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Abstract: We review the tantalising prospect that the first evidence for the dark energy driving

the observed acceleration of the Universe on giga-parsec scales may be found through metre scale

laboratory based atom interferometry experiments. To do that, we first introduce the idea that scalar

fields could be responsible for dark energy and show that in order to be compatible with fifth force

constraints these fields must have a screening mechanism which hides their effects from us within the

solar system. Particular emphasis is placed on one such screening mechanism known as the chameleon

effect where the field’s mass becomes dependent on the environment. The way the field behaves in the

presence of a spherical source is determined and we then go on to show how in the presence of the kind

of high vacuum associated with atom interferometry experiments, and when the test particle is an

atom, it is possible to use the associated interference pattern to place constraints on the acceleration

due to the fifth force of the chameleon field - this has already been used to rule out large regions of

the chameleon parameter space and maybe one day will be able to detect the force due to the dark

energy field in the laboratory.
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1 Setting the scene

When we go outside on a clear evening and look up in the night sky, then as long as we are not in a

major metropolis, we are likely to see a Universe pretty much as Einstein saw it over a century ago

when he finally developed the beautiful theory of general relativity [1]. As far as he was concerned

the universe was static, ‘as required by the fact of the small velocities of the stars’ [2]. Galaxies or

the nearby ones we could see, didn’t appear to be doing anything with respect to us, they remained

in the same place in the night sky day after day after day. However, there was an unsettling aspect

to his newly established theory of gravity, basically it did not care for a static Universe. The simplest

solutions which could be thought of as describing the large scale properties of our Universe had it

either expanding or contracting, anything but staying where it was. It forced Einstein to consider a

radical new term in his equations, a term perfectly acceptable from a mathematical point of view but

completely ad hoc as far as physics was concerned. With this extra positive constant contribution to

the energy density of the universe Einstein was able to persuade the Universe to remain static, the

price paid being that space was curved leading to a finite Universe. This new ‘Cosmological Constant’

acted as ‘repulsive gravity’ balancing the attractive gravity induced by matter.

It is somewhat surprising that although Einstein demonstrated back in 1917 that this ‘Cosmological

Constant’ would do the trick, it seems that it took until 1930 before it was realised that such a static

unmoving Universe was unstable [3], a bit like an upright pencil stood on its sharp end is unstable.

Just as in that case any small push and the pencil falls to the floor, similarly Eddington showed

that any small deviation away from static and the universe would once again either start collapsing

or expanding. The need for this Cosmological term vanished as first Slipher [4] and then Hubble

[5] demonstrated that distant galaxies, were actually moving apart from each other with a velocity

proportional to their separation. The interpretation was immediately obvious, the space between the

galaxies was growing, a bit like the space between polka dots on a party balloon increases as it is blown
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up. Our Universe was not static, it was dynamical, it was expanding. The story goes that Einstein

later commented that the inclusion of this Cosmological Constant in his evolution equations was his

‘Biggest Blunder’ implying that if he had stuck with the original form of the equations he would have

predicted the Universe was expanding - quite an achievement ! Although he may well have thought

it, he should probably have been asking why the Cosmological Constant should be zero, given that it

had every right to be in the equations. No one was able to answer this question satisfactorily and yet

for decades to come when we considered applying his famous theory to cosmology we would simply

discard this term, setting it to zero and arguing there must be an underlying symmetry present that

would cause it to vanish.

This was the state of play until the mid 1980’s around 70 years after the theory first hit the news

stands. The Universe’s evolution was pretty straightforward to follow even if there remained a few

niggling details that required filling in. It began its existence with one of those niggling little details

that still remains today, emerging from an initial hot dense region known as the Hot Big Bang, it went

through a period during which its evolution was dominated by the radiation present in the Universe

succeeded by a period during which the evolution was dominated by the matter in the Universe. It

was constantly decelerating as might be expected of such a scenario because after all gravity is an

attractive force and has a tendency to pull the matter together and slow down the Universe’s rate of

expansion.

All seemed consistent, but in the mid 1980s contributions from a number of directions suggested

things may not be so simple. Steven Weinberg actually argued that in order for life as we know it

to exist we should expect to live in a Universe with a Cosmological Constant actually dominating

the energy density and suggested it should be of order 60% of it [6]. In the late 1980s a series of

observations looking at the angular correlation of galaxies on the sky showed that they were not

described at all well by a Universe dominated by matter, but rather were much better fit by one

which was dominated again by a cosmological constant type term [7]. Strangely enough this key result

went by with relatively little comment and it wasn’t until the late 1990s that things took a dramatic

turn with a series of observations of exploding Supernovas in distant galaxies that led to the three

key participants being awarded the 2011 Nobel Prize for Physics, and the necessity for some form

of cosmological constant driving the dynamics of the Universe today [8, 9]. Whereas Einstein used

the constant in conjunction with a positively curved Universe to make it static, if we abandon the

positive curvature condition and allow the Universe to be close to spatially flat today, the cosmological

constant will cause it to not only expand but accelerate with distant galaxies receding from each other

with ever increasing velocities. Subsequent observations of more supernova and other complementary

observations of clusters of galaxies, large scale structure and the small deviations in temperature

associated with the otherwise amazingly uniform radiation from the Big Bang have led to a consensus

model in which the Universe became dominated around five billion years ago by a source of energy

(dubbed dark energy) which at the very least looks like Einstein’s famous cosmological constant and is

causing the Universe to speed up as time goes on - for a comprehensive review of the current constraints

on the cosmological parameters see [10, 11].

This concordance or vanilla model has a spatially flat universe that is accelerating. It is made up

of baryons making up 5% of the energy density, dark matter (26%) and dark energy (69%). Some

13.8 billion years ago the Universe underwent a hot, dense, early phase of expansion yielding both

the light elements through nucleosynthesis and the cosmic microwave background (CMB) radiation

associated with the primordial photons of that era. Prior to that period it underwent an epoch of

accelerated expansion, known as inflation, and during that incredibly short period of expansion time

the primordial density perturbations were produced from quantum fluctuations of the scalar inflaton
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field. These in turn left an imprint on the CMB anisotropy and led to the formation of large-scale

structure by simple gravitational instability. This model has been very well tested and seems to fit

the data exceptionally well [11].

If we apply Occam’s razor, all we need to do is include in Einstein’s equations the one term which

is allowed but he regretted adding, and we have an explanation for the observed acceleration of the

Universe. However, although the inclusion of that term appears to work, it comes with a huge problem

- we live in a world of Quantum Mechanics where small things can have a big impact, and none bigger

than here. In fact the cosmological constant problem is the most severe fine tuning problem in physics

today. In the 1960’s the great Soviet Physicist Yakov Zel’dovich showed that the cosmological constant

was mathematically equivalent to the stress-energy of empty space, meaning that the vacuum could

not be dismissed as irrelevant [12]. Quantum field theory tells us how quantum mechanics impacts on

scalar fields and in particular it tells us that the vacuum state is not empty as we might naively expect,

but rather it is filled with virtual particles. The effects of the virtual particles have been measured in

their impact on matter fields for example in the shifts of atomic lines and in particle masses. However,

here is the problem, when we estimate the energy density associated with the quantum vacuum, these

estimates are at best 60 orders of magnitude too large - something that has become known as the

cosmological constant problem.

There is no convincing solution to the cosmological constant problem although many of us have

made attempts to achieve one. What is clear is that it will require us to go beyond the current

standard models of cosmology and particle physics with the solution being one that must interact

with both matter and gravitational fields. Modifying our physical theory will generally introduce

new scalar fields, and searching for these fields presents an important opportunity to learn about the

solution to the cosmological constant problem. These scalar fields may drive the acceleration of the

expansion of the universe directly, or they may be a subdominant component of our current universe.

This new scalar degree of freedom needs to very light, so that the Compton wavelength of the field

can be comparable to the size of the universe today, and will couple to matter fields. Any such field

that drives the current acceleration of the Universe is known as dark energy - for a review see [13].

It comes in different guises, it could be a new particle in its own right, or a component of a massive

graviton. It could arise from a string compactification or from another source entirely. It can also

arise because general relativity does not hold on cosmological scales and has to be replaced by a more

complete theory of gravity - for a review see [14]. Some of these modified gravity theories behave as

if they are in the class of chameleon models we will be discussing in this article in that they can lead

to density or curvature dependent effects as chameleon fields do. Whatever the source of the field,

the presence of light scalar degrees of freedom generally poses a problem. Their coupling to matter

means that they will mediate long range fifth forces that have not yet been detected on Earth or

in the solar system [15]. Now one way of alleviating this tension between theory and observation is

through the introduction of screening mechanisms, which allow the properties of the field, and the

force that it mediates, to vary depending on the environment at the cost of making the scalar field

theory non-linear.

There are a number of scalar theories admitting screening behaviour that have been constructed.

These include the Chameleon [16, 17], Dilaton [18] and the Symmetron [19–21] models where non-

linearities in the scalar potential or form of the coupling to matter result in the mass of the field, or the

strength of the coupling becoming environment dependent. This means that for suitable parameter

choices the worrisome scalar force is suppressed in regions of higher density including those used

in experimental searches for fifth forces, screening them from detection with current experiments.

However, despite being explicitly designed to evade the constraints of current fifth force searches, a
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benefit of these theories is that alternative scenarios can be devised to search for the existence of such

scalar fields in laboratory based experiments. The reason is that in a laboratory vacuum the extremely

low density ensures that sufficiently small objects are not screened from the scalar field and are thus

sensitive probes of dark energy. In this particular unscreened regime the force sourced by the dark

energy scalar could significantly exceed the gravitational interaction. Yet no deviation from general

relativity would be seen with larger sources or in less diffuse environments.

There have been a number of ways of probing the chameleon screening mechanism in the laboratory

proposed or implemented in recent years. These include neutron spectroscopy experiments conducted

at an energy scale of 10−14 eV, that constrain departures from Newtonian gravity over micron distances

and can be used to introduce new bounds on the parameter space of the chameleon model [22, 23].

There are also Casimir-like experiments under way to study the chameleon field over very short distance

scales [24, 25]. Part of the remaining parameter space has now been probed with ultra-cold atom

interferometry experiments and in the near future much of the remaining space will be covered by

experiments that should be able to detect even a chameleon field with Planck suppressed couplings

[26, 27]. In this article we will review the chameleon mechanism and attempts to search for it using

atom interferometry.

2 Screening mechanisms

Any scalar field φ which is a candidate for dark energy necessarily implies that we are introducing new

degrees of freedom into our system. Whatever it is it must satisfy two particularly severe constraints.

First, in order to be useful as a dark energy candidate it must have a mass no larger than the current

Hubble parameter, mφ ≤ H0 ∼ 10−30 meV, otherwise it would play no role in the low energy dynamics

of the Universe. The second constraint arises because φ has to couple to standard model particles,

it has no choice since the standard model fields themselves contribute to the energy density of the

vacuum with an amount at least O(TeV)4. Therefore any scalar fields that arise as part of a solution

to the cosmological constant problem must interact with both gravitational and Standard Model fields.

The consequence is that the φ field mediates an interaction or force between standard model fields,

the range of that force being ∼ m−1
φ . In other words this new force is mediated across the observable

universe ∼ H−1
0 .

Why have we not seen evidence of this extra fifth force? Such forces have been searched for in

particular in the solar system and the constraints on their magnitude are impressive, basically we see

no evidence for them [15]. On the other hand, tests on cosmological scales are far less restrictive. It

opens up the possibility that in order to account for dark energy, we might be seeing a fifth force

operating on cosmological scales, but that it is somehow being screened from us on solar system and

laboratory scales. There are three key screening mechanisms that have been proposed, and they rely on

the fact that locally (i.e. within the solar system for example), the density of matter is high compared

to cosmological scales, and it is this property that suppresses the deviations from general relativity.

It makes sense, the mean cosmological density is something like ∼ 10−29gcm−3 whereas the density

of the solar system is ∼ 10−22gcm−3 and planets are ∼ gcm−3. As we will see shortly, given that the

solar system is over a million times more dense than the cosmological background, it is possible to

develop mechanisms which will allow us to screen this fifth force in dense environments like the solar

system. What will be extraordinary though, and is the purpose of this article, is that within the solar

system it will be possible to set up situations where locally the force fails to be screened because we

can set up a scenario involving an extraordinary vacuum and a screening object that is just not dense
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enough to react to the force and suppress it. Such objects are atoms, and such situations are found in

the vacuum of atom interferometry experiments [26].

It is worth spending a little while explaining the nature of the screening mechanisms. A very nice

discussion of this can be found in Joyce et al [28] and we will follow their basic approach here. When

considering the dynamics of a physical system we usually consider the Lagrangian, which is effectively

the difference between the kinetic energy and potential energy of the system. For the case of a general

scalar field φ which is conformally coupled to matter then the Lagrangian can be written as

L = −1

2
Zµν(φ, ∂φ, ...)∂µφ∂νφ− V (φ) + g(φ)Tµµ (2.1)

where the indices µ, ν = 0, 1, 2, 3 refer to the four spacetime coordinates, Zµν is a way of encoding

derivative self-interactions of the field (often called non-canonical kinetic terms), V (φ) is the potential

associated with the field, g(φ) is the coupling strength of the field to matter and Tµµ is the trace of

the matter stress-energy tensor. If the source is non-relativistic, such as ordinary baryonic matter for

example, then the pressure vanishes and we have Tµµ = −ρ. To a first approximation we can consider

the sources as being point like with a constant density M, hence ρ =Mδ3(~x). If we then expand the

field about its background solution φ̄ as φ = φ̄ + ϕ, the equation of motion for the perturbation ϕ

follows from the Euler-Lagrange equations as

Z(φ̄)
(
ϕ̈− c2s(φ̄)∇2ϕ

)
+m2(φ̄)ϕ = g(φ̄)Mδ3(~x) (2.2)

where ϕ̈ ≡ ∂2ϕ
∂t2 , Z(φ̄) = Zµµ (φ̄), c2s(φ̄) = Zii(φ̄)/Z(φ̄) is an effective sound speed, m2(φ̄) ≡ d2V

dφ2 |φ̄ is

the mass of the fluctuating field. The background value φ̄ is considered as being set by the other

background quantities such as the local energy density ρ̄. If we assume it is homogeneous over the

scales of interest then we can write down a resulting static potential

V (r) = − g2(φ̄)

Z(φ̄)c2s(φ̄)

M
4πr

exp

(
− m(φ̄)r√

Z(φ̄)cs(φ̄)

)
(2.3)

When m(φ̄) = 0, and the force mediator is massless, the potential in Equation (2.3) has the 1/r form

familiar from Newtonian gravity. The force experienced by a test particle moving in this potential is

F (r) = −dV (r)

dr
(2.4)

and it follows from (2.3) that the corresponding force is attractive1. The problem we face with

light scalar fields mediating forces now becomes clear. Assuming the other parameters have natural

values O(1) then it follows that the perturbation ϕ mediates a gravitational strength long range force

Fϕ ∼ 1/r2, something which is not allowed by solar system tests of general relativity. Therefore if we

are to have a light scalar field present yet be compatible with fifth force tests, how can we do it? The

three known answers can be found in (2.3). The couplings g, Z, cs and m in (2.3) are all background

dependent quantities, relying on the value of φ̄. Given that φ̄ depends on the background energy

density ρ̄, we see that the required screening mechanisms arise from making the parameters depend

on the environment. The three ways they manifest themselves are through [28]:

• Weak Coupling - the coupling to matter g depends on the environment, so that in high density

regions, such as the solar system where we perform local tests of gravity, the coupling is very

1We have assumed here that Z(φ̄) is positive. If this assumption is not made then the whole theory becomes unstable.
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small leading to a fifth force which is so weak it satisfies the constraints. This is simply because

from (2.4) the force F ∝ g2. In contrast in regions of low density such as on cosmological scales,

g ∼ O(1) resulting in a fifth force of gravitational strength and leading to the acceleration we

observe on those scales. Examples of this include the symmetron or varying-dilaton theories.

• Large inertia - In this case the kinetic function Z(φ̄) depends on the environment so that its sec-

ond derivative becomes large below a given length scale. This is known as Vainshtein screening.

• Large mass - From the exponential dependence in (2.3) it is clear that another possibility is to

allow the mass of fluctuations m(φ̄) to depend on the background matter density. The effect

then is that in regions of high density such as the solar system, the field acquires a large mass,

making its effects short range and so unobservable. However on cosmological scales where the

ambient density is very low, the scalar becomes light and can once again mediate a fifth force

of gravitational strength. This type of screening is of the chameleon type and testing for its

presence in nature is the main focus of this article.

3 The chameleon mechanism

It is time to explain what the chameleon field is and how it changes depending on the local environment

it experiences in order to camouflage itself and evade detection (hence chameleon of course!) [16, 29].

The source which determines the local density will be considered as being static and spherical for

simplicity although allowing it to be of varying shapes can be a very useful additional degree of

freedom [30]. The chameleon is a scalar field, φ, whose behaviour is determined by the following

action:

S =

∫
d4x
√
−g
[

1

16πG
R− 1

2
∇µφ∇µφ− V (φ)

]
+

∫
d4x L(m)(ψ(m),Ω

−2(φ)gµν) , (3.1)

where gµν is the space-time metric, g is the determinant of the metric and R the associated Ricci

curvature. V (φ) is the chameleon potential and S(m) =
∫
d4x L(m)(ψ(m),Ω

−2(φ)gµν) is the matter

action. Matter fields, ψ(m) move on geodesics of the conformally rescaled metric g̃µν = Ω−2(φ)gµν and

the function Ω(φ) determines the coupling between the scalar and matter fields. A typical coupling is

of the form Ω(φ) = e−φ/2M where M is a constant energy scale governing the strength of the coupling.

For the situations considered in this article it is sufficient to approximate matter distributions as

perfect fluids with density ρ and pressure p. Also, for the cases of interest to us the value of the field

will be such that φ/M � 1. Given that we can then Taylor expand the coupling function Ω around

φ = 0 and only keep the first term in the series that is relevant in the equation of motion leading to

Equation (3.3), which can be interpreted as the chameleon moving in a density-dependent potential:

Veff(φ) = V (φ) +

(
1 +

φ

M

)
ρ . (3.2)

The scale M is constrained, by precision measurements of atomic structure and searches for fifth forces

[31–33], to lie in the range 1010 TeV ≤ M ≤ MP ∼ 1015 TeV. For a static, spherically symmetric

configuration sourced by non-relativistic matter the equation of motion for φ is:

1

r2

d

dr

[
r2 dφ(r)

dr

]
=

d

dφ
Veff(φ) =

d

dφ
V (φ) +

ρ

M
, (3.3)
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(a) Low density.

Φ

VHΦL

(b) High density.

Figure 1: Sketch of the chameleon effective potential. The blue line in-

dicates the bare potential, the red line the contribution from the coupling

to matter, and the black dashed line the sum of the two contributions.

For simplicity we specialise to a common choice of the bare chameleon potential, V (φ) = Λ5/φ, where

Λ is a constant energy scale. Note as mentioned earlier, the non-linear nature of the potential. The

minimum of the corresponding effective potential, and the mass of fluctuations around this minimum

follow:

φmin(ρ) =

(
Λ5M

ρ

)1/2

, (3.4)

mmin(ρ) ≡

√
d2Veff

dφ2

∣∣∣∣
φmin

=
√

2

(
ρ3

Λ5M3

)1/4

. (3.5)

Some key density dependent properties of the chameleon field follow from Equations (3.4) and (3.5).

For large densities ρ, we see that the field tries to reach as small a value as possible with a corresponding

large mass, whereas for low densities the field value increases and the mass of the field decreases

accordingly, as we expect for a screening mechanism. This behaviour can be seen in Figure 1.

Given the fact that the sources for the chameleon field we will be studying are spherically sym-

metric and of constant density, in the chameleon equation of motion the source term is

ρ(r) = ρAΘ(RA − r) + ρbgΘ(r −RA) , (3.6)

where ρA and RA are respectively the density and radius of the source (which therefore has mass

MA = (4/3)πρAR
3
A). In addition, Θ(x) is the Heaviside step function, and ρbg is the density of the

background environment surrounding the ball, which to a first approximation can be assumed to be

constant density and extends to infinity.

It is possible to solve the equation of motion for the chameleon in a piecewise manner, by making

approximations to the chameleon effective potential. The reader not too concerned with the technical

details may wish to skip the remainder of this section, but it is enlightening to see how the field

reacts to the source. Far away from the source, for example on cosmological scales, the scalar field

will be close to its background value φbg which recall is given by Equation (3.4) with ρ = ρbg. The

contribution of the effective potential to the equation of motion is then well approximated by the mass
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term arising from a harmonic expansion of the potential Veff(φ) = Veff(φbg) +
m2

bg

2 [φ− φbg]2 + ...

1

r2

∂

∂r

(
r2 ∂φ

∂r

)
= m2

bg(ρbg)[φ− φbg] , (3.7)

where m2
bg = d2Veff/dφ

2|φbg
. Solutions to the equation of motion are:

φ = φbg +
α

r
e−mbgr +

β

r
embgr , (3.8)

and the field profile must decay at infinity, implying β = 0.

Inside the source ball, the high density ρA has the effect of moving the minimum of the effective

potential to a lower field value φA ≡ φmin(ρA) < φbg. We now have two possible types of solution in

this region. In the first case, the field φ decreases inside the ball, but remains everywhere greater than

φA, a regime we call weakly perturbing. The solutions for φ and dφ/dr must match at r = RA, and

it turns out that the consistent solution which does just that in this weakly perturbing regime is

φ = φbg −
1

8πRA

MA

M

{
3− r2

R2
A
, r < RA ,

2RA

r e
−mbgr , r > RA .

(3.9)

Both of these expressions have been simplified by taking mbgRA � 1. For the experiments we are

considering here, RA ∼ 1 cm and ρbg corresponds to a good vacuum, making this approximation valid

over almost all the relevant values of the parameters Λ and M . The weak perturbation is valid in the

domain:
1

4πRA

MA

M
� φbg . (3.10)

The second type of solution, is called strongly perturbing, and it corresponds to the case where

the field inside the ball actually reaches φA. If it happens it will be near the centre, let us say within

a radius S. Once again making sure the values of φ and dφ/dr match both at r = S and r = RA it

can be shown that the unique solution is [26]

φ =


φA , r < S ,

φA + 1
8πRA

MA

M
r3−3S2r+2S3

rR2
A

, S < r < RA ,

φbg − 1
4πRA

MA

M

(
1−

(
S
RA

)3
)
RA

r e
−mbgr , RA < r ,

(3.11)

where

S = RA

√
1− 8π

3

M

MA
RAφbg . (3.12)

Once again we have had to make approximations, two in this case: The first is mbgRA � 1, the same

approximation that we made in the case of the weakly perturbing ball. The second is φbg � φA, which

is well justified here because we are considering a ball of solid material surrounded by a vacuum. The

scalar field has the strongly perturbed profile provided 0 ≤ S ≤ RA, which is equivalent to

3

8πRA

MA

M
≥ φbg . (3.13)

Khoury and Weltman[29] called this the thin-shell regime because the value of the scalar field drops

from φbg to φA over a thin region near the surface of the ball.
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Back to the physics. It proves convenient to write the scalar field outside the ball in a universal

form for both weakly and strongly perturbing objects:

φ = φbg − λA
1

4πRA

MA

M

RA
r
e−mbgr (3.14)

where

λA =

{
1 , ρAR

2
A < 3Mφbg ,

1− S3

R3
A
≈ 3Mφbg

ρAR2
A
, ρAR

2
A > 3Mφbg .

(3.15)

The parameter λA determines how responsive the chameleon field is to the object. The effect of the

chameleon field is that it pulls a point test particle towards the spherical test mass with acceleration

aφ =
1

M
∂rφ . (3.16)

This may be compared with the usual (Newtonian) gravitational acceleration, aN = GMA/r
2. At the

distances of interest here, mbgr � 1, the ratio is

aφ
aN

=
∂rφ

M

r2

GMA
= 2λA

(
MP

M

)2

, (3.17)

MP is the reduced Planck mass: M2
P = 1/(8πG). Since

(
MP

M

)2
is somewhere in the range 1 − 1028,

there is every possibility that the chameleon force on a test mass can greatly exceed the Newtonian

force, except in cases when λA is exceedingly small. For most test objects of interest to us, it is indeed

the case that λA � 1, but as we will see for the case of atoms we can find ourselves in a regime where

it is not small and hence can lead to an appreciable effect as the chameleon force fails to be screened

from us.

For two source masses, A and B, the total gravitational and chameleon force between the spherical

sources is

Fr =
GMAMB

r2

[
1 + 2λAλB

(
MP

M

)2
]

(3.18)

where the subscripts A and B label the two objects and the r subscript on Fr indicates that this is

the force along the line connecting the centres of the two spheres. MA,B are the masses of the two

spheres and the λi are defined in Equation (3.15). For planets, stars and laboratory test masses we

find that the corresponding λi is much smaller than one, and so the chameleon contribution to the

total force between the two spheres is suppressed. However in a laboratory vacuum atoms can have

λatom of order one. This gives any measurement of forces that is performed with atoms, rather than

larger test masses, an advantage because there is no suppression due to the λ factor.

4 Atom interferometry

Interferometry is a common technique in physics. A wave is split into two parts and then recombined

to give an interference pattern in order to learn about the properties of the waves or the paths that

they have travelled on. The Michelson interferometer, shown in Figure 2 interferes light rays that

travel along two separate paths. If there are no physical differences between the paths the light will

return in phase, however if there are differences - for example if one of the arms is longer than the other

- then the light rays will be out of phase when they are recombined, by an amount that depends on
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Figure 2: Michelson interferometer.

the difference between the two paths. The Michelson interferometer was famously used by Michelson

and Morley to prove that light does not propagate through an ether [34].

Atom interferometry relies on the same principles as a Michelson interferometer, a wave is split into

two parts that travel along different paths, and are then recombined. The difference is that the wave is

made of atoms and not light. It is therefore an intrinsically quantum mechanical experiment, relying

on the concept of wave-particle duality. Any forces that act on the atoms while they are propagating

along the arms of the interferometer will modify the properties of the wave and result in an interference

pattern. Atom interferometry experiments with the ability to detect gravitational strength forces were

first performed by Peters, Chung and Chu at Stanford University [35]. They were able to measure

the local acceleration due to gravity with an accuracy of ∆g/g = 2 × 10−8 using Caesium atoms.

In what follows we describe the theory underlying an atom-interferometry experiment, and we refer

those readers interested in the practical details of performing such an experiment to [35]. It was

later realised that atom-interferometry could be used not just to measure the Newtonian gravitational

force, but with sufficiently precise measurements it could search for fifth forces coming from beyond

standard model physics [36] and it could also be used to test general relativity [37]. The ability of atom

interferometry to constrain beyond the standard model physics is normally due to the unprecedented

precision achievable with this technique. In contrast, here we present an experimental approach to

testing theories of dark energy which relies on unprecedented sensitivity because atoms are so much

smaller than other objects previously used to search for new forces.

A rough sketch of the experiment is shown in Figure 3. A cloud of atoms is launched in a fountain

in the vicinity of a macroscopic spherical mass which is the source of the chameleon force acting on

the atoms. The Figure indicates typical distance scales for such an experiment.

4.1 Manipulating atoms

Let us start by describing how atoms are moved around inside an experiment. We assume that the

atoms we are working with are very cold, so that we can neglect their thermal motion, and consider

that we start out with a single stationary atom. This atom has two energy levels, E1 and E2, and

the atom is initially at rest in the ground state E1. We now shine a laser beam at the atom and the

frequency of the laser is tuned so that the energy of each photon is exactly E2 − E1. If the atom

absorbs the photon it is excited into state 2. In order to conserve momentum, the atom must also

have picked up the momentum that was originally carried by the incoming photon. The excited atom
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Figure 3: Outline of the proposed experimental set up. The atoms move freely within the red region

at the centre of the Figure. The source mass, indicated by the blue circle, is then moved from its

initial position on one side of the cloud of atoms, to its mirror image, indicated by the shaded blue

circle and the experiment is repeated. The black dashed line indicates the direction of propagation of

the laser beams.

1

Photon Momentum = k
 Atom in ground state

2

 Atom in excited state
with velocity = V

Figure 4: An atom inherits momentum from an absorbed photon.

will therefore have a velocity V = k/M where k is the momentum of the incoming photon and M the

mass of the atom. This is shown in Figure 4.

If the system is not observed at this point, we do not know whether it has absorbed the photon or

not, therefore it is in a superposition of two states; the first where the atom is still stationary and in

its ground state, and the second where the atom has been excited and is moving with velocity V . An

atom interferometry experiment repeats this process three times to put an atom into a superposition

of states that travel on two different paths shown in Figure 5. In between the numbered points the

atoms fall freely, and at the numbered points there is a possibility that the atoms interact with a laser

beam, which changes the velocity of the atom. As we have seen the atom is given momentum when it

absorbs a photon, and gets excited from its ground state. The same process happens in reverse when

the atom loses energy by a process of stimulated emission. The presence of the laser beams encourages

an excited atom to emit a photon in the direction of the laser beams and to decay back down into its

ground state. Again conservation of momentum means that as the atom decays into the ground state

it transfers some of its momentum to the photon, and so the atom’s velocity decreases accordingly.

4.2 Probability in quantum mechanics

Atom interferometry relies on the interference between the wave description of the atom travelling

along two possible paths. In the Michelson interferometer in Figure 2 the light beam is split into two

parts that travel along the two arms of the interferometer. In an atom interferometer, the principle of

quantum superposition allows one atom to explore both possible paths simultaneously. We will now

show that the amount of quantum interference between these two possible paths is sensitive to the
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Figure 5: Sketch of an atom interferometer. Interactions between counter-propagating laser beams

(grey lines) and atoms (black lines) can be used to give momentum to atoms and put them into a

superposition of states which travel along the two arms of the interferometer. A sequence of three

pulses, separated by time T , is needed to split and recombine the atomic wave-function. k1 and k2

are the wave-numbers of the laser beams. A chameleon field gradient in the x direction curves the

trajectories of the atoms, and this determines the probability of observing the atom to be in a given

state at the output of the interferometer.

forces acting on the atoms. To do this we first review how the probabilities of events are combined in

quantum mechanics.

The interpretation of quantum mechanics as a theory in which particles explore all possible paths

between two points of observation is due to Feynman [38] and based on earlier ideas of Dirac [39]. If

a particle is observed to be at point A, the probability of finding it after some time t at point B is

found by considering all possible paths that the particle could have explored between A and B. This

probability is P (B,A) = |K(B,A)|2 where K(B,A) is called the kernel

K(B,A) =
∑

paths

θ[x(t)] (4.1)

where θ[x(t)] can be thought of as the amplitude for the given path x(t). The sum is performed over

all paths x(t) which join the points A and B. The contribution of each path has a phase proportional

to the classical action S

θ[x(t)] = Ce(i/~)S[x(t)] (4.2)

where the pre-factor C is just a normalisation constant. This is known as the path integral formalism

of quantum mechanics; readers interested in the details of this formalism, and how it connects to the

Schrödinger description of quantum mechanics are referred to the excellent book by Feynman and

Hibbs [38].

To see how this differs from the notion of probability in classical mechanics we consider a useful

example. If there are only two possible routes that can be taken between point A and point B, then

we can write the probability that the particle travels on path 1 as P1 = |θ1|2, and the probability that

the particle travels on path 2 as P2 = |θ2|2. But the probability that the particle arrives at point B
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after travelling on either path 1 or path 2 is

P12 = |θ1 + θ2|2. (4.3)

If we write θ1 = r1e
iϕ1 and θ2 = r2e

iϕ2 , so that P1 = r2
1 and P2 = r2

2 then we find

P12 = |r1e
iϕ1 + r2e

iϕ2 |2 (4.4)

= P1 + P2 + 2r1r2 cos(ϕ1 − ϕ2) (4.5)

So if the phase accumulated along the two paths differs by an amount that is not an odd integer

multiple of π/2, then we will find that in quantum mechanics probabilities do not add in the familiar

way P12 6= P1 +P2. This is why we say that the two possible paths interfere with one another. A very

similar expression appears in the double slit experiment that is used to show that particles also have

a wave like nature. The probability of finding the particle at a given point behind the slits is also a

cosine of the difference in the phase of the wavefunctions accumulated along the two paths from the

source, one path passing through each slit.

4.3 The phase difference from the action

At the output of the interferometer in Figure 5 we want to determine the probability that the atom

is observed to be in its excited state. To do this we need to determine how the probabilities that

the atom travels on either of the arms of the interferometer interfere with one another. We make a

number of simplifying assumptions: We will assume that the distance travelled by the atoms is small

compared to the size of the source so that we can approximate the effects of the chameleon fifth force

as a constant acceleration experienced by the atoms. We write the constant acceleration as a, and

choose our coordinates so that the acceleration towards the source mass due to the chameleon, if it

is present, is in the x direction, and this is also the direction of propagation of the laser beams. The

acceleration due to the Earth’s gravity is g and acts in the z direction. With these assumptions the

motion of the atoms is governed by the Lagrangian

L =
m

2
ẋ2 +

m

2
ż2 −max−mgz (4.6)

A particle starts at t = 0 and x = z = 0 with initial velocity in the z direction ż = U , it can then move

on two possible paths, the x component of which is shown in Figure 5. The equation describing these

paths can be easily determined using the familiar formulae for motion in the presence of a constant

acceleration.

• Path 1: At t = 0 the particle receives an impulse that changes its velocity in the x direction

by an amount +V . It then moves freely until time T when is receives a second impulse that

changes its velocity in the x direction by an amount −V . It then moves freely until time 2T at

which point the measurement takes place. When 0 < t < T

x = −1

2
at2 + V t (4.7)

z = −1

2
gt2 + Ut (4.8)

When T < t < 2T

x = −1

2
at2 + V T (4.9)

z = −1

2
gt2 + Ut (4.10)
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Therefore the total action accumulated travelling along path 1 is

S =
8

3
mT 3(g2 + a2)− 2mT 2(2gU + aV ) +

mT

2
(2U2 + V 2) (4.11)

• Path 2: The particle moves freely until time T when it receives an impulse that changes its

velocity in the x direction by an amount +V . It then moves freely again until time 2T when

it receives an impulse that changes its velocity in the x direction by an amount −V , and the

system is measured. When 0 < t < T

x = −1

2
at2 (4.12)

z = −1

2
gt2 + Ut (4.13)

When T < t < 2T

x = −1

2
at2 + V t− V T (4.14)

z = −1

2
gt2 + Ut (4.15)

Therefore the total action accumulated travelling along path 2 is

S =
8

3
mT 3(g2 + a2)− 2mT 2(2gU + aV ) +

mT

2
(2U2 + V 2) (4.16)

We see that the action is the same along both paths. We recall that the probability of detecting

the atoms at point 4, depends on the difference of the phases of the probability amplitude accumulated

along these two paths. These phases are proportional to the action integrated along each path. But

as we have found that the action is the same along both paths, these contributions cancel one another

out.2

4.4 Phases from interacting with photons

There is also a contribution to the phase of the atomic wave function due to the interaction with

the laser beams. The wave function describing the system consisting of an atom interacting with a

photon must always be continuous. A propagating photon is described by a wave equation, and so

the phase of its wave function is proportional to (i/~)(ωt−~k ·~x), where ω is the energy of the photon,
~k is its momentum, with ~x and t describing a point in space and time. The electromagnetic vacuum,

on the other hand, contains no propagating waves and so is described by a wave function which is

constant and independent of time and space. Therefore, to ensure continuity of the wavefunction of

the combined system, when it absorbs a photon the wave function of an atom must change by a phase

equal to that lost by the radiation field (i/~)(ωT − ~k · ~X), where ~X and T now describe the point in

space and time at which this interaction took place.

The wavefunction describing the atom at the time of measurement is a linear superposition of

the two wavefunctions describing the evolution of the atom along the two paths of the interferometer.

This contains a piece which is the sum of the two sets of phases accumulated by the atom through its

2 This happens because we have assumed that the particles are moving in a constant gravitational potential. If we

relaxed this assumption then a difference in action between the two paths would be seen.
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interactions with the laser beams. As the photon momentum is chosen to be only in the x direction,

the phase is independent of the motion of the atoms in the z direction.

ψ(x4, t4) ∝ e(i/~)[ω(t4−t3+t1)−k(x4−x3+x1)] + e(i/~)[ωt2−kx2] (4.17)

where the first term is the contribution from path 1 and the second term from path 2. Therefore the

probability of measuring the atom in its excited state at point 4, has a term proportional to

P ∝ 2 cos
1

~
[ω(t4 − t3 + t1)− k(x4 − x3 + x1)− ωt2 + kx2] (4.18)

We have chosen our coordinates such that t1 = 0, t2 = t3 = T and t4 = 2T , the corresponding

expressions for the spatial positions of the interaction points can be determined from equations (4.17)-

(4.18), which results in

P ∝ 2 cos

[
aT 2k

~

]
(4.19)

We have shown that the probability that the atom is observed in its excited state at point 4

is a function of the local acceleration a. This is why atom interferometry works as a technique for

measuring small accelerations. In practice the experiment is performed, not with single atoms, but

with a large cloud of atoms. Therefore a large number of measurements can be accumulated rapidly,

and P can be determined to a high degree of precision.

5 Atom interferometry searches for the chameleon

Atom interferometry can be used to measure any small acceleration that occurs in the direction

of propagation of the laser beams. The technique of atom interferometry does not care about the

origin of the accelerating force, it could be due to gravity or to a novel fifth force. Indeed one

practical application of atom interferometry that is under development is in the guidance systems of

submarines. If the interferometry apparatus can be made sufficiently small, then it could be placed

aboard the submarine, and the acceleration of the submarine could be tracked, and after integrating

twice the position of the submarine could be determined with out any need for the submarine to signal

to the outside world [40].

In order to use atom interferometry for less militaristic purposes, we need to think carefully about

how to design an experiment in order to make it suitable for searching for chameleon fields. When

trying to measure gravity with an interferometry experiment, we have a very large source close to hand;

the Earth. The earth’s gravitational field easily penetrates into the interior of a vacuum chamber and

can be detected using atom interferometry as we have described above. However a chameleon field

due to the Earth would not penetrate into the vacuum chamber in the same way, precisely because of

its chameleonic nature - recall equation (3.5).

The Compton wavelength of an interaction is proportional to 1/mbg, where mbg is the mass of the

particle transmitting the force. It determines the maximum distance over which an interaction can

propagate (more precisely, the effects of the force are exponentially suppressed on distance scales larger

than the Compton wavelength). This is why electromagnetic interactions, transmitted by the massless

photon, can propagate over arbitrarily large distances, whilst the weak force, transmitted by the heavy

W and Z bosons, is confined to short distance scales. As we showed in equation (3.5) the chameleon

becomes massive in a dense environment, and this means that chameleon particles cannot transmit a

force very far through a dense environment. As we have seen this is the source of chameleon screening,
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but it also means that chameleon forces from outside the vacuum chamber cannot be transmitted into

the interior, assuming the walls of the vacuum chamber are at least ∼ 1 mm thick.

As a result, inside the vacuum chamber the only forces acting on the atom are the gravitational

field due to the Earth, and the gravitational and chameleon attractions to the source object. However

the experiment is only sensitive to the component of the forces parallel to the direction of propagation

of the laser beams. Therefore if we orientate our experiment as shown in Figure 3, so that the atoms

are held adjacent to the source mass, and the laser beams propagate perpendicular to the direction of

the gravitational field due to the Earth, then the outcome of the interferometry experiment will only

be affected by the source mass and the gravitational field due to the Earth plays no role.

In [26], with E. A. Hinds we proposed that an appropriate experiment to search for chameleon

forces could be performed using Raman interferometry (where two photons are used to excite the

atom with a frequency difference tuned to match the difference in energy levels) and Rubidium atoms.

We suggested that accelerations down to 10−6g could be detected with a preliminary experiment,

and that with attention to systematics precision of 10−9g could be achieved with current technology.

Remarkably, within a few months of our proposal, in [27] such an experiment was performed. Using

a caesium matter-wave interferometer they did indeed achieve a sensitivity of 10−6g. The constraints

this places on the chameleon are shown in Figure 6, along with the forecasted exclusion for a future

upgraded version of this experiment.

6 Future prospects

We would like to be able to perform an experiment, or series of experiments, which would cover

the whole of the chameleon parameter space. This would allow us to either definitively detect or

exclude dark energy models that screen through the chameleon mechanism. One way to improve

the sensitivity of the experiment could be by making a clever choice of the shape of the source mass

used in the experiment. Unlike the gravitational force, which largely doesn’t care about the shape

of a source only its mass, the strength of the chameleon force depends on the shape chosen for the

source object. This is because of the non-linearities mentioned earlier that are an intrinsic part of the

theory. Unfortunately these non-linearities make the behaviour of the chameleon field very difficult

to calculate, for anything other than the spherical sources discussed above. Recently, however, it has

been shown [30] that when a spherical source of the chameleon field is a strongly perturbing object, by

deforming this source from a sphere to an ellipse we can increase the strength of the chameleon force

by up to 40%. Investigation of other possible source shapes is currently underway. If it is possible

to mill, or perhaps 3D print, a source mass of the optimum shape to source the chameleon field it

may finally be possible to complete the search for the chameleon, and possibly detect the dark energy

particle in the laboratory.
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