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LINEARISATION OF THE TRAVEL TIME FUNCTIONAL IN
POROUS MEDIA FLOWS

PAUL HOUSTON*, CONNOR J. ROURKE* , AND KRISTOFFER G. VAN DER ZEE*

Abstract. The travel time functional measures the time taken for a particle trajectory to travel
from a given initial position to the boundary of the domain. Such evaluation is paramount in the
post—closure safety assessment of deep geological storage facilities for radioactive waste where leaked,
non-sorbing, solutes can be transported to the surface of the site by the surrounding groundwater.
The accurate simulation of this transport can be attained using standard dual-weighted—-residual
techniques to derive goal-oriented a posteriori error bounds. This work provides a key aspect in
obtaining a suitable error estimate for the travel time functional: the evaluation of its Gateaux
derivative. A mixed finite element method is implemented to approximate Darcy’s equations and
numerical experiments are presented to test the performance of the proposed error estimator. In
particular, we consider a test case inspired by the Sellafield site located in Cumbria, in the UK.

Key words. Mixed finite element methods, goal-oriented a posteriori error estimation, porous
media flows, travel time functional, Gateaux derivative, mesh adaptivity, linearised adjoint problem.

AMS subject classifications. 65N50

1. Introduction. Over the last few decades, control of the discretisation error
generated by the numerical approximation of partial differential equations (PDEs)
has witnessed significant advances due to contributions in a posteriori errror analysis
and the use of adaptive mesh refinement techniques. Such algorithms aim to save
computational resources by refining only a certain subset of elements, making up part
of the underlying mesh, that contribute most to the error in some sense. In particular,
we refer to the early works [1, 3, 4], and the references cited therein.

Typically, in applications we are not concerned with pointwise accuracy of the
numerical solution of PDEs themselves, but rather quantities involving the solution
(which we will refer to as being goal quantities, or quantities of interest); in this set-
ting goal-oriented techniques are employed to bound the error in the given quantity of
interest. Work in this area was first pioneered by [8, 9] and [32], which established the
general framework [51, 55] of the dual, or adjoint, weighted—residual method (DWR).
When the quantity of interest is represented by a nonlinear functional, a linearisation
about the numerical solution is employed in order for the problem to become tractable
and computable; hence, the nonlinear functional must be differentiated. Solving a dis-
crete version of this linearised adjoint problem allows for an estimate of the discreti-
sation error induced by the quantity of interest, which may be decomposed further
to drive adaptive refinement algorithms. Unweighted, residual-based estimates can
be derived based on employing certain stability estimates [30], but this results in
meshes independent of the choice of quantity of interest. The DWR approach has
been applied to a vast number of different applications including the Poisson problem
[8], nonlinear hyperbolic conservation laws [34], fluid-structure interaction problems
[56], application to Boltzmann-type equations [36], as well as criticality problems in
neutron transport applications [33].

In this paper, our motivation is in the post—closure safety assessment of facilities
intended for use as deep geological storage of high-level radioactive waste [24, 50, 48,
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2 PAUL HOUSTON, CONNOR J. ROURKE, AND KRISTOFFER G. VAN DER ZEE

44]. Here, we are solely interested in the time—of—flight for a non—sorbing solute (which
has leaked from the repository) to make its way to the surface, or boundary, of the
domain; this time is represented by the (nonlinear) travel time functional. Previously,
work undertaken in [24] employed goal-oriented a posteriori error estimation for this
functional, relying on a finite—difference approximation of its Gateaux derivative.

The work presented in this article derives an exact expression for the Gateaux
derivative of the travel time functional, based on employing a backwards—in—time
initial-value—problem (IVP) considered adjoint to the trajectory of the leaked solute.
The use of such linearisation allows for an easy implementation of the adjoint prob-
lem required for the goal-oriented error estimation of the travel time functional. In
comparison with the previous approximate linearisation, in the case of a lowest—order
approximation for the driving velocity field, there is now no need for time-stepping
techniques to evaluate the derivative of the travel time functional, which are often
slow and computationally expensive. Moreover, we emphasise that the main result
of this paper, given by Theorem 3.1, gives a way to compute the Gateaux derivative
exactly. Thus, utilising the previous finite—difference approximation can only result
in error estimates of inferior, or close to equal, quality when compared with those
computed within this article in Section 4. Indeed, employing a Raviart—-Thomas im-
plementation, [24] showed that the error estimates and resulting effectivity indices
(on all adaptively refined meshes) were of excellent quality; therefore, one should ex-
pect results closely matching those within this article when the approximation of the
derivative is replaced by its exact evaluation. Finally, we note that if one considers
a higher—order approximation of the driving velocity field, the adjoint IVP given in
both Theorem 1.1 and Theorem 3.1 would perhaps need to be approximated using
time—stepping techniques (since the matrix—gradient of the primal velocity is no longer
piecewise constant). However, since the resulting modelling error involved in real-life
application is typically large, approximation using higher—order spaces is arguably not
required in this context.

Before we proceed, we first introduce the travel time functional for generic velocity
fields; in addition a preliminary version of the main result of this work is presented:
the Gateaux derivative of the travel time functional for continuous velocity fields.
Next we briefly discuss some of the literature relating to Darcy’s equations as a model
for groundwater flow, other potential models that could be used for more realistic
simulations, and the a posteriori error analysis that has been developed within these
areas. Finally, we outline the content of the rest of this article.

1.1. The Travel Time Functional. Within this section, we define the travel
time functional for generic velocity fields and address briefly the difficulties involved
with its linearisation. To this end, consider an open and bounded Lipschitz domain
Q c R, d = 2,3, with polygonal boundary 052, and the semi-infinite time interval
T = [0,00). Let us suppose we have a generic velocity field u = u(x,t) : Q@ x T — R4,
For a user—defined initial position x( € €2, the particle trajectory X = Xy, due to u,
is given by the solution of the following IVP:

dX
— (O =uX(),0) vieT,
X(O) = X

The so—called travel time of the velocity field, T'(u;xg), is defined to be the time—of—
flight of the particle trajectory X, from its initial position xq to, if ever, its first exit
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LINEARISING THE TRAVEL TIME FUNCTIONAL 3

point out of the domain Q. Thereby, the functional T'(u; %) is defined by
(1.1) T(u;xo) = inf{t € T: Xy, (t) € Q}.

Alternatively, we can write this in the equivalent form:

d
T(U,XO) = / 787
Pluxo) [ull2
where || - ||2 denotes the standard Euclidean 2-norm and P(u;Xg) is the curve traced

by the particle trajectory from its initial position to the first boundary contact:
P(u;xg) = {Xu(t) € Q:t € [0,T(u;x0)]}

The integral version of the functional clearly highlights the difficulty concerning the
demonstration of its differentiability. Indeed, the nonlinearity occurs within the inte-
grand and the curve in which the integral is taken over depends itself on the velocity
field. The travel time functional cannot clearly be globally continuous and therefore
not globally Fréchet differentiable. We shall see, however, that it is possible to evalu-
ate its Gateaux derivative (Theorem 3.1). The regularity of the functional itself will
not be addressed within this work.

Additionally, evaluating the travel time functional itself involves the computa-
tion of the velocity streamlines, or particle trajectories X, (¢). Within this work,
we follow the techniques outlined in [38] for streamline computation; furthermore, a
streamfunction approach can indeed be employed when the considered fluid flow ap-
proximations are divergence—{ree [43], and it is even possible for high-order velocity
approximations, when also divergence—free, to have accurate streamline tracing [37].

1.2. Linearisation in the Continuous Case. A preliminary result for the
linearisation of the travel time functional involves assuming that the velocity field u
satisfying the underlying flow problem is continuous on §2. When this is the case, then
the Gateaux derivative of the travel time functional may be evaluated and computed
as an integral, in time, weighted by a variable Z which may be considered as being
adjoint to the particle trajectory X,. The theorem below presents such a preliminary
version of the main result of this paper. Here, for a sufficiently smooth functional
Q : V — R, we use the notation Q'[w](:) to denote the Gateaux derivative of Q(-)
evaluated at some w in V', where V is some suitably chosen function space. As usual,
given w € V, if the limit

(1.2) Q’[w](v) — lim Q(w + ev) — Q(w)

e—0 £

exists for all v € V, and the mapping v — Q’[w](v) is linear and continuous, then Q is
said to be Gateaux differentiable at w, and the quantity Q'[w](:) : V' — R is referred
to as being the Gateaux derivative of Q, evaluated at w.

THEOREM 1.1. Suppose that the velocity field u(x,t) is continuous on Q. Let
n = n(x) be the unit outward normal vector to Q. Assume O is flat in some
neighbourhood of the exit point Xy (T(u;%¢)), and that the particle trajectory is such
that u(Xy(T(u;x0)), T (u;x0)) - n(Xy(T(u;x0))) # 0. Let Z be the solution of the
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4 PAUL HOUSTON, CONNOR J. ROURKE, AND KRISTOFFER G. VAN DER ZEE

1VP:

—%(t) — [Vu(X(t),t)]"Z(t) =0 ¥t e [0,T(u;x0)),

AT (:x0)) = = R T (w0)), T x0)) 1

Then, the Gateaux derivative of the travel time functional may be evaluated as

T (u;x0)
T'u(v) = /0 Z(t) - v(X(t),t)dt.

The above result can be used to evaluate the derivative required for the implementa-
tion of DWR a posteriori error estimators, where here the velocity field u is replaced
with its discrete approximation uy. However, such approximations are usually ob-
tained via finite element methods, and the continuity of u, at element interfaces is
not always guaranteed. In this case, Theorem 1.1 must be generalised to allow for
such discontinuity; this is addressed as part of Section 3, where Theorem 3.1 is de-
rived without such a continuity assumption. Moreover, Theorem 3.1 presents a more
general result in which Theorem 1.1 may be recovered easily by setting the resulting
jump terms equal to zero.

1.3. Related Literature. Groundwater flow, governed by Darcy’s equations,
represents a viable simplified model for the fluid flow [44, 24] and will be exploited
within this paper. It is assumed that whilst the surrounding rocks may not be sat-
urated while the repository is being built, they will eventually become saturated in
its operational lifetime; thus, it is sufficient that in a post—closure assessment we can
consider saturated conditions, and therefore use the time independent Darcy’s equa-
tions as our model, rather than the usual Richards equations for capillary flow [25, p.
3]. Of course, within this context and in many others, there are more sophisticated
models, cf. [53, 63, 54, 42, 14, 49, 31, 28, 46, 12] and the references cited therein,
where large—scale structures and complex topographical features, such as fracture net-
works or vugs and caves, are considered as parts of the domain. The solution—based a
posteriori error estimation for these more sophisticated models may be found in, for
example, the articles [23, 21, 22, 62, 35, 57, 45] and the references cited therein.

An energy norm based approach can also be found in [18], where adaptive mesh
refinement is employed to accurately compute streamlines via a streamfunction ap-
proach. More generally, the goal-oriented error estimation for linear functionals of
Darcy’s equations can be found in [47] which employs equilibrated—flux techniques in
order to achieve a guaranteed bound. Furthermore, [41] extends this work to bound
higher—order terms to demonstrate that the a posteriori bounds are asymptotically
exact, as well as taking into account the error induced by inexact solvers.

For a set of slightly different homogenised problems, [19] presents the goal-
oriented error estimation for general quantities of interest. We also point out the
existing literature for goal-adaptivity in the context of contaminant transport, pre-
sented in the articles [10, 39], but which differs slightly from the work presented here.
For the numerical experiments presented in Section 4, for example, following [13],
we employ a mixed finite element method using the Brezzi-Douglas—Marini (BDM)
elements. These elements, introduced originally in [17], ensure H(div)—conformity in
order to retain physical results in the streamline computation: that is, ensuring the
continuity of the normal traces of velocity fields across element interfaces.

This manuscript is for review purposes only.



LINEARISING THE TRAVEL TIME FUNCTIONAL 5

The original solution—based a posteriori error analysis for Darcy’s equations, em-
ploying Raviart—Thomas elements, was undertaken by Braess and Verfiirth in [15]; we
also refer to [7, 6] which consider augmented, stabilised versions of Darcy’s equations,
whose original L?-bound analysis was given in the article [40]. Moreover, there is a
vast literature for the a posteriori error analysis for Darcy’s equations in a variety of
contexts. For example, [11, 52] presents the analysis for time-dependent Darcy flow;
[29] uses the finite volume method for two—phase Darcy flow; and [5] uses an aug-
mented discontinuous Galerkin method. For the (residual) norm-based a posteriori
error analysis for Darcy’s equations, and mixed finite element methods in general, we
refer to the articles [59, 60] by Vohralik, and the references cited therein. In [58],
similar to [20], residual-based a posteriori error bounds are derived by considering
a Helmholtz decomposition in order to overcome the need for a saturation assump-
tion previously assumed by [15]. Moreover, in [2] an enhanced velocity mixed finite
element method is used instead.

Lastly, problems modelled by Darcy’s equations often lend themselves for investi-
gation in the realm of uncertainty quantification; more specifically, in real-life there is
uncertainty regarding the properties of the sub—surface rock making up the domain.
While not the focus of this work, we refer to [25], and the references cited therein,
where substantial work has been undertaken in a random setting.

1.4. Outline of the Paper. In Section 2.1 we introduce Darcy’s equations for
a simple model of saturated groundwater flow and their classical mixed formulation.
Section 2.2 presents the numerical approximation of Darcy’s equations via the mixed
finite element method. The DWR method is presented in Section 2.3; here, an a
posteriori error estimate is established and decomposed into element—wise indicators.
Section 3 represents the main contribution of this paper which is presented for piece-
wise discontinuous velocity fields. The remainder of this section proves the main
linearisation result, given by Theorem 3.1, for the travel time functional. Applying
the linearisation result to groundwater flow and Darcy’s equations is addressed in
Section 3.2, and the following Section 3.3 provides some brief implementation de-
tails when the velocity field under consideration is piecewise linear. Three numerical
experiments are conducted in Section 4: two simple, academic—style examples aim
to build confidence in the proposed a posteriori error estimate, while the last one
adaptively simulates the leakage of radioactive waste within a domain inspired by the
(albeit greatly simplified) Sellafield site, located in Cumbria, in the UK. This final,
physically motivated example, matches the experiment conducted in [24] but uses the
new linearisation result instead. Lastly, some concluding remarks are discussed in
Section 5.

2. Darcy Flow, FE Approximation, and A Posteriori Error Estimation.

2.1. The Model for Groundwater Flow. For illustrative purposes, a Darcy
flow model is adopted in this paper in order to demonstrate the main Gateaux de-
rivative result (Theorem 3.1) in the context of goal-oriented adaptivity. To this end,
Darcy’s equations are given by the following system of first—order PDEs, whereby we
seek the Darcy velocity u and hydraulic head (or pressure) p such that:

) K'u+Vp=0 V¥xeQ,
.2) V-u=f Vxeq,

) p=gp Vxe€dQp,

) u-n=0 Vxedln.

This manuscript is for review purposes only.
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6 PAUL HOUSTON, CONNOR J. ROURKE, AND KRISTOFFER G. VAN DER ZEE

Here, Q C R4, d = 2,3, is an open and bounded domain with polygonal boundary 9,
partitioned into so-called Dirichlet and Neumann parts 9Q = 9Qp U 0Qy; the unit
outward normal vector to the boundary is denoted by n. Furthermore, f € L?(1) is
a source/sink term and gp € Hz(9Qp) is Dirichlet boundary data for the pressure.
Such regularity assumptions allow for the existence of a unique weak solution to
Darcy’s equations, discussed very briefly in Section 2.1.1. Lastly, the matrix K(x) €
R¥*? yepresents the hydraulic conductivity of the surrounding rock in the groundwater
model; it is given by K := rg/uk, where p is the density of water, g is the acceleration
due to gravity, p is the viscosity of water, and k is the permeability of the surrounding
rock. It is assumed that the eigenvalues of K, Ay (0 < A_ < A}) satisfy

(2.5) My <y Ky <M\Jy]*> vxeQ VyeR%

In particular, the condition (2.5) implies that K is invertible.

2.1.1. Weak Formulation. Firstly, we introduce the following function spaces:

H(div,Q) :={v e [L*(Q)]?:V-v e L*(Q)},
Hy p(Q) == {¢ € H'(Q) : ¢lag, = 0},
Hon(div, Q) == {v € H(div,Q) : (v 1,990 =0 Vo € Hj ,(Q)}.

The space Hy n(div, Q) is a subspace of H(div,{) with vanishing normal-trace on
the Neumann part of the boundary 9. The duality pairing between H —3 (092) and
H?z(09) is denoted by (-,-)sq and is given by the following Green’s formula.

PROPOSITION 2.1. For v € H(div, ),

(v n,¢)o0 :/

Q

v-v¢+/w-v vy € HY(Q).
Q

By multiplying (2.1) by a test function v € Hy n(div,2) and (2.2) by a test function
q € L*(2), and applying Proposition 2.1 to the latter, we arrive at the saddle—point
problem: find (u,p) € H := Hy y(div,2) x L*(Q) such that

(2.6) a(u,v) +b(v,p) = G(v) Vv e Hyn(div, ),
b(u, q) =F(q) Vg€ L*(Q).
The bilinear forms are given by a(u,v) := [ K 'u-v, b(v,p) := — [,pV - v, and

the linear functionals are defined as G(v) := —(v-n,gp)aa, F(q) := — [, fq. For
simplicity of presentation, we rewrite (2.6)—(2.7) in the following compact manner:
find (u,p) € H such that

(2.8) A ((u,p), (v,q)) = Z((v,q)) V(v.q) €H,
where

(2.9) A ((u,p), (v,q)) = a(u,v) +b(u,q) + b(v,p),
(2.10) Z((v,q)) :=G(v)+ F(q).

Such a weak formulation admits a unique solution (u,p) € H according to standard
theory (see [13], for example). That is, since the functionals G and F are clearly
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LINEARISING THE TRAVEL TIME FUNCTIONAL 7

continuous; the pair of solution spaces satisfy the well known Banach—Necas—Babiska,
or inf-sup, compatibility condition

b
0<fB:= inf sup . ¢) ,
0£PEL2() 0tve Ho y (div,) VI E(div) [Pl 22 (@)

(as a result of the divergence operator B : Hy y(div,Q) — L*(Q) (w — V - w) being
surjective); and the bilinear form a(-, -) being coercive on the kernel of the divergence
operator B. Indeed, the surjectivity of B follows immediately from the application of
the Lax—Milgram Lemma to a standard Poisson problem, giving the unique existence
of ¢ € H(2) such that

—Ap=q Vxe,
p=0 Vxe€dQp, Ve -n=0 Vxeciy,

for any q € L*(Q); ¢ admits the function w = —V¢ € Hy n(div,Q) with V- w = q.

2.2. Mixed Finite Element Approximation. The numerical approximation
of Darcy’s equations employed in this paper will be based on a mixed finite element
method. To this end, let .7, be a shape-regular simplicial partition of Q with A the
mesh-—size parameter. Extensions to more general meshes, including polytopic meshes,
may be considered based on exploiting, for example, the virtual-element—method, cf.
[27, 61], for example. We use the terminology face to refer to a (d — 1)—dimensional
simplicial facet which forms part of the boundary of an element x € .7;,. Consider the
finite-dimensional subspaces V;, C Hy n(div, ) and II;, € L?*(€2). To achieve such
H(div, Q)—conformity is paramount; indeed, such approximations will have continuous
normal-traces across element faces (for example, see [13]), allowing for the computa-
tion of physical streamlines, vital to real-life applications. Conversely, nodal-based
elements should not be implemented since they often result in unphysical stream-
lines, as well as there being a lack of mass conservation at an elemental level [26].
Typically, such conformity is achieved by utilising the well known Raviart—Thomas
(RT) or Brezzi-Douglas—Marini (BDM) finite elements. For the pressure space I
we employ discontinuous piecewise—polynomial functions. However, we stress that
any approximation spaces can be used as long as they are H(div,2) and L?(2) con-
forming, respectively, and are a stable pair in the inf-sup sense. Hence, the discrete
problem is: find (up,pp) € Hy := V}p, x IIj, such that

(2.11) ,Qf((uh,ph), (Vh, qh)) = i”((vh,qh)) V(Vh,qh) € Hy,.

2.3. Goal-Oriented Error Estimation. In this section we briefly present the
general DWR theory for the a posteriori error estimation for a general nonlinear
functional @ : H — R for the flow problem (2.8); for simplicity of presentation, here
the underlying PDE problem is linear, though we stress that the proceeding analysis
naturally generalises to the nonlinear setting.

To this end, given (2.8) and its corresponding finite element approximation defined
by (2.11), we define the error in the quantity of interest Q(u,p), by

(2.12) £ == Q(u,p) — Q(un, pn)-

To estimate this quantity we introduce the following sequence of adjoint or dual
problems, relative to the variational problem (2.8), with respect to the functional Q:

This manuscript is for review purposes only.



311
312
313
314
315
316
317
318

319

321
322
323

326
327
328
329
330
331

332

Qo
R0

335
336
337
338
339

8 PAUL HOUSTON, CONNOR J. ROURKE, AND KRISTOFFER G. VAN DER ZEE
Adjoint problem I: find (z,7) € H such that
(213) JZ{((V, Q)v (Z, T)) = @((uap)v (uh7ph); (Vv q)) V(Vv q) € H,

where the mean—value linearisation of Q(-), evaluated at (v,q) € H, is defined as

1
(2.14)  Q((w,p), (wn,pn)i (v, q)) ¢:/O Q' (u,p) + (1 =) (up, pn)]((v, q)) 9,

and where Q' is the Géteaux derivative of Q, given by (1.2).
Adjoint problem II: find (z,,7.) € H such that

(2.15) A ((v,9), (2x,74)) = Q[(un, pr)|((v,q)) V(v,q) € H.
Discrete adjoint problem II: find (zp,7) € #} such that
(2.16) A ((Vhyqn)s (2nsmn)) = Q' [(Wn, pr)l(Vas qn))  Y(Vhsqn) € Wi

Here, the finite-dimensional space #}, can be any space such that #}, C H but so that
W, ¢ Hy, for reasons relating to Galerkin orthogonality that we shall see later. If
hierarchical bases are used within the finite element method, then a popular choice is
to have %}, defined on the same mesh .9}, as Hj,, but employ higher—order polynomials.
We also see already here the need to be able to evaluate the Gateaux derivative of the
nonlinear functional representing the quantity of interest, since it appears in both of
the adjoint problems (2.15) and (2.16).
Defining the residual by

(2'17) %h(v7q) = f((v,q)) _'Q{((uh’ph)’(vaq))’

we have, by employing standard arguments, the following error representation formula.

PROPOSITION 2.2 (Error Representation). Let (u,p) denote the solution of the
primal problem (2.8), (up,ppn) solve the discrete, primal problem (2.11) and (z,r) be
the solution of the adjoint problem (2.13). Then, the following equality holds

(2.18) E2 = Hn(z—z1,m —11)

for all (zy,rr) € Hy,.

In particular, (2.18) is relevant for decomposing an estimate of the error representa-
tion, in order to potentially drive mesh adaptivity. Of course, (2.18) is not computable
since the formal adjoint solutions (z,r) are not, in general, computable themselves.
We must instead use the approximate linearised adjoint problem, and its discretisa-
tion, in order to approximate the error (2.12).

To this end, we can see easily that, for all (z;,77) € Hp, the residual may be
decomposed into the three parts

EhQ =Bn(2z — 2,7 —T3) + Bp (25 — 21,75 — 1) + Bn(2H — 21,70 — T1).

The first term %), (z — 2., — ) represents the error induced by the approximate
linearisation of the formal adjoint problem; the second term % (2, — zp, r« — ry) T€p-
resents the error induced by discretising the approximate linearised adjoint problem.
The last term, %, (zy, — 27,7, — 1) is most useful since it is computable. If we as-
sume that the other, non—computable, residuals converge to zero with an asymptotic
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LINEARISING THE TRAVEL TIME FUNCTIONAL 9

rate faster than this latter term, we can simply estimate the error in the quantity of
interest with the computable part directly by

(2.19) ER ~ RBn(zn — z1,mh — 11).

Typically, the functions z; and r; are chosen to be projections of the discrete linearised
adjoint solutions z; and r,. We stress that the presence of these interpolants are
essential to ensure that the double rate of convergence expected in optimal goal-
oriented adaptive regimes is retained when element—wise error indicators are defined
based on (2.19), cf. below.

Under mesh refinement, whether it be uniform or adaptive, the estimate (2.19)
converges to the true error if the effectivity index 0y := ShQ/%h (zy, —zp,mp, —17) — 1
as the mesh is refined. Section 4 showcases numerical evidence of this behaviour for
both simple and more complex examples, under uniform and adaptive refinement.

2.3.1. Estimate Decomposition for Darcy’s Equations. In this section we
decompose the error estimate (2.19) into element—based indicators on the mesh 7},
based on the usual, integration—by—parts approach. To this end, writing the right—
hand-side of (2.19) as a sum over the mesh .7, we get

ghg ~ Z (_ <(Zh - ZI) : nng><9N089D - /(Th - ’I“[)f

KETh ®

(2.20) - /HKfluh (zp —21) + /Kphv (zp, —27) + /(rh —r)V - uh),

K

where n,, denotes the unit outward normal vector to element x € .7,. Employing the
Green’s formula stated in Proposition 2.1, we see that in particular

/th‘ (zn —21) = — /(Zh —21) - Vo + ((2n — 21) - Dy, Dh) ok

K

Therefore, summing over the elements in the mesh, gives

> /th'(zh—zz)Z > (_/N(zh_zl)‘vPh+%<(zh_ZI)'nm[[phm{)n\{)Q

KET U KEIh

(2.21) + ((zn, — z1) - nn;ph>6nﬁaﬁp)»

where [-] denotes the jump operator across an element face. Inserting (2.21) into
(2.20) gives the following result.

THEOREM 2.3. Under the foregoing notation, we have the (approximate) a poste-
10Tl error estimate

&3] ~

> e

KET,

< Z |75

KET,

where the element indicator n, is split into the four contributions

e = 08¢ + 0Pt + M 4 nlR,
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each given by:

(2.22) 12 = ((zn — 21) - D, Ph — gD)orNoA,
(2.23) nPt = —/(Kﬁluh + Vpn) - (zn — 21),
(224) 0 = [ =) (V- ),

(2.25) ni = %«Zh —21) - Ny, [pr]) or\o0-

Each of the indicator contributions (2.22)—(2.25) are adjoint-weighted and may be
interpreted as the following: nZ¢ measures how well the boundary condition (2.3) is
satisfied; nPF measures how well Darcy’s Law (2.1) is satisfied; ¢ measures how
well the conservation of mass equation (2.2) is satisfied; and finally, nZ' % is a measure
of the interior pressure residual across element interfaces.

3. Linearising the Travel Time Functional. Recalling the discussion pre-
sented in Section 1.1, we emphasise that the main result (i.e. evaluating the Gateaux
derivative of the travel time functional) is independent of where the velocity field u
has come from; for now we are concerned only about the continuity of u. Indeed,
computing an approximation to the travel time functional via an approximation of
the velocity field u may or may not lead to a continuous velocity field; this depends
on the fluid model and the type of approximation that is employed.

More explicitly: suppose our problem was not in groundwater flow and the dis-
posal of radioactive waste, but instead that we are interested in T'(u;x¢) where u is
a flow governed by Stokes equations. In this situation, typically vector-valued H'—
conforming elements are employed (cf. [16]), on some mesh 7, to obtain an approx-
imation (at least in two spatial dimensions) uy, that is continuous across the element
interfaces. Here, Theorem 1.1 can be applied to evaluate the derivative T'[uz](-) (to,
for example, drive an adaptive mesh refinement algorithm). However, in the context
of this work, an H(div)—conforming approximation of a flow governed by Darcy’s
equations is used and as such, this conformity does not guarantee continuity of the
velocity field across element interfaces. Thereby, in the following discussion we derive
a more general result stated in Theorem 3.1.

3.1. Linearisation in the Discontinuous Case. Given the domain Q C R?,
d = 2,3, with boundary 91, denote by Z the semi-infinite time interval [0, c0). Fur-
thermore, suppose we have the possibly time-dependent velocity field v : (R? x T) —
R?. The particle trajectory of the velocity field, X, : Z — R?, satisfies the IVP:

dt

dXy _
3.1) v(Xy, ) vVteT,
XV(O) = X0,

where the initial position xg € €.
The main result is stated below in Theorem 3.1, which provides the evaluation of
the Gateaux derivative T'[v](+), of the travel time functional T'(-).

THEOREM 3.1. Let n = n(x) be the unit outward normal vector to the boundary
O0N. Assume firstly that OQ is flat in some neighbourhood of the exit point X(Ty), in
particular, this means that the unit outward normal vector n = n(X(Ty)) is unique.
Assume also that the particle trajectory is such that v(X(Ty),Ty) - n(X(1y)) # 0.
Suppose that Ty, is a simplicial partition of Q and that v is discontinuous across the
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faces {F;} that intersect the path t — X(t), defined by (3.1) at the times {t; = t; v }.
Lastly, assume that the particle trajectory is such that v|s, - n, # 0 on any of the
boundaries Ok of the elements k € T}, where n, is the unit ourward normal vector to
Ok, and assume also that it does not exit through the boundary of any of the element
faces, except possibly at the exit—point where here the domain boundary is flat. With
the above notation described, let Z : [0,T,] — R? be the solution to the adjoint, or
dual (linearised—adjoint, backward—in—time) IVP:

Ly(Z(t) = -9 — [Vv(X(1),)]"Z=0  Vte[0,Tv)\ {tiv},
_ n(X(T.))
(3.2) Z(1y) = ~ ST, 1) T
(20t )] = & e v

i

where n; s the unit outward normal vector to the faces {F;}, pointing in the same
direction as the particle trajectory X (t) at the time of intersection t = t;, and where
[Z(tiv)] = Z(t],) — Z(t;,) and [v(tiv)] = v(X(t{,), t],) = v(X(t;,),t;,) denote

Jjump operators. Then, the Gateauz derivative of T(-), evaluated at v, is given by

Ty
T'v](w) = /o Z(t) - w(X(t),t)dt.

The plus/minus notation refers to the times after/before, respectively, the trajec-
tory X, intersects the element interface, forwards in time. We may also index Z, = Z
to indicate that Z solves the IVP (3.2) induced by the velocity field v. Also, we note
that if the velocity field driving the trajectory is in fact continuous across the element
interfaces, then the jump terms vanish and Theorem 1.1 is recovered.

We now proceed to prove Theorem 3.1. To this end, we require two lemmas which
are given below. Firstly, consider the so—called trajectory derivative, corresponding
to the change in the particle path as a result of a change in velocity:

Xv+5w - Xv

)

X' = 0y Xy[w] := lim

e—0t €
recalling the notation that X, is the trajectory induced by the velocity field v.

LEMMA 3.2. Let v be as before, discontinuous across the faces {F;} intersecting
the path t — X (t) at the times {t; = t;v}. Then, the trajectory derivative X' : T —
R? satisfies the IVP:

LoX/ (1) = X~ Vv(X, (0), )X = w(X, (1), 1) VteT\ {t},
(3.3) X'(0) = 0,

[X'(t:)] = —[v(ta)]t; Vi,
where
X'(t7) -n;
(3.4) pp—D T
v(Xy(t; ).t ) - g
Proof. The time derivative of X’ is given by
/ _ _
dX :i lim Xytew — Xy — lim (v+ew)Xytew,t) V(Xv(t)ﬂf)’
dt dt e—0+ € e—0+ 5
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where we recall the pathline equations the trajectories satisfy. Thus,

dX’ (v+ew)(Xytew, t) — v(Xy(t),1)

dt h al—i>r(I)1+ g
_ Eli}él_'_ V(Xytew(t), ti v(Xy(t),1) - w(Xy (1), 1)
_ Elir(r)lJr V(Xv(t) + EX/(t) +60(5)7 t) - V(Xv (t), t) (X, (1),1)
iy, YOO o)

= [Vv(X (1), 1)]X'(t) + lim

e—0t £

= [Vv(Xy (), )X (t) + w(Xy(t), 1),
ie, forallt € 7\ {t;} (so that Vv(X(t),t) exists away from the discontinuities),

X’

= V(X (1), 1K (1) = W(Xy (8), ).

The initial condition follows easily as

X/(0) = lim 2@ =X 0 _

e—0t £ e—0+t 5

X0 — Xo —0

Although the velocity v has discontinuities, we still require that the trajectory X is
continuous. Hence, we have the coupling conditions between the two maps:

(v X (t) = (v X (t)) Vi
Taking the Gateaux derivative of each side (i.e., (d/de)(-)(v + ew), as € — 0) gives

+ —
X'(th) + 4x(t/) )t; =X'(t7) + dX(t)

dt " Vi

Thus,

X(t5) + V(X (8]), 60t = X (7)) + v(X (t7), 7)1

3

Vi,
rearranging gives

[X'(t)] = —[v(t:)]t:-
The expression for ¢} = dyt; v (W), given by (3.4), follows similarly to the proof given
for the following Lemma 3.3. a

We note as well that a variational approach can be used instead to prove Lemma 3.2.
For use in Lemma 3.3, consider the change in exit—time, or time—of-flight, due to a
change in the velocity, given by

T = T'v)(w) = 8y Ty(w) := lim Lovew = Ty,

e—0t 5
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LINEARISING THE TRAVEL TIME FUNCTIONAL 13

LEMMA 3.3. Suppose that 0S) is flat in some neighbourhood of the exit point
X(Ty). Then, the derivative X'(TY,) satisfies

X'(Ty) - n=-Tv(X(Ty),Ty) - n,

with n = n(X(75,)).

Proof. Since 9 is flat in some neighbourhood of the exit—point X, (Ty), for
sufficiently small € we have (Xyiew(Tview) — Xv(Tv)) - n =0, so that

X/'(T. =1
( V) n s—lglJr 3 n
— lim Xv+€W(TV) - XV+EW(Tv+6W) .n
e—0t e
— lim Xyiew(Tyv) = Xypew(Ty +€T" 4 0(¢)) ‘n
e—0t 9
dXV EW
i~ TET b))
e—0t e
— lim —(v+ew)(Xytew(Tv), Ty ) (€T" + o(e)) ‘n
e—0t &
= -T'v(Xy(Ty),Ty)) -n U

REMARK 1. The first step in the proof of Lemma 3.3 requires that the bound-
ary 08 is flat in a neighbourhood of the exit-point Xy (Ty). Indeed, the statement
(Xyvtew(Tvrew) — Xy (Ty)) -1 = 0 is not true for any € in the case of a curved bound-
ary. Here, a contribution from the curvature at the exit—point would be present in both
the result from Lemma 3.3 and would alter the adjoint—IVP in Theorem 3.1; as a brief

sketch, Lemma 3.3 would state that X'(Ty) n = —(T"+ k. Xl(T")'T)(v(XV(Tv), Ty) n),

lIvl]
where K. 18 the curvature of the boundary at the exit—point, and 7 is the unit tangent

vector to OS).

Thus, we are now able to prove the main result of this article.

3.1.1. Proof of Theorem 3.1.

Proof. From Lemma 3.3 and (3.2) we have

o X'(Ty) ' n _ ! )
T =) iym - ) 2T

Since from (3.2) we know that £%(Z(¢t)) = 0 away from the jump times {¢;}, we have

T =X'(T)-Z(T,) = X'(Tv) - Z(T) + Y /ti L5(Z(2)) - X/ (1) dt.

tz—l
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ot

Integrating by parts reveals that

501 T = Z/t Z(t) - Ly (X'(t)) dt

502 + @) X)) — 2(7) - X (7)) + Z(0) - X'(0)
503 => /t Z(t) - w(Xy(t),t) dt + > (Z(t]) - X'(t]) = Z(t;) - X' (t])),
504 i Yt i

505 since from (3.3) in Lemma 3.2 we have that £, (X'(t)) = w(X(t),t) and X'(0) = 0.
506 The jump condition in (3.3) for X’ can be rearranged to obtain the expression

X/(t;) - n;

v(Xy(t;)) tf)z- n;

» 7 K2

507 X'(tH) =X'(t;7) + [v(t:)]
508 Thereby,

t;
509 =Y / Z(t) - w(Xy(t),t)dt
i ti—1

510 + Z (Z(tj) . (X’(ti) + [[V(ti)]]v(XX/(it‘;)) tn); nv) - Z(t;) 'X/(ti)) :

512 Notice that

X'(t7) -n;

513 Z(t5) - [ X)) + [v(ts L )—th~x’tf

1) (X + vl o e ) — i) x0)

_ Z(tD[v(t:)] _ _
514 = (Z(tH) —Z(t;) + L : n; |- X'(t;
(20 - 2060 + 2= nr )X
318 = ([Z2(t:)] - [Z(t)]) - X'(t;7) = 0,
517 due to the jump condition for Z(t;) in (3.2) for all 4. This implies that
ts Ty
518 T = Z/ Z(t) - w(Xy(t),t) dt = / Z(t) - w(Xy (t), t) dt,
i ti—1 0

519 thus completing the proof. O
520 3.2. Application to Darcy Flow. For a groundwater flow model governed by
521 Darcy’s equations (2.1)—(2.4), physical (non-sorbing, non—dispersive, purely advective
522 transport based) particle trajectories are due to a velocity field known as the transport
523 velocity, which relates the Darcy velocity u and the porosity, ¢, of the surrounding
524 rock via ur = w/¢. Indeed, the travel time along particle trajectories driven by this
525 velocity field are those that should be considered in the travel time functional (1.1).
526 With x( the initial burial point, our quantity of interest can be expressed either by
527 the functionals ¥(-;xg) or T(-;xg), where, in particular, the former is given by
528 (3.5) T(w;x0) = T(ur;xo) = inf{t > 0: Xy, (t) € 2},

529 and it is indeed the trajectory X, that should be considered (v < ur) in Theo-
530 rem 3.1, and the functional T'(ur;xo) should be considered in the context of the a
531  posteriori error estimation presented in Section 2.3.
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Furthermore, a simple application of a generalised chain rule allows us to deduce
an expression for the Gateaux derivative of the functional (- ; %), given by

(3.6) T [v](w) =T [vr](wr).

3.3. Implementation Details. In this section, let uy, € V, and v € V be
generic velocity fields. For example, uy could be the solution of the discrete problem
(2.11), while v could be a basis function of W, C V, W, & V}, so that the derivative

T(up)
(3.7) ) = [ 20 v(Xu, ()

is required for computing the numerical solution to the approximate linearised adjoint
problem (2.15). Of course, if uy, is the discrete Darcy velocity satisfying (2.11) then
the derivative T'[uy](v) can be evaluated combining this section with (3.6).

For simplicity of presentation, we restrict this discussion to d = 2, but we stress
that the generalisation to d = 3 follows directly. In this setting, we recall that .7}, is
a shape-regular triangulation of Q for which uy, is discontinuous across the element
interfaces intersected by the particle trajectory Xy, () at the times {¢;}}¥,; proceed
with the assumptions stated in Theorem 3.1. Denote by T; = {r;}Y¥; C Z, the
ordered list of elements intersected by the particle trajectory. Here, we allow for
repetitions if the trajectory re—enters the same element, where it will appear multiple
times in T, with different labels. In order to obtain the adjoint variable Z,, = Z,
we can solve the IVP (3.2) in a element—by—element manner. That is, starting from
the intersection point with the boundary of Xy, (t), we trace the particle trajectory
backwards through its intersected elements, and solve for Z on each time interval
that the trajectory is residing in that element. More precisely, consider the final
element k. The trajectory Xy, (t) occupies this element for ¢ € (ty_1,tn), where
ty = T(up;xo) is the travel time. Restricting to this time interval, the adjoint variable
Z(t) solves the IVP

_%it) — [Vun(Xy, ()] Z(t) = 0.

For times t € (ty_1,tn), we have X, (t) € ky and within this element u; is a
polynomial function. This means that together with the given final-time condition

n

Z(tn) = T (X(tn)) 1

we can solve for Z within this time interval, via an exact method or using some
approximate time-stepping technique for ODEs. For example, if uy is a piecewise
linear function on the triangulation .7, (e.g. a lowest order RT or BDM function)
then we may solve for Z directly via matrix exponentials. Indeed, the gradient of such
a function will be piecewise constant on the same triangulation.

In such a case, denote by a = (a, ), b= (B, 8,) " and ¢ = (7,7,) " the real
coefficients such that on k; € Ty,

Up

_ |:O‘x + Bz + ’ny:|
e ay + Byr + vy |

Then, a = uy/,;,;(0,0), b =uy,

0 (L,0)—a, c=uy,

#;(0,1) — a, and the gradient of uy,
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restricted to k; is given by

Vu|s, = [b c} = [gz :Z] )

Denoting by T; = [Vuy,(Xu, (t))] " |«, the gradient transposed for each 4, we then have
(38) Z(t) = exp(TN(tN — t))Z(tN) Vt € (tN_l,tN].
By putting ¢ = ty_1 in (3.8), we can evaluate Z(t}_,). The jump condition in (3.2)

can be rearranged for the value of Z at this time before the particle trajectory Xy, (¢)
crosses into the element kp, forwards in time, which is given by

Z(ty_) - [un(tn-1)]ny
u,(X(ty_1)) -nn-1

(3-9) Z(t;f—ﬂ = Z(tﬁq) +

We see that all of the terms on the right—hand—side of the equality in (3.9) are known
(also, the orientation of the normal vector ny_1 to the element interface does not
matter since it appears both in the numerator and demoninator). On the next (or
previous, from the perspective of the particle trajectory) element, ky_1, we restrict
to the time interval (¢y_2,tny_1) and solve similarly. Now, using Z(ty_,) as the
final-time condition to obtain

Z(t) = exp(Tn—1(tn-1 —t)Z(ty_;) VtE (tn—2,tN-1).

One then follows this procedure for all time intervals up to and including (0,¢1). In
general, for a piecewise linear velocity field uy, we may hence write

(3.10) Z(t) = exp(Yi(t: — t))4(t;) Vte (ti—1,ti).

When uy, is, for example, piecewise polynomial with a higher degree, or some other
general function, then (3.10) does not apply since the matrices T; will not be constant.
Instead, one could employ a time—stepping technique within each time interval to solve
for the adjoint solution Z(t); time-stepping from Z(¢; ) until Z(¢;" ), using this to
generate the next starting position Z(t;_,), and so forth.

We note as well that the integral (3.7) can be reduced to a sum of integrals over
these time—intervals for which the trajectory intersects the support of the function v.
This is especially useful when v is, for example, a finite element basis function, which
has support on only a few elements of which either all or just one might intersect
the trajectory. Because of this, and the need to compute Z(t) in the fashion stated
above, the right-hand—side vector in (2.16) can easily be assembled by looping over
these intersected elements in the same backwards fashion as described here.

4. Numerical Examples. The purpose of this section is to utilise the lineari-
sation result stated in Theorem 3.1 within the context of goal-oriented adaptivity.
Here, Darcy’s equations (2.1)—(2.4) model the flow of groundwater as a saturated
porous medium; we are interested (cf. Sections 1.1, 2.3 and 3.2) in the accurate es-
timation of the discretisation error induced by numerically approximating the travel
time T (u;xg), for a given burial point x¢ € ). For simplicity we assume throughout
this section that d = 2.
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4.1. Approximation Spaces and Mesh Adaptivity. Adaptive mesh refine-
ment, and goal-oriented error estimation, will be performed for the accurate compu-
tation of the travel time functional (3.5) when the primal solution (u,p) € H to (2.8)
is approximated by the solution (up,pr) € Hy to (2.11). We wish to measure

(4.1) €y = T(u;x0) — T(un; x0) ~ Z Mk
KE Ty,

on each of the computational meshes employed, where the indicators are those defined
in Theorem 2.3. For mesh adaptivity we utilise a fixed—fraction marking strategy, with
a refinement selection of REF = 10%, together with the standard red—green, regular,
refinement strategy for triangular elements.

We begin by stating the definition of the approximation space Hy. Here, we
employ the Brezzi-Douglas—Marini elements for the approximation of the Darcy ve-
locity, and discontinuous piecewise polynomials for the approximation of the pressure
(cf. Section 2.2). To this end, we define the following spaces, where .7}, is the usual
shape-regular triangulation of the domain £ C R?:

BDMp(r) = [Py (r)]",
BDMy(Q, ) :={v € H(div,Q) : v|,, € BDM(r) V& € Tp}.

Then, the approximation space Hj, r, = Vi X Il i is defined via

Vh,k = {V S BDMk+1(Q, %) : (V . H)laQN = 0}7
g := {p € L*(Q) : 9| € Pr(r) Vu € F,}.

The stability of these pairs of spaces, in the inf-sup sense, is discussed, for example,
in [13] for any choice of k > 0.

REMARK 2. We note that one could alternatively consider the vector-valued space
consisting of Raviart-Thomas (RT) elements

RTy(k) := [Pr(K)]* + xPr(k) Vk >0,

which also guarantee H (div)—conformity. In practice, we have observed that the RT
approrimation gives rise to quantitatively similar results to those attained in our cho-
sen BDM setting. Indeed, due to the property that RTy (k) C BDMy41(k) C RTk41(k)
for all k > 0 the vector—valued space constructed with RTy (k) elements (vs. using
BDMy11(k) elements) will have fewer degrees of freedom on a fized triangulation of
the domain. Moreover, the difference in the quality of approximation is only really
seen in [L2(2))?; with the choice of BDMjy (k) elements, the error converges at
higher-order, as the mesh is refined, compared with their RTy (k) counterparts. The
rate of convergence of the error, when measured in the H(div,Y) norm, is identical
for both spaces.

Furthermore, when considering a lowest—order approzimation (setting k = 0)
streamlines of wvelocity fields utilising RTy(k) elements are piecewise straight lines
through the triangulation; the subsequent travel time computation in this case is an
easier task to implement when compared with the possibly curved paths traced by
BDM; (k) velocities. Here, a combination of matrix exponentials (to solve the stream-
line IVP) and a nonlinear algebraic solver were used to evaluate element exit—points
and the residence time of the streamline per element in the mesh.

This manuscript is for review purposes only.



665

666
667
668
669
670

18 PAUL HOUSTON, CONNOR J. ROURKE, AND KRISTOFFER G. VAN DER ZEE

1

08

06

04

02

F1G. 4.1. Ezample I: Approzimate particle trajectory on the final mesh.

0.2 04 0.6
X

TABLE 4.1

08 1

Ezxzample I: Results employing the BD M, finite element space.

Number of DOFs Error Est. Error 0y,
20 —8.274 x 103 | —8.476 x 10~3 | 0.976
72 1.358 x 103 1.360 x 103 0.998
272 —3.155 x 1075 | —2.818 x 10~5 | 1.120
1056 —1.894 x 10~° | —1.899 x 10~5 | 0.997
4160 —2.085 x 1076 | —2.084 x 10~6 | 1.001
16512 —9.310 x 107 | —9.308 x 10~7 | 1.000

In our examples we consider the primal and adjoint approximations (up,pn) €
Hj, ¢ and (zp, ry) € Hy, 1, where (zp, 7p,) solves the discrete linearised adjoint problem
(2.16) with functional (- ;x¢), approximating the solutions (z,r) € H to the problem
(2.13). We recall (cf. Section 2.3) the effectivity index

T(u;x0) — F(up; xo)
Zneﬁh Nk

Gh =

which measures how well the error estimate approximates the exact travel time error.

4.2. Example I: A Simple Test Case. This first example considers a very
simple problem for which we know the value of the exact travel time ¥(u;xp). The
travel time is approximated on a series of uniformly refined triangulations, in order
to validate the proposed error estimate (4.1). To this end, let Q = (0,1)?; we impose
appropriate boundary conditions, so that the exact Darcy velocity is given by u =
[sin(z) cos(y)] . The porosity is set to be ¢ = 1 everywhere so that the Darcy and
transport velocities coincide. Furthermore, the de—coupling of the IVP for the particle
trajectory X, (t) means that we can evaluate exactly the travel time for some choice
of xg € Q. Selecting xo = (0.1, 0.3) gives

tan(1) + sec(1)
tan(0.3) + sec(0.3)

T(u;x9) = log ( ) ~ 0.9216...,
cf. Figure 4.1 which depicts the particle trajectory.

The results featured in Table 4.1 show the exact travel time error, the error
estimate, and the resulting effectivity index on each of the uniform meshes employed
for this example. Indeed, here we observe that the effectivity indices are extremely
close to unity on each of the meshes, thereby demonstrating that the error estimate
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Fic. 4.2. Ezample I: Primal (top) and adjoint (bottom) pressure and velocity approzimations
on the final mesh.

accurately predicts the travel time error in this simple example, even on particularly
coarse meshes with less than 50 degrees of freedom.

The primal and adjoint pressure and velocity approximations on the final mesh
are depicted in Figure 4.2. In particular, the adjoint solution approximations are
highly discontinuous along, and near, the path P(uy;x¢). Indeed, close to xq is a
source-like feature, where the adjoint velocity travels backwards along the path to
the initial position. Close to P(uy;xo) we see that part of the adjoint velocity is
pointing in the same direction as the primal Darcy velocity. These adjoint solutions
vanish away from the path and may be interpretted as generalised Green’s functions;
in particular, the adjoint pressure looks to be bounded, while the adjoint velocity
resembles more a Dirac-type measure.

4.3. Example II: A Two—Layered Geometry. Similar to Example I, this
numerical experiment considers a simple geometry and problem set—up in order to
further validate the proposed error estimate (4.1) under uniform refinement. Here,
the domain €, pictured in Figure 4.3, is defined by Q = {(z,y) € R? : 0 < x <
1, 0 <y <1- 45} Along the line y = 1/2 the domain is partitioned into the two
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Fic. 4.3. Exzample II: Approzimate particle trajectory on the final mesh.

TABLE 4.2
Ezxample II: Results employing the BDM, finite element space.

Number of DOFs Error Est. Error 0y
198 1.188 x 103 1.719 x 103 0.691
764 4.773 x 10~4 4.534 x 10~4 1.053
3000 7.891 x 10~° 8.178 x 107° | 0.965
11888 1.255 x 102 1.294 x 10~% | 0.970
47328 4.261 x 10~6 4.460 x 10=% | 0.955
188864 —2.694 x 1077 | —2.694 x 10~7 | 1.000

sub—domains €2;, i = 1,2, representing different types of rock. That is, the top layer
consists solely of Calder Sandstone, while the bottom containes St. Bees Sandstone.
To each of the sub—domains we assign a fixed, constant, permeability and porosity
(cf. Example III), given by the dataset used in [24]. Furthermore, we assume that
the triangulation .7, is aligned with the interface between Q1 and 5. If this were not
the case, then additional sub—partitions of the elements intersected by the interface
would be required in order to allow for the use of standard quadrature and streamline
tracing techniques (on this sub—partition) which are employed in these examples.

This example can be considered to be a simpler version of Example III, in which
we apply the same boundary conditions. Along the top of the domain we impose
atmospheric pressure, and no—flow out of the rest of the boundary. The burial point
is chosen to be xo = (0.1, 0.1) and we set f = 0 in Darcy’s equations (2.1)—(2.4).
Unlike the previous example, the exact travel time T(u;x() is not known in this case;
instead, we use an approximation on the final mesh.

The results presented in Table 4.2 again show that the proposed error estimate
reliably predicts the size of the error, with effectivity indices close to unity on each
of the meshes employed. Although it looks as if the trajectory is exiting the domain
parallel to the boundary (cf. Figure 4.3), the performance of the error estimator does
not deteriorate in this setting.

The behaviour of the adjoint solution approximations, pictured in Figure 4.4, is
similar to that witnessed in the adjoint approximations in Example I. Here, the sink,
or source-like feature at xy appears to be more noticeable.

4.4. Example III: Inspired by the Sellafield Site. In this example, the
domain € is defined as being the union of six sub—domains €2;, ¢ = 1,2,...,6, each
representing a different type of rock. Each of these layers is assumed to have a given
fixed, constant, porosity ¢ and permeability k related to the hydraulic conductivity K
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Fi1c. 4.4. Ezample II: Primal (top) and adjoint (bottom) pressure and velocity approzimations
on the final mesh.

(cf. Sections 3.2 and 2.1, respectively) by K = rg/.k, where p, g, and p are the density
of water, acceleration due to gravity, and kinematic velocity of water, respectively; the
data for each of these is taken from [24]. As in Example II, we assume here that the
triangulation .7}, is aligned with each of the interfaces between all of the sub—domains.

We briefly mention that the domain €2 is merely inspired by the geological units
found at the Sellafield site and in no way is physically representative of it; there-
fore, we draw no conclusions of real-life consequence within this numerical example
in the context of the post—closure safety assessments of potential radioactive waste
burial sites. Furthermore, this experiment merely aims to reproduce similar results
previously obtained in [24] in order to verify the main linearisation result presented
in Theorem 3.1. More details concerning this problem, as well as a more complex
version of this test case, can be found in [24] where the permeability per layer was
considered variable, but still constant per element.

Here, we let Q) p be the top of the domain, representing the surface of the site,
and let 0Qy be the remainder of the boundary, as pictured in Figure 4.5. We make
the same assumptions as [24]: the rock below the stratum consisting of Borrowdale
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F1G. 4.5. Ezample III: The domain Q, inspired by Sellafield; see [24].

FiG. 4.6. Example III: Particle trajectory approzimation on the initial mesh.

TABLE 4.3
Ezxample III: Results employing the BDM; finite element space.

Number of DOFs Error Est. Error Eff. Index
22871 —8.905 x 102 | —5.970 x 10~° 1.492
32624 —5.455 x 1076 | —4.421 x 106 1.234
47053 4.065 x 10~ 4.382 x 10~ 0.928
69887 —2.140 x 10~7 | —2.206 x 107 0.970
1.0755 x 105 —4.216 x 1078 | —4.326 x 108 0.974
1.6796 x 10° —1.330 x 10~8 | —1.468 x 108 0.906
2.6631 x 10° —8.280 x 1079 | —8.280 x 10~? 1.000

Volcanic Group type is of much lower permeability than all of the other layers; there
is a flow divide on the left and right edges of the domain; the pressure at the top of
the domain is prescribed via gp = patm/pg + y; the source term f is set equal to zero.
The travel time path computed on the initial mesh is depicted in Figure 4.6.

REMARK 3. We note that for implementation purposes, and in the interest of re-
producibility, atmospheric pressure paim = 1.013 x 10°Pa and other quantities enter-
ing the problem, are non—dimensionalised using the mass, length and time chacteristic
scales given by mass = 1, length = 1073, time = 1/3155760000000. Furthermore,
the boundary condition is also translated to gp = parm/pg — (500 — 1000y )/1000.

In Table 4.3 we present the performance of the adaptive routine when approx-
imating the travel time functional. The exact travel time T(u;xg) is based on the
approximation computed on the final mesh and the computed error estimator; on this
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FiG. 4.8. Example III: Velocity approximation on the initial mesh.
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Fic. 4.10. Ezample I1I: Adjoint velocity approximation on the initial mesh.

741 basis the exact travel time is approximately 0.49, which when written in the appro-
742 priate units corresponds to around 0.49 x 10° years. We can see from these results
743 that the effectivity indices computed on all meshes are close to unity, indicating that
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F1c. 4.11. Ezample I1I: Initial and final adaptively refined meshes.

the approximate error estimate (4.1) leads to reliable error estimation, similar to the
previously undertaken work in [24]. We see that for this physically motivated example
we are able to estimate the error in the travel time functional very closely.

Figures 4.7 and 4.8 show the computed approximations (up,ps) € Hp o on the
initial mesh. Again, here we observe discontinuities in the Darcy velocity across the
rock layer interfaces, with the velocities differing by orders of magnitude within each
of the stratum. We also see a local stationary point in the pressure near the centre
of the domain which accounts for the change in direction of the groundwater flow;
indeed, in this region the flow moves upwards and thus could transport the buried
nuclear waste back up to the surface of the site.

Figures 4.9 and 4.10 plot the computed adjoint approximations (zp,rp) € Hp, 1.
As concurred by [24] we see a strong discontinuity along the direction of the trajectory
Xy, , and with both the adjoint velocity and pressure approximations vanishing away
from the path P(up;x0). Close to the initial release point xo we see what looks to be
a source—like feature in the adjoint velocity approximation, and again, in agreement
with [24], this velocity points in the same direction as the primal Darcy velocity
(approximation) outside of, but close to, the path, but in the opposite direction along
the path itself.

Finally, in Figure 4.11 we show the initial mesh and the final, adaptively refined,
mesh. As expected, we observe mesh refinement taking place around the initial point
Xq, at the exit point, and along the trajectory itself. There is more significant refine-
ment (compared with the rest of the path) where the trajectory changes direction;
in these regions there are sharp discontinuities in the Darcy velocity approximation,
which may lead to a large discretisation error of the primal Darcy problem. Such
large errors contribute greatly to the error induced in the travel time functional and
as such, is targetted more for refinement when compared with the regions contain-
ing long horizontal stretches of the trajectory; typically here, the velocity (especially
when confined to a single rock layer) appears to be quite smooth.

5. Conclusions. This work has been concerned with the numerical approxima-
tion of the travel time functional in porous media flows and the post—closure safety
assessment of radioactive waste storage facilities. An expression for the Gateaux
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derivative of the travel time functional has been derived, for both continuous and
piecewise—continuous velocity fields, which has been utilised via the dual-weighted—
residual-method for goal-oriented error estimation and mesh adaptivity. Numerical
experiments considering both simple and complicated problem set—ups have been
considered, validating the proposed error estimate which performed extremely well,
in terms of the computed effectivity indices being very close to unity on all meshes
employed. The contributions of this research have built upon those in [24] where
previously such an expression for the Gateaux derivative was unavailable.

Extensions of this work may, for example, involve considering more realistic con-
ditions in order to test the proposed error estimate. More demanding domains, such
as fractured porous media or domains with inclusions such as vugs or caves, is vital to
extend the results from these simple academic test cases to real-life applications. Fur-
thermore, a closer look into the regularity of the adjoint solutions would be extremely
beneficial in understanding how to improve the error estimate to derive a guaranteed
bound and to better understand the expected rates of convergence in the error of the
computed travel time functional. Indeed, the well-posedness of the adjoint problem
still remains an open question.
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