Therefore, summing over the elements in the mesh, gives362

∑
κ∈Th

∫
κ

ph∇ · (zh − zI) =
∑
κ∈Th

(
−
∫
κ

(zh − zI) · ∇ph +
1

2
〈(zh − zI) · nκ, JphK〉∂κ\∂Ω363

+ 〈(zh − zI) · nκ, ph〉∂κ∩∂ΩD

)
,(2.21)364

365

where J·K denotes the jump operator across an element face. Inserting (2.21) into366

(2.20) gives the following result.367

Theorem 2.3. Under the foregoing notation, we have the (approximate) a poste-368

riori error estimate369

|EQh | ≈
∣∣∣∣ ∑
κ∈Th

ηκ

∣∣∣∣ ≤ ∑
κ∈Th

|ηκ|370

where the element indicator ηκ is split into the four contributions371

ηκ ≡ ηBCκ + ηDLκ + ηCMκ + ηPRκ ,372
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each given by:373

ηBCκ = 〈(zh − zI) · nκ, ph − gD〉∂κ∩∂ΩD
,(2.22)374

ηDLκ = −
∫
κ

(K−1uh +∇ph) · (zh − zI),(2.23)375

ηCMκ =

∫
κ

(rh − rI)(∇ · uh − f),(2.24)376

ηPRκ =
1

2
〈(zh − zI) · nκ, JphK〉∂κ\∂Ω.(2.25)377

378

Each of the indicator contributions (2.22)–(2.25) are adjoint-weighted and may be379

interpreted as the following: ηBCκ measures how well the boundary condition (2.3) is380

satisfied; ηDLκ measures how well Darcy’s Law (2.1) is satisfied; ηCMκ measures how381

well the conservation of mass equation (2.2) is satisfied; and finally, ηPRκ is a measure382

of the interior pressure residual across element interfaces.383

3. Linearising the Travel Time Functional. Recalling the discussion pre-384

sented in Section 1.1, we emphasise that the main result (i.e. evaluating the Gâteaux385

derivative of the travel time functional) is independent of where the velocity field u386

has come from; for now we are concerned only about the continuity of u. Indeed,387

computing an approximation to the travel time functional via an approximation of388

the velocity field u may or may not lead to a continuous velocity field; this depends389

on the fluid model and the type of approximation that is employed.390

More explicitly: suppose our problem was not in groundwater flow and the dis-391

posal of radioactive waste, but instead that we are interested in T (u; x0) where u is392

a flow governed by Stokes equations. In this situation, typically vector–valued H1–393

conforming elements are employed (cf. [16]), on some mesh Th, to obtain an approx-394

imation (at least in two spatial dimensions) uh that is continuous across the element395

interfaces. Here, Theorem 1.1 can be applied to evaluate the derivative T ′[uh](·) (to,396

for example, drive an adaptive mesh refinement algorithm). However, in the context397

of this work, an H(div)–conforming approximation of a flow governed by Darcy’s398

equations is used and as such, this conformity does not guarantee continuity of the399

velocity field across element interfaces. Thereby, in the following discussion we derive400

a more general result stated in Theorem 3.1.401

3.1. Linearisation in the Discontinuous Case. Given the domain Ω ⊂ Rd,402

d = 2, 3, with boundary ∂Ω, denote by I the semi–infinite time interval [0,∞). Fur-403

thermore, suppose we have the possibly time–dependent velocity field v : (Rd×I)→404

Rd. The particle trajectory of the velocity field, Xv : I → Rd, satisfies the IVP:405

(3.1)

{
dXv

dt = v(Xv, t) ∀t ∈ I,
Xv(0) = x0,

406

where the initial position x0 ∈ Ω.407

The main result is stated below in Theorem 3.1, which provides the evaluation of408

the Gâteaux derivative T ′[v](·), of the travel time functional T (·).409

Theorem 3.1. Let n = n(x) be the unit outward normal vector to the boundary410

∂Ω. Assume firstly that ∂Ω is flat in some neighbourhood of the exit point X(Tv), in411

particular, this means that the unit outward normal vector n = n(X(Tv)) is unique.412

Assume also that the particle trajectory is such that v(X(Tv), Tv) · n(X(Tv)) 6= 0.413

Suppose that Th is a simplicial partition of Ω and that v is discontinuous across the414
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faces {Fi} that intersect the path t 7→ X(t), defined by (3.1) at the times {ti = ti,v}.415

Lastly, assume that the particle trajectory is such that v|∂κ · nκ 6= 0 on any of the416

boundaries ∂κ of the elements κ ∈ Th, where nκ is the unit ourward normal vector to417

∂κ, and assume also that it does not exit through the boundary of any of the element418

faces, except possibly at the exit–point where here the domain boundary is flat. With419

the above notation described, let Z : [0, Tv] → Rd be the solution to the adjoint, or420

dual (linearised–adjoint, backward–in–time) IVP:421

(3.2)



L∗v(Z(t)) ≡ −dZdt − [∇v(X(t), t)]>Z = 0 ∀t ∈ [0, Tv) \ {ti,v},

Z(Tv) = − n(X(Tv))
v(X(Tv),Tv)·n(X(Tv)) ,

JZ(ti,v)K = −Z(t+i,v)·Jv(ti,v)Kn−i
v(X(t−i,v),t−i,v)·n−i

∀i,

422

where n−i is the unit outward normal vector to the faces {Fi}, pointing in the same423

direction as the particle trajectory Xv(t) at the time of intersection t = ti, and where424

JZ(ti,v)K = Z(t+i,v) − Z(t−i,v) and Jv(ti,v)K = v(X(t+i,v), t+i,v) − v(X(t−i,v), t−i,v) denote425

jump operators. Then, the Gâteaux derivative of T (·), evaluated at v, is given by426

T ′[v](w) =

∫ Tv

0

Z(t) ·w(X(t), t) dt.427

The plus/minus notation refers to the times after/before, respectively, the trajec-428

tory Xu intersects the element interface, forwards in time. We may also index Zv ≡ Z429

to indicate that Zv solves the IVP (3.2) induced by the velocity field v. Also, we note430

that if the velocity field driving the trajectory is in fact continuous across the element431

interfaces, then the jump terms vanish and Theorem 1.1 is recovered.432

We now proceed to prove Theorem 3.1. To this end, we require two lemmas which433

are given below. Firstly, consider the so–called trajectory derivative, corresponding434

to the change in the particle path as a result of a change in velocity:435

X′ ≡ ∂vXv[w] := lim
ε→0+

Xv+εw −Xv

ε
,436

recalling the notation that Xv is the trajectory induced by the velocity field v.437

Lemma 3.2. Let v be as before, discontinuous across the faces {Fi} intersecting438

the path t 7→ Xv(t) at the times {ti = ti,v}. Then, the trajectory derivative X′ : I →439

Rd satisfies the IVP:440

(3.3)


Lv(X′(t)) ≡ dX′

dt −∇v(Xv(t), t)X′ = w(Xv(t), t) ∀t ∈ I \ {ti},
X′(0) = 0,

JX′(ti)K = −Jv(ti)Kt′i ∀i,
441

where442

(3.4) t′i = − X′(t−i ) · n−i
v(Xv(t−i ), t−i ) · n−i

.443

Proof. The time derivative of X′ is given by444

dX′

dt
=

d

dt
lim
ε→0+

Xv+εw −Xv

ε
= lim
ε→0+

(v + εw)(Xv+εw, t)− v(Xv(t), t)

ε
,445
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where we recall the pathline equations the trajectories satisfy. Thus,446

dX′

dt
= lim
ε→0+

(v + εw)(Xv+εw, t)− v(Xv(t), t)

ε
447

= lim
ε→0+

v(Xv+εw(t), t)− v(Xv(t), t)

ε
+ w(Xv(t), t)448

= lim
ε→0+

v(Xv(t) + εX′(t) + o(ε), t)− v(Xv(t), t)

ε
+ w(Xv(t), t)449

= lim
ε→0+

[∇v(Xv(t), t)](εX′(t) + o(ε))

ε
+ w(Xv(t), t)450

= [∇v(Xv(t), t)]X′(t) + lim
ε→0+

∇v(Xv(t), t)o(ε)

ε
+ w(Xv(t), t)451

= [∇v(Xv(t), t)]X′(t) + w(Xv(t), t),452453

i.e., for all t ∈ I \ {ti} (so that ∇v(Xv(t), t) exists away from the discontinuities),454

dX′

dt
− [∇v(Xv(t), t)]X′(t) = w(Xv(t), t).455

The initial condition follows easily as456

X′(0) = lim
ε→0+

Xv+εw(0)−Xv(0)

ε
= lim
ε→0+

x0 − x0

ε
= 0.457

Although the velocity v has discontinuities, we still require that the trajectory Xv is458

continuous. Hence, we have the coupling conditions between the two maps:459

(v 7→ Xv(t+i )) = (v 7→ Xv(t−i )) ∀i.460

Taking the Gâteaux derivative of each side (i.e., (d/dε)(·)(v + εw), as ε→ 0) gives461

X′(t+i ) +
dX(t+i )

dt
t′i = X′(t−i ) +

dX(t−i )

dt
t′i ∀i.462

Thus,463

X′(t+i ) + v(Xv(t+i ), t+i )t′i = X′(t−i ) + v(Xv(t−i ), t−i )t′i ∀i;464

rearranging gives465

JX′(ti)K = −Jv(ti)Kt′i.466

The expression for t′i ≡ ∂vti,v(w), given by (3.4), follows similarly to the proof given467

for the following Lemma 3.3.468

We note as well that a variational approach can be used instead to prove Lemma 3.2.469

For use in Lemma 3.3, consider the change in exit–time, or time–of–flight, due to a470

change in the velocity, given by471

T ′ ≡ T ′[v](w) = ∂vTv(w) := lim
ε→0+

Tv+εw − Tv
ε

.472
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Lemma 3.3. Suppose that ∂Ω is flat in some neighbourhood of the exit point473

Xv(Tv). Then, the derivative X′(Tv) satisfies474

X′(Tv) · n = −T ′v(Xv(Tv), Tv) · n,475

with n ≡ n(Xv(Tv)).476

Proof. Since ∂Ω is flat in some neighbourhood of the exit–point Xv(Tv), for477

sufficiently small ε we have (Xv+εw(Tv+εw)−Xv(Tv)) · n = 0, so that478

X′(Tv) · n = lim
ε→0+

Xv+εw(Tv)−Xv(Tv)

ε
· n479

= lim
ε→0+

Xv+εw(Tv)−Xv+εw(Tv+εw)

ε
· n480

= lim
ε→0+

Xv+εw(Tv)−Xv+εw(Tv + εT ′ + o(ε))

ε
· n481

= lim
ε→0+

−dXv+εw

dt (Tv)(εT ′ + o(ε))

ε
· n482

= lim
ε→0+

−(v + εw)(Xv+εw(Tv), Tv)(εT ′ + o(ε))

ε
· n483

= −T ′v(Xv(Tv), Tv)) · n.484485

Remark 1. The first step in the proof of Lemma 3.3 requires that the bound-486

ary ∂Ω is flat in a neighbourhood of the exit–point Xv(Tv). Indeed, the statement487

(Xv+εw(Tv+εw)−Xv(Tv)) ·n = 0 is not true for any ε in the case of a curved bound-488

ary. Here, a contribution from the curvature at the exit–point would be present in both489

the result from Lemma 3.3 and would alter the adjoint–IVP in Theorem 3.1; as a brief490

sketch, Lemma 3.3 would state that X′(Tv)·n = −(T ′+κc
X′(Tv)·τ
‖v‖ )(v(Xv(Tv), Tv)·n),491

where κc is the curvature of the boundary at the exit–point, and τ is the unit tangent492

vector to ∂Ω.493

Thus, we are now able to prove the main result of this article.494

3.1.1. Proof of Theorem 3.1.495

Proof. From Lemma 3.3 and (3.2) we have496

T ′ = − X′(Tv) · n
v(Xv(Tv), Tv) · n

= X′(Tv) · Z(Tv).497

Since from (3.2) we know that L∗v(Z(t)) = 0 away from the jump times {ti}, we have498

T ′ ≡ X′(Tv) · Z(Tv) = X′(Tv) · Z(Tv) +
∑
i

∫ ti

ti−1

L∗v(Z(t)) ·X′(t) dt.499
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Integrating by parts reveals that500

T ′ ≡
∑
i

∫ ti

ti−1

Z(t) · Lv(X′(t)) dt501

+
∑
i

(Z(t+i ) ·X′(t+i )− Z(t−i ) ·X′(t−i )) + Z(0) ·X′(0)502

=
∑
i

∫ ti

ti−1

Z(t) ·w(Xv(t), t) dt+
∑
i

(Z(t+i ) ·X′(t+i )− Z(t−i ) ·X′(t−i )),503

504

since from (3.3) in Lemma 3.2 we have that Lv(X′(t)) = w(Xv(t), t) and X′(0) = 0.505

The jump condition in (3.3) for X′ can be rearranged to obtain the expression506

X′(t+i ) = X′(t−i ) + Jv(ti)K
X′(t−i ) · n−i

v(Xv(t−i ), t−i ) · n−i
.507

Thereby,508

T ′ ≡
∑
i

∫ ti

ti−1

Z(t) ·w(Xv(t), t) dt509

+
∑
i

(
Z(t+i ) ·

(
X′(t−i ) + Jv(ti)K

X′(t−i ) · n−i
v(Xv(t−i ), t−i ) · n−i

)
− Z(t−i ) ·X′(t−i )

)
.510

511

Notice that512

Z(t+i ) ·
(

X′(t−i ) + Jv(ti)K
X′(t−i ) · n−i

v(Xv(t−i ), t−i ) · n−i

)
− Z(t−i ) ·X′(t−i )513

=

(
Z(t+i )− Z(t−i ) +

Z(t+i )Jv(ti)K
v(Xv(t−i ), t−i ) · n−i

· n−i
)
·X′(t−i )514

= (JZ(ti)K− JZ(ti)K) ·X′(t−i ) = 0,515516

due to the jump condition for Z(ti) in (3.2) for all i. This implies that517

T ′ ≡
∑
i

∫ ti

ti−1

Z(t) ·w(Xv(t), t) dt =

∫ Tv

0

Z(t) ·w(Xv(t), t) dt,518

thus completing the proof.519

3.2. Application to Darcy Flow. For a groundwater flow model governed by520

Darcy’s equations (2.1)–(2.4), physical (non–sorbing, non–dispersive, purely advective521

transport based) particle trajectories are due to a velocity field known as the transport522

velocity, which relates the Darcy velocity u and the porosity, φ, of the surrounding523

rock via uT = u/φ. Indeed, the travel time along particle trajectories driven by this524

velocity field are those that should be considered in the travel time functional (1.1).525

With x0 the initial burial point, our quantity of interest can be expressed either by526

the functionals T(· ; x0) or T (· ; x0), where, in particular, the former is given by527

(3.5) T(u; x0) = T (uT ; x0) = inf{t > 0 : XuT
(t) 6∈ Ω},528

and it is indeed the trajectory XuT
that should be considered (v ↔ uT ) in Theo-529

rem 3.1, and the functional T (uT ; x0) should be considered in the context of the a530

posteriori error estimation presented in Section 2.3.531
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Furthermore, a simple application of a generalised chain rule allows us to deduce532

an expression for the Gâteaux derivative of the functional T(· ; x0), given by533

(3.6) T′[v](w) = T ′[vT ](wT ).534

3.3. Implementation Details. In this section, let uh ∈ Vh and v ∈ V be535

generic velocity fields. For example, uh could be the solution of the discrete problem536

(2.11), while v could be a basis function of Wh ⊂ V, Wh 6⊂ Vh, so that the derivative537

(3.7) T ′[uh](v) =

∫ T (uh)

0

Z(t) · v(Xuh
(t)) dt538

is required for computing the numerical solution to the approximate linearised adjoint539

problem (2.15). Of course, if uh is the discrete Darcy velocity satisfying (2.11) then540

the derivative T′[uh](v) can be evaluated combining this section with (3.6).541

For simplicity of presentation, we restrict this discussion to d = 2, but we stress542

that the generalisation to d = 3 follows directly. In this setting, we recall that Th is543

a shape-regular triangulation of Ω for which uh is discontinuous across the element544

interfaces intersected by the particle trajectory Xuh
(t) at the times {ti}Ni=1; proceed545

with the assumptions stated in Theorem 3.1. Denote by Th = {κi}Ni=1 ⊂ Th the546

ordered list of elements intersected by the particle trajectory. Here, we allow for547

repetitions if the trajectory re–enters the same element, where it will appear multiple548

times in Th with different labels. In order to obtain the adjoint variable Zuh
≡ Z,549

we can solve the IVP (3.2) in a element–by–element manner. That is, starting from550

the intersection point with the boundary of Xuh
(t), we trace the particle trajectory551

backwards through its intersected elements, and solve for Z on each time interval552

that the trajectory is residing in that element. More precisely, consider the final553

element κN . The trajectory Xuh
(t) occupies this element for t ∈ (tN−1, tN ), where554

tN ≡ T (uh; x0) is the travel time. Restricting to this time interval, the adjoint variable555

Z(t) solves the IVP556

−dZ(t)

dt
− [∇uh(Xuh

(t))]>Z(t) = 0.557

For times t ∈ (tN−1, tN ), we have Xuh
(t) ∈ κN and within this element uh is a558

polynomial function. This means that together with the given final–time condition559

Z(tN ) = − n

uh(X(tN )) · n
,560

we can solve for Z within this time interval, via an exact method or using some561

approximate time–stepping technique for ODEs. For example, if uh is a piecewise562

linear function on the triangulation Th (e.g. a lowest order RT or BDM function)563

then we may solve for Z directly via matrix exponentials. Indeed, the gradient of such564

a function will be piecewise constant on the same triangulation.565

In such a case, denote by a = (αx, αy)>, b = (βx, βy)> and c = (γx, γy)> the real566

coefficients such that on κi ∈ Th567

uh|κi ≡
[
αx + βxx+ γxy
αy + βyx+ γyy

]
.568

Then, a = uh|κi
(0, 0), b = uh|κi

(1, 0)− a, c = uh|κi
(0, 1)− a, and the gradient of uh569
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restricted to κi is given by570

∇uh|κi
=
[
b c

]
=

[
βx γx
βy γy

]
.571

Denoting by Υi = [∇uh(Xuh
(t))]>|κi

the gradient transposed for each i, we then have572

(3.8) Z(t) = exp(ΥN (tN − t))Z(tN ) ∀t ∈ (tN−1, tN ].573

By putting t = tN−1 in (3.8), we can evaluate Z(t+N−1). The jump condition in (3.2)574

can be rearranged for the value of Z at this time before the particle trajectory Xuh
(t)575

crosses into the element κN , forwards in time, which is given by576

(3.9) Z(t−N−1) = Z(t+N−1) +
Z(t+N−1) · Juh(tN−1)KnN−1

uh(X(t−N−1)) · nN−1

.577

We see that all of the terms on the right–hand–side of the equality in (3.9) are known578

(also, the orientation of the normal vector nN−1 to the element interface does not579

matter since it appears both in the numerator and demoninator). On the next (or580

previous, from the perspective of the particle trajectory) element, κN−1, we restrict581

to the time interval (tN−2, tN−1) and solve similarly. Now, using Z(t−N−1) as the582

final–time condition to obtain583

Z(t) = exp(ΥN−1(tN−1 − t))Z(t−N−1) ∀t ∈ (tN−2, tN−1).584

One then follows this procedure for all time intervals up to and including (0, t1). In585

general, for a piecewise linear velocity field uh, we may hence write586

(3.10) Z(t) = exp(Υi(ti − t))Z(t−i ) ∀t ∈ (ti−1, ti).587

When uh is, for example, piecewise polynomial with a higher degree, or some other588

general function, then (3.10) does not apply since the matrices Υi will not be constant.589

Instead, one could employ a time–stepping technique within each time interval to solve590

for the adjoint solution Z(t); time–stepping from Z(t−i ) until Z(t+i−1), using this to591

generate the next starting position Z(t−i−1), and so forth.592

We note as well that the integral (3.7) can be reduced to a sum of integrals over593

these time–intervals for which the trajectory intersects the support of the function v.594

This is especially useful when v is, for example, a finite element basis function, which595

has support on only a few elements of which either all or just one might intersect596

the trajectory. Because of this, and the need to compute Z(t) in the fashion stated597

above, the right–hand–side vector in (2.16) can easily be assembled by looping over598

these intersected elements in the same backwards fashion as described here.599

4. Numerical Examples. The purpose of this section is to utilise the lineari-600

sation result stated in Theorem 3.1 within the context of goal–oriented adaptivity.601

Here, Darcy’s equations (2.1)–(2.4) model the flow of groundwater as a saturated602

porous medium; we are interested (cf. Sections 1.1, 2.3 and 3.2) in the accurate es-603

timation of the discretisation error induced by numerically approximating the travel604

time T(u; x0), for a given burial point x0 ∈ Ω. For simplicity we assume throughout605

this section that d = 2.606
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4.1. Approximation Spaces and Mesh Adaptivity. Adaptive mesh refine-607

ment, and goal–oriented error estimation, will be performed for the accurate compu-608

tation of the travel time functional (3.5) when the primal solution (u, p) ∈ H to (2.8)609

is approximated by the solution (uh, ph) ∈ Hh to (2.11). We wish to measure610

(4.1) ETh = T(u; x0)− T(uh; x0) ≈
∑
κ∈Th

ηκ611

on each of the computational meshes employed, where the indicators are those defined612

in Theorem 2.3. For mesh adaptivity we utilise a fixed–fraction marking strategy, with613

a refinement selection of REF = 10%, together with the standard red–green, regular,614

refinement strategy for triangular elements.615

We begin by stating the definition of the approximation space Hh. Here, we616

employ the Brezzi–Douglas–Marini elements for the approximation of the Darcy ve-617

locity, and discontinuous piecewise polynomials for the approximation of the pressure618

(cf. Section 2.2). To this end, we define the following spaces, where Th is the usual619

shape–regular triangulation of the domain Ω ⊂ R2:620

BDMk(κ) := [Pk(κ)]2,621

BDMk(Ω,Th) := {v ∈ H(div,Ω) : v|κ ∈ BDMk(κ) ∀κ ∈ Th}.622623

Then, the approximation space Hh,k ≡ Vh,k ×Πh,k is defined via624

Vh,k := {v ∈ BDMk+1(Ω,Th) : (v · n)|∂ΩN
= 0},625

Πh,k := {ϕ ∈ L2(Ω) : ϕ|κ ∈ Pk(κ) ∀κ ∈ Th}.626627

The stability of these pairs of spaces, in the inf–sup sense, is discussed, for example,628

in [13] for any choice of k ≥ 0.629

Remark 2. We note that one could alternatively consider the vector–valued space630

consisting of Raviart–Thomas (RT) elements631

RTk(κ) := [Pk(κ)]2 + xPk(κ) ∀k ≥ 0,632

which also guarantee H(div)–conformity. In practice, we have observed that the RT633

approximation gives rise to quantitatively similar results to those attained in our cho-634

sen BDM setting. Indeed, due to the property that RTk(κ) ⊂ BDMk+1(κ) ⊂ RTk+1(κ)635

for all k ≥ 0 the vector–valued space constructed with RTk(κ) elements (vs. using636

BDMk+1(κ) elements) will have fewer degrees of freedom on a fixed triangulation of637

the domain. Moreover, the difference in the quality of approximation is only really638

seen in [L2(Ω)]2; with the choice of BDMk+1(κ) elements, the error converges at639

higher-order, as the mesh is refined, compared with their RTk(κ) counterparts. The640

rate of convergence of the error, when measured in the H(div,Ω) norm, is identical641

for both spaces.642

Furthermore, when considering a lowest–order approximation (setting k = 0)643

streamlines of velocity fields utilising RT0(κ) elements are piecewise straight lines644

through the triangulation; the subsequent travel time computation in this case is an645

easier task to implement when compared with the possibly curved paths traced by646

BDM1(κ) velocities. Here, a combination of matrix exponentials (to solve the stream-647

line IVP) and a nonlinear algebraic solver were used to evaluate element exit–points648

and the residence time of the streamline per element in the mesh.649
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Fig. 4.1. Example I: Approximate particle trajectory on the final mesh.

Table 4.1
Example I: Results employing the BDM1 finite element space.

Number of DOFs Error Est. Error θh
20 −8.274 × 10−3 −8.476 × 10−3 0.976
72 1.358 × 10−3 1.360 × 10−3 0.998
272 −3.155 × 10−5 −2.818 × 10−5 1.120
1056 −1.894 × 10−5 −1.899 × 10−5 0.997
4160 −2.085 × 10−6 −2.084 × 10−6 1.001
16512 −9.310 × 10−7 −9.308 × 10−7 1.000

In our examples we consider the primal and adjoint approximations (uh, ph) ∈650

Hh,0 and (zh, rh) ∈ Hh,1, where (zh, rh) solves the discrete linearised adjoint problem651

(2.16) with functional T( · ; x0), approximating the solutions (z, r) ∈ H to the problem652

(2.13). We recall (cf. Section 2.3) the effectivity index653

θh :=
T(u; x0)− T(uh; x0)∑

κ∈Th
ηk

,654

which measures how well the error estimate approximates the exact travel time error.655

4.2. Example I: A Simple Test Case. This first example considers a very656

simple problem for which we know the value of the exact travel time T(u; x0). The657

travel time is approximated on a series of uniformly refined triangulations, in order658

to validate the proposed error estimate (4.1). To this end, let Ω = (0, 1)2; we impose659

appropriate boundary conditions, so that the exact Darcy velocity is given by u =660

[sin(x) cos(y)]>. The porosity is set to be φ = 1 everywhere so that the Darcy and661

transport velocities coincide. Furthermore, the de–coupling of the IVP for the particle662

trajectory Xu(t) means that we can evaluate exactly the travel time for some choice663

of x0 ∈ Ω. Selecting x0 = (0.1, 0.3) gives664

T(u; x0) = log

(
tan(1) + sec(1)

tan(0.3) + sec(0.3)

)
≈ 0.9216 . . . ,665

cf. Figure 4.1 which depicts the particle trajectory.666

The results featured in Table 4.1 show the exact travel time error, the error667

estimate, and the resulting effectivity index on each of the uniform meshes employed668

for this example. Indeed, here we observe that the effectivity indices are extremely669

close to unity on each of the meshes, thereby demonstrating that the error estimate670
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Fig. 4.2. Example I: Primal (top) and adjoint (bottom) pressure and velocity approximations
on the final mesh.

accurately predicts the travel time error in this simple example, even on particularly671

coarse meshes with less than 50 degrees of freedom.672

The primal and adjoint pressure and velocity approximations on the final mesh673

are depicted in Figure 4.2. In particular, the adjoint solution approximations are674

highly discontinuous along, and near, the path P (uh; x0). Indeed, close to x0 is a675

source–like feature, where the adjoint velocity travels backwards along the path to676

the initial position. Close to P (uh; x0) we see that part of the adjoint velocity is677

pointing in the same direction as the primal Darcy velocity. These adjoint solutions678

vanish away from the path and may be interpretted as generalised Green’s functions;679

in particular, the adjoint pressure looks to be bounded, while the adjoint velocity680

resembles more a Dirac-type measure.681

4.3. Example II: A Two–Layered Geometry. Similar to Example I, this682

numerical experiment considers a simple geometry and problem set–up in order to683

further validate the proposed error estimate (4.1) under uniform refinement. Here,684

the domain Ω, pictured in Figure 4.3, is defined by Ω = {(x, y) ∈ R2 : 0 < x <685

1, 0 < y < 1 − x
10}. Along the line y = 1/2 the domain is partitioned into the two686
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Fig. 4.3. Example II: Approximate particle trajectory on the final mesh.

Table 4.2
Example II: Results employing the BDM1 finite element space.

Number of DOFs Error Est. Error θh
198 1.188 × 10−3 1.719 × 10−3 0.691
764 4.773 × 10−4 4.534 × 10−4 1.053
3000 7.891 × 10−5 8.178 × 10−5 0.965
11888 1.255 × 10−5 1.294 × 10−5 0.970
47328 4.261 × 10−6 4.460 × 10−6 0.955
188864 −2.694 × 10−7 −2.694 × 10−7 1.000

sub–domains Ωi, i = 1, 2, representing different types of rock. That is, the top layer687

consists solely of Calder Sandstone, while the bottom containes St. Bees Sandstone.688

To each of the sub–domains we assign a fixed, constant, permeability and porosity689

(cf. Example III), given by the dataset used in [24]. Furthermore, we assume that690

the triangulation Th is aligned with the interface between Ω1 and Ω2. If this were not691

the case, then additional sub–partitions of the elements intersected by the interface692

would be required in order to allow for the use of standard quadrature and streamline693

tracing techniques (on this sub–partition) which are employed in these examples.694

This example can be considered to be a simpler version of Example III, in which695

we apply the same boundary conditions. Along the top of the domain we impose696

atmospheric pressure, and no–flow out of the rest of the boundary. The burial point697

is chosen to be x0 = (0.1, 0.1) and we set f = 0 in Darcy’s equations (2.1)–(2.4).698

Unlike the previous example, the exact travel time T(u; x0) is not known in this case;699

instead, we use an approximation on the final mesh.700

The results presented in Table 4.2 again show that the proposed error estimate701

reliably predicts the size of the error, with effectivity indices close to unity on each702

of the meshes employed. Although it looks as if the trajectory is exiting the domain703

parallel to the boundary (cf. Figure 4.3), the performance of the error estimator does704

not deteriorate in this setting.705

The behaviour of the adjoint solution approximations, pictured in Figure 4.4, is706

similar to that witnessed in the adjoint approximations in Example I. Here, the sink,707

or source–like feature at x0 appears to be more noticeable.708

4.4. Example III: Inspired by the Sellafield Site. In this example, the709

domain Ω is defined as being the union of six sub–domains Ωi, i = 1, 2, . . . , 6, each710

representing a different type of rock. Each of these layers is assumed to have a given711

fixed, constant, porosity φ and permeability k related to the hydraulic conductivity K712
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Fig. 4.4. Example II: Primal (top) and adjoint (bottom) pressure and velocity approximations
on the final mesh.

(cf. Sections 3.2 and 2.1, respectively) by K = ρg/µk, where ρ, g, and µ are the density713

of water, acceleration due to gravity, and kinematic velocity of water, respectively; the714

data for each of these is taken from [24]. As in Example II, we assume here that the715

triangulation Th is aligned with each of the interfaces between all of the sub–domains.716

We briefly mention that the domain Ω is merely inspired by the geological units717

found at the Sellafield site and in no way is physically representative of it; there-718

fore, we draw no conclusions of real–life consequence within this numerical example719

in the context of the post–closure safety assessments of potential radioactive waste720

burial sites. Furthermore, this experiment merely aims to reproduce similar results721

previously obtained in [24] in order to verify the main linearisation result presented722

in Theorem 3.1. More details concerning this problem, as well as a more complex723

version of this test case, can be found in [24] where the permeability per layer was724

considered variable, but still constant per element.725

Here, we let ∂ΩD be the top of the domain, representing the surface of the site,726

and let ∂ΩN be the remainder of the boundary, as pictured in Figure 4.5. We make727

the same assumptions as [24]: the rock below the stratum consisting of Borrowdale728
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Fig. 4.5. Example III: The domain Ω, inspired by Sellafield; see [24].

Fig. 4.6. Example III: Particle trajectory approximation on the initial mesh.

Table 4.3
Example III: Results employing the BDM1 finite element space.

Number of DOFs Error Est. Error Eff. Index
22871 −8.905 × 10−5 −5.970 × 10−5 1.492
32624 −5.455 × 10−6 −4.421 × 10−6 1.234
47053 4.065 × 10−6 4.382 × 10−6 0.928
69887 −2.140 × 10−7 −2.206 × 10−7 0.970

1.0755 × 105 −4.216 × 10−8 −4.326 × 10−8 0.974
1.6796 × 105 −1.330 × 10−8 −1.468 × 10−8 0.906
2.6631 × 105 −8.280 × 10−9 −8.280 × 10−9 1.000

Volcanic Group type is of much lower permeability than all of the other layers; there729

is a flow divide on the left and right edges of the domain; the pressure at the top of730

the domain is prescribed via gD = patm/ρg+ y; the source term f is set equal to zero.731

The travel time path computed on the initial mesh is depicted in Figure 4.6.732

Remark 3. We note that for implementation purposes, and in the interest of re-733

producibility, atmospheric pressure patm = 1.013× 105Pa and other quantities enter-734

ing the problem, are non–dimensionalised using the mass, length and time chacteristic735

scales given by mass = 1, length = 10−3, time = 1/3155760000000. Furthermore,736

the boundary condition is also translated to gD = patm/ρg − (500− 1000y)/1000.737

In Table 4.3 we present the performance of the adaptive routine when approx-738

imating the travel time functional. The exact travel time T(u; x0) is based on the739

approximation computed on the final mesh and the computed error estimator; on this740
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Fig. 4.7. Example III: Pressure approximation on the initial mesh.

Fig. 4.8. Example III: Velocity approximation on the initial mesh.

Fig. 4.9. Example III: Adjoint pressure approximation on the initial mesh.

Fig. 4.10. Example III: Adjoint velocity approximation on the initial mesh.

basis the exact travel time is approximately 0.49, which when written in the appro-741

priate units corresponds to around 0.49 × 105 years. We can see from these results742

that the effectivity indices computed on all meshes are close to unity, indicating that743
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Fig. 4.11. Example III: Initial and final adaptively refined meshes.

the approximate error estimate (4.1) leads to reliable error estimation, similar to the744

previously undertaken work in [24]. We see that for this physically motivated example745

we are able to estimate the error in the travel time functional very closely.746

Figures 4.7 and 4.8 show the computed approximations (uh, ph) ∈ Hh,0 on the747

initial mesh. Again, here we observe discontinuities in the Darcy velocity across the748

rock layer interfaces, with the velocities differing by orders of magnitude within each749

of the stratum. We also see a local stationary point in the pressure near the centre750

of the domain which accounts for the change in direction of the groundwater flow;751

indeed, in this region the flow moves upwards and thus could transport the buried752

nuclear waste back up to the surface of the site.753

Figures 4.9 and 4.10 plot the computed adjoint approximations (zh, rh) ∈ Hh,1.754

As concurred by [24] we see a strong discontinuity along the direction of the trajectory755

Xuh
, and with both the adjoint velocity and pressure approximations vanishing away756

from the path P (uh; x0). Close to the initial release point x0 we see what looks to be757

a source–like feature in the adjoint velocity approximation, and again, in agreement758

with [24], this velocity points in the same direction as the primal Darcy velocity759

(approximation) outside of, but close to, the path, but in the opposite direction along760

the path itself.761

Finally, in Figure 4.11 we show the initial mesh and the final, adaptively refined,762

mesh. As expected, we observe mesh refinement taking place around the initial point763

x0, at the exit point, and along the trajectory itself. There is more significant refine-764

ment (compared with the rest of the path) where the trajectory changes direction;765

in these regions there are sharp discontinuities in the Darcy velocity approximation,766

which may lead to a large discretisation error of the primal Darcy problem. Such767

large errors contribute greatly to the error induced in the travel time functional and768

as such, is targetted more for refinement when compared with the regions contain-769

ing long horizontal stretches of the trajectory; typically here, the velocity (especially770

when confined to a single rock layer) appears to be quite smooth.771

5. Conclusions. This work has been concerned with the numerical approxima-772

tion of the travel time functional in porous media flows and the post–closure safety773

assessment of radioactive waste storage facilities. An expression for the Gâteaux774
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derivative of the travel time functional has been derived, for both continuous and775

piecewise–continuous velocity fields, which has been utilised via the dual–weighted–776

residual–method for goal–oriented error estimation and mesh adaptivity. Numerical777

experiments considering both simple and complicated problem set–ups have been778

considered, validating the proposed error estimate which performed extremely well,779

in terms of the computed effectivity indices being very close to unity on all meshes780

employed. The contributions of this research have built upon those in [24] where781

previously such an expression for the Gâteaux derivative was unavailable.782

Extensions of this work may, for example, involve considering more realistic con-783

ditions in order to test the proposed error estimate. More demanding domains, such784

as fractured porous media or domains with inclusions such as vugs or caves, is vital to785

extend the results from these simple academic test cases to real–life applications. Fur-786

thermore, a closer look into the regularity of the adjoint solutions would be extremely787

beneficial in understanding how to improve the error estimate to derive a guaranteed788

bound and to better understand the expected rates of convergence in the error of the789

computed travel time functional. Indeed, the well–posedness of the adjoint problem790

still remains an open question.791
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[3] I. Babuška and T. Strouboulis, The Finite Element Method and Its Reliability, Numerical798
mathematics and Scientific Computation, Clarendon Press, Oxford University Press, New799
York, 2001.800

[4] W. Bangerth and R. Rannacher, Adaptive Finite Element Methods for Differential Equa-801
tions, Lectures in Mathematics. ETH Zürich, Birkhäuser Basel, 2003.802
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problems using adaptive finite elements, in Applied Parallel Computing. State of the Art816
in Scientific Computing, vol. 4699, Springer Berlin Heidelberg, 2007, pp. 733–743.817

[11] C. Bernardi and A. Y. Orfi, Finite element discretization of the time dependent axisymmet-818
ric Darcy problem, SeMA Journal, 68 (2015), pp. 53–80.819

[12] I. Berre, F. Doster, and E. Keilegavlen, Flow in fractured porous media: A review of820
conceptual models and discretization approaches, Transport in Porous Media, 130 (2019),821
pp. 215–236.822

[13] D. Boffi, F. Brezzi, and M. Fortin, Mixed Finite Element Methods and Applications,823
Springer, Berlin, Heidelberg, 1 ed., 2013.824

[14] W. M. Boon, J. M. Nordbotten, and I. Yotov, Robust discretization of flow in fractured825
porous media, SIAM Journal on Numerical Analysis, 56 (2018), pp. 2203–2233.826

[15] D. Braess and R. Verfürth, A posteriori error estimators for the raviart–thomas element,827
SIAM Journal on Numerical Analysis, 33 (1996), pp. 2431–2444.828

[16] S. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods, vol. 15 of829

This manuscript is for review purposes only.



26 PAUL HOUSTON, CONNOR J. ROURKE, AND KRISTOFFER G. VAN DER ZEE

Texts in Applied Mathematics, Springer-Verlag Berlin Heidelberg, 1 ed., 2008.830
[17] F. Brezzi, J. Douglas, and L. D. Marini, Two families of mixed finite elements for second831

order elliptic problems, Numerische Mathematik, 47 (1985), pp. 217–235.832
[18] J. Cao and P. K. Kitanidis, Adaptive-grid simulation of groundwater flow in heterogeneous833

aquifers, Advances in Water Resources, 22 (1999), pp. 681–696.834
[19] T. Carraro and C. Goll, A goal-oriented error estimator for a class of homogenization835

problems, Journal of Scientific Computing, 71 (2017), pp. 1169–1196.836
[20] C. Carstensen, A posteriori error estimate for the mixed finite element method, Math. Comp.,837

66 (1997), pp. 465–476.838
[21] H. Chen, A. Salama, and S. Sun, Adaptive mixed finite element methods for darcy flow in839

fractured porous media, Water Resources Research, 52 (2016), pp. 7851–7868.840
[22] H. Chen and S. Sun, A residual-based a posteriori error estimator for single-phase darcy flow841

in fractured porous media, Numerische Mathematik, 136 (2017), pp. 805–839.842
[23] W. Chen and Y. Wang, A posteriori error estimate for the h(div) conforming mixed finite843

element for the coupled darcy–stokes system, Journal of Computational and Applied Math-844
ematics, 255 (2014), pp. 502–516.845

[24] K. A. Cliffe, J. Collis, and P. Houston, Goal-oriented a posteriori error estimation for the846
travel time functional in porous media flows, SIAM Journal on Scientific Computing, 37847
(2015), pp. B127–B152.848

[25] J. Collis, Error estimation for PDEs with random inputs, PhD thesis, University of Notting-849
ham, December 2014.850

[26] C. Cordes and W. Kinzelbach, Comment on “application of the mixed hybrid finite element851
approximation in a groundwater flow model: Luxury or necessity?” by R. Mosé, P. Siegel,852
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