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ABSTRACT 

There are vast possibilities in fibre architecture design of 3D woven reinforcement. This paper 

considers the application of Genetic Algorithm (GA) in 3D woven composites optimisation. A set of 

real and integral variables, representing 3D fibre architecture, are formulated into a mixed integer 

Genetic Algorithm. The objective function is evaluated through automation of the unit cell based finite 

element analysis, by using the open source pre-processor TexGen and the commercial solver ABAQUS. 

The mixed integer Genetic Algorithm is adapted to a micro-population, aiming to improve 

computational efficiency. The study uses statistical tests to quantify the performance of the Genetic 

Algorithm schemes and the choice of parameters. The proposed approach was applied to the 

optimisation of 3D woven composites for maximum buckling resistance for the case of a landing gear 

brace. This study demonstrated that the optimisation converged to the optimum design within 20 

iterations, considering 300 out of 7000 permissible solutions. In terms of buckling performance, the 

optimum design performed twice as well as cross-ply laminated composites and at least 50% better than 

known orthogonal 3D woven composites.  

 

1 INTRODUCTION 

3D woven composites have been shown to outperform laminate composites in delamination 

resistance, which is a critical improvement for structural applications. In addition, 3D weaving enables 

the production of more complex net-shape composite preforms. Successful applications of 3D woven 

composites have begun to emerge in the aerospace sector. The 3D woven composite LEAP engine fan 

blade and casing are due to enter service on the Airbus A320neo in 2016, and the Boeing 737MAX in 

2017. Other examples include the LiftFan for the F35 Aircraft (Rolls-Royce) and the landing gear brace 

for the Boeing 787 (Messier-Dowty). 3D woven composites are also entering into the automotive sector. 

A recent example is the front crash box for the Lexus LFA supercar by Toyota.  
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To date, engineers and researchers have used a limited number of 3D woven fibre architectures – 

broadly being weave variants of orthogonal, angle-interlock and layer-to-layer. However, fibre 

architecture in 3D weaving appears to have infinite design options. Further progress in 3D woven 

composites will require full exploitation of such design freedom. It will be a key step change to tailor 

the 3D fibre architecture to the optimum, with an aim to maximize the weight saving for a specific 

application. This study presents a numerical approach to optimize 3D woven composites, incorporating 

the techniques of meso-scale unit cell FE analysis and Genetic Algorithms.  

A number of previous studies focused on the optimisation problems in laminate composites design. 

Ghiasi and co-authors provided an extensive review of optimization methods for two types of laminate 

composites design problems, namely constant stiffness design and variable stiffness design [1, 2]. 

Constant stiffness design considers laminate composites as uniform material, which can be represented 

by one unit cell. Variable stiffness design considers property variations in laminate composites structure, 

which would require multiple representative unit cells. The present study on optimizing 3D woven 

composites falls into the category of constant stiffness design, as a single unit cell is sufficient to 

represent the bulk composite. Whilst laminate composites design benefits from the availability of well-

established close-form analytical solutions, no similar analytical tool is available for 3D woven 

composites. Hence, the gradient based optimization methods, being applied in laminate design, are not 

feasible in the design of 3D woven composites. Amongst the direct search methods, Genetic Algorithms 

are one of the most accessible and popular methods, because they are simple and flexible to implement. 

A recent review on laminate composites design highlighted that Genetic Algorithms suffered problems 

with computational cost, premature convergence, and dependency on the choice of parameters such as 

population size [1]. An early study of GA application in 3D woven fabrics was reported in 1995 by 

Okumura et. al [3]. The 3D woven composites were represented by an assembly of 8 pre-defined sub-

cells. Each sub-cell contained one straight yarn in a varied orientation. The design optimization became 

a combinational problem of sub-cell selections. With a limited number of predefined sub-cells, the three 

designs resulted from the optimisation did not resemble 3D woven fibre architecture, but were closer to 

unidirectional laminate and discontinuous long fibre composites. With advancing modelling tools, Bakar 

and co-workers used more realistic unit cell models generated with TexGen for optimizing 2D woven 

composites [4]. The reported optimum design was realistic and manufacturable. Yet the study had its 

limitation in formulation of weave pattern search, which was based on a number of known weave styles. 

This meant that the design space was not fully explored. The performance of the used Genetic Algorithm 

was not discussed in this work. 

In short, there is very limited knowledge on the formulation and performance of Genetic Algorithms 

for the constant stiffness design of 3D woven composites.  The present study aims to implement a 

versatile formulation for optimising 3D woven composites. The novel aspects of the proposed 

formulation are the adaptation of a mixed integer Genetic Algorithm [5] with a micro-population [6], 

and the parameterization of the unit cell modelling of 3D woven composites [7]. The approach is applied 

to the optimization of the buckling resistance of an aircraft land gear brace. The study uses statistical 

tests [8] to quantify the performance of the different Genetic Algorithm schemes and the choice of 

parameters. The study clearly demonstrates the suitable GA scheme and its parameters that would be 

computationally efficient in the constant stiffness design of 3D woven composites. 

 

2  OPTIMISATION FRAMEWORK 

2.1 Design space – unit cell 

A unit cell of 3D woven composites contains a single repeatable weave pattern. By applying 

appropriate periodic boundary conditions [9], the unit cell model can be used to predict the global elastic 

responses. Shown in Figure 1 (a), the unit cell of 3D woven reinforcement has warp and weft yarns 

aligned along X and Y directions, while through-thickness binders undulate in the Z direction. The ratio 

between the binder stack and the warp yarn stack is 1:1 in the example. This binder-warp stack ratio is 

a variable during the optimisation search. The other design variables include the spacing between weft 

yarns (𝑆𝑤𝑒𝑓𝑡), the spacing between warp and binder yarns (𝑆𝑤𝑎𝑟𝑝), the number of layers in each weft 

stack (𝑀), the number of weft yarn stacks (𝑁), and the number of layers in each binder stack (𝐾). The 

parameters are illustrated in Figure 1 (b), (c) and (d). Binder path (𝑃) is another variable in the weave 
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design. Figure 1 (d) shows one of the possible binder paths overcrossing weft yarns in layers 𝑀 = 9 and 

stacks 𝑁 = 8. The binder yarn path is described here by a binary matrix  (𝑀 + 1) ×  𝑁, where the value 

1 indicates binder overcrossing a weft yarn and the value 0 indicates absence of binder. For example, 

the binder path in Figure 1 (d) is expressed in a binary matrix 10 × 8. In each column, the number of 

elements with the value 1 indicates the number of binder layer 𝐾 = 5. The binder path is  

 𝑃 =

[
 
 
 
 
 
 
 
 
 
0 0 0 0 0 0 0 1
1 0 0 0 0 0 1 1
1 1 0 0 0 0 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 1 1 1
1 1 1 1 1 1 1 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 0 0
0 0 0 1 1 1 0 0
0 0 0 0 1 0 0 0]

 
 
 
 
 
 
 
 
 

. (1) 

Without constraints, the number of unique binary matrices, for example of 𝑃10×8, is 210×8. Many of 

these matrices do not represent feasible or unique binder paths in 3D woven reinforcements. We apply 

the following constraints to the matrix P in dimension (𝑀 + 1) ×  𝑁, in order to narrow the realistic 

design space for the optimisation search. Two composites panels will have identical mechanical 

properties when their binder paths 𝑃1 and 𝑃2 exhibit mirror symmetry, i.e. either 𝑃1(𝑖,𝑗) = 𝑃2(𝑀+1−𝑖,𝑗) or 

𝑃1(𝑖,𝑗) = 𝑃2(𝑖,𝑁−𝑗). The number of binder layers 1 ≤ 𝐾 ≤ 𝑀 undulate in the same way. This means the 

binder tows have the same yarn path relative to each other. To ensure the woven fabric does not fall 

apart, at least one binder needs to float over the top/bottom surfaces, i.e. at least one element in Row 1 

and Row M+1 of the binary matrix P  has the value 1.  

 

Figure 1: Design parameters for 3D woven composites 

 

2.2 Optimisation driver – Genetic Algorithms 

As described in Section 2.1, the design variables in 3D woven materials are a mixture of integer 

values (Weft stack, N, Weft layer, M, Binder layer, K, Bind path, P) and real values (yarn space, Sweft 

and Swarp). The corresponding properties in the optimisation problems are likely to be nonlinear, shown 

as an example in Section 3. Based on these considerations, we have chosen the genetic algorithm MI-

LXPM proposed by Deep et. al [5]. This algorithm is suitable for generic integer and mixed integer 

optimisation problems. The main attraction of MI-LXPM over other existing schemes is that it requires 

minimum expert parameters in the operators for crossover, mutation, selection and handling constraints. 
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The MI-LXPM algorithm by Deep et. al [5] is briefly introduced here. A general optimisation problem 

is expressed as: 

minimise  𝑓(𝑋, Y), 

subject to  𝑔𝑗 (𝑋,Y) ≤ 0, 𝑗=1,..𝐽, 

   ℎ𝑘 (𝑋, Y) = 0, 𝑘=1,…𝐾, (2) 

   𝑋𝐿 ≤ 𝑋 ≤ 𝑋𝑈, 

   Y𝐿 ≤ Y ≤ Y𝑈: integer. 

Above, X is a vector of real value variables and Y is a vector of integer value variables. The function 

𝒇(𝑋, Y) is the objective function, while 𝑔𝑗 (𝑋,Y) is the j th inequality constraints and ℎ𝑘 (𝑋, Y) is k th 

equality constraints. The variable vectors X and Y are in the respective ranges of [𝑋𝐿, 𝑋𝑈] and [Y𝐿, Y𝑈].  

The constraints 𝑔𝑗 (𝑋,Y)  and ℎ𝑘 (𝑋, Y)  in Equation 2 are handled by a parameter-less penalty 

function[10]. The equality constraints ℎ𝑘 (𝑋, Y) are converted to inequality constraints by using a 

tolerance. 𝑔𝑗 (𝑋, Y)  and ℎ𝑘 (𝑋, Y)  are collectively referred to  𝜙𝑗(𝑋, 𝑌). The penalty applies as 

𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑋, 𝑌) = {
𝑓(𝑋, 𝑌)    𝑖𝑓(𝑋, 𝑌) 𝑖𝑠 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒

𝑓𝑤𝑜𝑟𝑠𝑡 + ∑ |𝜙𝑗(𝑋, 𝑌)|    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒𝑚
𝑗=1

,      (3) 

where fworst is the objective function value of the worst feasible solution in the current population.  

To facilitate an effective search over the design space, each iteration in the genetic algorithm sifts 

through a fixed number of diversified candidates and carries the fittest candidate(s) to the next 

generation, evolving towards the optimum solution(s). The iteration involves a set of genetic operators. 

The MI-LXPM algorithm implements the following operators that requires no parameter input from the 

user. 

Selection applies binary tournament technique [11] to randomly pick two solutions in the current 

iteration and select the better performing solution for the Laplace crossover operation. 

Laplace crossover uses two selected solutions (𝑥1(X, Y), 𝑥2(X, Y) ) in the current iteration to create 

two new solutions (𝑦1(X, Y), 𝑦2(X, Y) ) for the next iteration. Laplace crossover use a random number 

that follows the Laplace distribution: 

                                                      𝛽𝑖 = {
𝑎 − 𝑏 log𝑢𝑖       𝑟𝑖 ≤ 0.5

𝑎 + 𝑏 log𝑢𝑖       𝑟𝑖 > 0.5
,      (4) 

where βi is a random number, dependent on random number ui and ri. And 𝑎 is the location parameter 

and b >0 is the scaling parameter with integer value if the decision variable is integer otherwise with 

real value. The crossover results in two new solutions as: 

 𝑦𝑖
1 = 𝑥𝑖

1 + 𝛽𝑖|𝑥𝑖
1 − 𝑥𝑖

2| 

          𝑦𝑖
2 = 𝑥𝑖

2 + 𝛽𝑖|𝑥𝑖
1 − 𝑥𝑖

2|.              (5) 

To ensure the integer restriction for the variables Y, the new solutions 𝑦𝑖 from Equation 5 are 

truncated to 𝑦𝑖̅. 

 𝑦𝑖̅ = 𝑦𝑖, if 𝑦𝑖 is integer; otherwise, 

𝑦𝑖̅ = {
[𝑦𝑖] 

[𝑦𝑖] + 1
, either value with a 50-50 chance, where [𝑦𝑖] is the integer part of 𝑦𝑖. 
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Mutation does not apply in the present study, as there is sufficient diversity introduced by using the 

crossover operator. This is particularly the case for the micro Genetic Algorithm which has a small 

population. 

Elitism warrants a solution 𝑥(𝑋, 𝑌) with the best value of 𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑋, 𝑌) calculated from Equation 

3 to survive the current iteration onto the next iteration. Elite count is the number of solutions that are 

allowed to descend to the next iteration. This is an important parameter to be specified by a user. The 

sensitivity of elite count on the optimization convergence is investigated later in this study. 

The MI-LXPM genetic algorithm typically requires a large population size (i.e. 15 - 200). To evaluate 

the objective function for each individual of the population, in the case of 3D woven composites design, 

the finite element analysis requires a reasonably large amount of computing time and computer memory. 

Evaluation of the objective function is ideal to be computed in parallel. For a large population size, the 

parallel computing demands a High Performance Computing cluster. A smaller population size is 

desirable for running the optimisation task on a desktop workstation. For this reason, we adapt the 

standard MI-LXPM to a micro-Genetic Algorithm (µGA) with a population of 5 individuals. The 

adapted µGA scheme applies the same operators described above. With a smaller population, the 

diversity in the µGA is encouraged by the more frequent population initialisation than the standard MI-

LXPM. The population initialisation happens only once at a start point of the standard MI-LXPM. The 

population is randomly generated obeying a uniform distribution over the entire search space.  The 

evolution of subsequently new populations follows the rules of the described operators. On the other 

hand, the µGA scheme uses population initialisation in every iteration. The µGA scheme first checks 

the convergence of the population after going through the operators of selection, Laplace crossover and 

elitism. If the population is not converged, it keeps only one elite individual, while replacing the rest of 

the population by the random initialisation. By implementing both the standard MI-LXPM and the µGA 

schemes, we investigate their comparative performance in Section 4.   

The proposed optimisation workflow is illustrated in Figure 2. The Genetic Algorithms carry over 

the individual designs as input to TexGen. In turn, TexGen creates geometric models of 3D woven fibre 

architectures, and proceeds to pre-process the unit cell models for the solver ABAQUS. TexGen 

generates a 3D solid voxel mesh with separate domains of tows and matrix. The validity of using voxel 

meshes has been discussed previously [7, 12]. It has been recognised as a suitable option for predicting 

homogenised elasticity of composite materials. TexGen applies the periodic boundary conditions in 

warp and weft direction, based on the formulae proposed by Li et al [9]. TexGen also calculates and 

exports the fibre orientations and fibre volume fractions for the voxel elements in the tow domain. As 

tows are treated as transversely isotropic unidirectional fibre reinforced composite, the fibre orientation 

and fibre volume fraction are the essential data to calculate the tow properties under the global 

coordinate system for the unit cell model. ABAQUS performs the elastic analyses of six load cases, i.e. 

three axial loadings and three shear loadings. The predicted stress strain responses result in a matrix of 

homogenised elasticity for the composite material. The two optimisation schemes, i.e. the standard MI-

LXPM and the µGA, are implemented using the mixed integer optimisation tool in MatLab. As Python 

scripting is compatible with TexGen, ABAQUS and MatLab, the entire optimisation workflow is 

automated in a Python script.  
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Figure 2: Optimisation flow chart for 3D woven reinforcement design 

2.3 Comparative evaluation methods on GA performance 

In Section 2.2, we introduced two Genetic Algorithm schemes suitable for 3D woven composite 

designs under a given application. Although the algorithms use the parameter-less genetic operators, 

users still have to set values of population size and elite count for the standard MI-LXPM. The µGA 

scheme has these two parameters fixed. Yet, both schemes need to set the stall count as convergence 

criteria. It becomes important to quantitatively evaluate the different GA schemes and their parameters. 

Such study ultimately helps non-experienced users to choose a more reliable and efficient algorithm. 

Non-parametric statistical tests were proposed for comparison of genetic algorithms [8, 13]. We adopt 

the Sign test and the Wilcoxon signed-rank test in this study because they are easy to perform, sensitive, 

robust, and suitable for pairwise comparison. 

Sign test counts the number of cases on which one algorithm outperforms the other. The number of 

winning (S) is assumed to be a binomial distribution. Given n as the number of optimisation experiments 

for each algorithm, the winning algorithm is determined as being significantly better with a p-value < 

0.05, if the number of winning is 

 𝑆 ≥
𝑛

2
+ √𝑛.  (6) 

 

Wilcoxon signed-rank test is safe and robust for pairwise comparison, particularly when the 

distribution of differences between pairs may be non-normally distributed. The test has the hypothesis 

that the difference (𝑑 =  𝑝1  −  𝑝2) between the members of each pair (𝑝1, 𝑝2) has a median of zero. 

This implies that the two algorithms perform equally in finding the optimum. 

The Wilcoxon signed-rank test starts by ranking the differences (𝑑) regardless to the sign of the 

difference, i.e. the absolute differences. All zero differences are ignored for the pairs with equal 

members, 𝑝1 = 𝑝2. Subsequently the original signs are affixed to the rank numbers. All pairs with equal 

absolute differences (ties) get the same rank: all are ranked with the mean of the rank numbers that 

would have been assigned if they would have been different. All positve ranks (W+) and all negative 

ranks (W-) are summed and the total number of pairs (N) are determined. The level of significance is 

listed in the table of critical Wilcoxon values [14] by: 

 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 𝑝𝑟(𝑚𝑖𝑛 ( 𝑊+,   𝑊 −),𝑁). (7) 
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The test result from Equation 7 will show which of the pairs performs better (sign + and –), if the 

level of significance is ≤ 0.1. On the other hand, 𝑝 − 𝑣𝑎𝑙𝑢𝑒 ≥ 0.1 would indicate the two algorithms 

would have the same statistical performance.  

 

3  CASE STUDY 

3.1 Problem definition 

The selected case study for the 3D woven composites optimisation was inspired by their recently 

certified application of 3D woven composite in Boeing-787 landing gear braces, as manufactured by 

Messier-Dowty. The braces connect to the rest of the landing gear system by pin joints. The load path 

of the braces is relatively simple, i.e. compression and tension during normal service conditions. 3D 

woven composites are employed in the brace design for the advantages of weight saving and corrosion 

resistance over steel. As the current study is set out in search of optimum material design, with less 

concern of structural topology, the brace geometry is simplified as a cylinder with constant cross-section, 

simply supported at both ends.  

Under compression load, the cylindrical shell may fail either by ultimate material collapse (governed 

by the compressive strength) or by buckling. The Euler critical load for a simply supported beam under 

compression is 

PEuler =
π2𝐸I

L2 ,  (8) 

where E is the Young’s modulus, I is the moment of cross-sectional area of the brace, and L is the brace 

length. 

 

For the practical calculation of the buckling limit of an orthotropic composite shell, the Engesser 

formula gives a close estimation, as suggested in [15, 16]: 

PEngesser =
PEuler

1+2PEuler/AG
,   (9) 

where 𝐴 is the cross-sectional area of the brace, and 𝐺 is the in-plane shear modulus. 

 

The stability theory by Shanley [17]suggests that the inelastic buckling occurs at the intermediate 

slenderness ratio due to the influence of transverse shear deformation. For composite materials, the shear 

modulus has a significant influence on the buckling resistance, as indicated by the Engesser equation 

(Eq. 9). The buckling performance can also be expressed as a monotonically increasing function of one 

dimensionless buckling coefficient β [18]: 

𝛽 =
𝐷12+2𝐷66

(𝐷11𝐷22)1/2    (10) 

where 𝐷𝑖𝑗 are flexural stiffnesses of a composite. 𝛽 is typically smallest for cross-ply laminates while 

maximum for angle-ply laminates with 45o degree ply angles. It reaches a unit value 1 when the 

composite is quasi-isotropic. Since a 3D woven reinforce has 0/90 in-plane cross-ply layups, 𝛽 is 

expected to be smallest. However, with waviness and crimp introduced by binder yarns, the bucking 

coefficient 𝛽 can increase substantially close to an isotropic material.  

 

3.2 Objective function  

An objective function is formulated for a simple design scenario, with constant thickness and fixed 

in-plane stiffness in weft direction.  The optimisation task sets out to maximise the buckling coefficient, 

with the design variables of binder yarns. It starts with specifying the weft stack 𝑁 =  4,  weft layer 

𝑀 =  5, and yarn spacing 𝑆𝑤𝑒𝑓𝑡 = 𝑆𝑤𝑎𝑟𝑝  =  1.67 𝑚𝑚,  which meets the design brief with constant 

composites thickness 3.0 mm and weft stiffness 62.9 GPa. The corresponding design space for the binder 

is expressed as a set of inequality constraints as: 

𝐦𝐢𝐧
𝒙

−𝜷(𝒙),  (11) 

subject to  
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𝑥1 + 2𝑥3 ≤ 8
𝑥1 + 2𝑥4 ≤ 8
𝑥1 + 2𝑥5 ≤ 7
𝑥1 + 2𝑥6 ≤ 7

, 

 

and 

𝑥1 ∈ [1,2,3,4]

𝑥2 ∈ [1,2,3]
𝑥3, 𝑥4, 𝑥5, 𝑥6 ≥ 0

𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6 : 𝑖𝑛𝑡𝑒𝑔𝑒𝑟

 . 

 

Here β is the buckling dimensionless parameter calculated by Equation 10. The variable 𝑥 is a vector of 

six geometric variable of 3D weave architecture, i.e.  

𝑥1: number of binder layers

𝑥2: binder path

𝑥3 ,𝑥4: Upper binder locations

𝑥5, 𝑥6: Lower binder locations

. 

 

4  RESULTS  

4.1 Optimisation convergence 

Genetic Algorithms drive the optimisation search based on the penalty value rather than an objective 

function value (Equation 3). Figure 3 plots the penalty value, buckling coefficient β versus number of 

generation, indicating the optimisation convergences. The Best penalty value is the elite solution within 

the current generation, while the Mean penalty value is the average penalty value over the entire current 

population. The mean penalty value indicates whether the population has no more diversity and the 

optimum solution is ultimately converged. Figure 3(a) shows that the standard MI-LXPM, with a 

population size of 15 and a termination criterion after 50 generations, converged to the optimum design 

within 20 iterations, after assessing 300 out of 7000 permissible designs. Both the best and mean penalty 

values show a direct decent towards the converged optimum within a small number of generations. 

When the FE evaluations ran in parallel on a High Performance Computing cluster – each evaluation 

took 7 minutes, the run time of 20 generations to convergence were 140 minutes. However, on a desktop 

PC using 5 CPUs, each generation with a population size of 15 required 3 batches of 5 parallel FE 

analysis. The computational time tripled to 420 minutes. This was the original motivation to implement 

the µGA with a small population size of 5. Figure 3(b) shows the convergence of the µGA after 42 

generations. The required computational time was 294 minutes, which is 43% faster than the standard 

GA. The µGA had a clear advantage over the standard GA, when the optimisation ran on a desktop PC. 

A quantitative comparison is presented in Section 4.2 for the robustness of the µGA and the standard 

GA. 

The optimum designs are manufacture-able by a Jacquard loom, as shown in Figure 3(a). The 

optimised 3D woven composites have a buckling coefficient as twice that of the cross-ply laminate 

composites, and at least 50% better than a known orthogonal 3D woven composites. 
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(a)  (b)  

Figure 3: Convergence of the objective function – buckling coefficient versus the number of 

generations: (a) the standard genetic algorithm; (b) the micro-genetic algorithm. 

 

4.2 Effect of GA parameters 

Examining the response of the objective function, i.e. buckling coefficient, to the variables of the 3D 

weave architecture revealed that the optimisation problem (Eq. 11) is highly non-linear. The Genetic 

Algorithms do not guarantee to find the absolute global optimum, when the solution is converged by the 

end of the optimisation. Hence, the performance of Genetic Algorithms is to assess the likelihood in 

finding the optimum value(s). Such assessment provides a critical basis to choose a GA scheme and its 

parametric values for the given optimisation problem. The statistical tests, Sign test and Wilcoxon 

signed-rank test described in Section 2.3, were applied to quantify the comparative performances of the 

used GA schemes and their parameters. For each of the standard GA and the µGA with a fixed set of 

parameters, the study ran 300 repeats of the optimisation procedure, resulting in 300 optimised values 

of 𝛽. To compare the optimisation performance, two sets of 300 optimum values paired up for Sign test 

and Wilcoxon signed-rank test.  

The unit cell based FE analysis was the most time-consuming component within the optimisation 

iteration (~7 minutes using Intel i7 CPU 3.20GHz). In order to run 300 repeats of the optimisation 

procedures at different settings within reasonable time, the FE analyses were completed and tabulated 

corresponding to each exhaustive 3D weave designs prior the parametric study. During the optimisation 

iterations, the objective function was evaluated by searching tabulated values according to the design 

variables, instead of time-consuming FE analyses.  

The study compared five pairs of main options in the GA implementation. The results by Sign test is 

listed in Table 1 and the results by Wilcoxon signed-rank test is listed in Table 2. Both Sign test and 

Wilcoxon signed-rank test make effective comparisons of the performance of the genetic algorithms. In 

some cases, Wilcoxon signed-rank test is more sensitive and definitive than Sign test. The comparative 

study made the following findings. First, the relative performance of the µGA can be inferior, equal or 

superior to the standard GA, dependent on the convergence criteria – the stall count. Second, the effect 

of stall count converges to a value of 14 for the µGA. Third, elite count from 1 to 3 does not affect the 

performance of the standard GA. It shall be noted that elite count of 1 is most effective to preserve 

population diversity. Fourth, the most efficient stall count is 15 for the standard GA. Fifth, the population 

size of 28 leads to the performance convergence of the standard GA. 

 

 A Wins(>)  Loses (<) Level of 

significance B 

µGA stall 7 133 167 0.05 GA 
µGA stall 8 134 166 0.1 GA 
µGA stall 9 146 154 - GA 



 Xuesen Zeng, Andrew Long, Ian Ashcroft and Prasad Potluri 

 

µGA stall 10 159 141 - GA 
µGA stall 12 165 135 0.1 GA 
µGA stall 14 174 126 0.01 GA 
µGA stall 16 186 114 0.001 GA 

 

  A Wins(>)  Loses 

(<) 
Level of 

significance B  

µGA stall 2 44 256 0.001 µGA stall 16 
µGA stall 3 50 250 0.001 µGA stall 16 
µGA stall 4 64 236 0.001 µGA stall 16 
µGA stall 5 65 235 0.001 µGA stall 16 
µGA stall 6 84 216 0.001 µGA stall 16 
µGA stall 7 96 204 0.001 µGA stall 16 
µGA stall 8 102 198 0.001 µGA stall 16 
µGA stall 9 111 189 0.001 µGA stall 16 
µGA stall 10 122 178 0.001 µGA stall 16 
µGA stall 12 131 169 0.05 µGA stall 16 
µGA stall 14 141 159 - µGA stall 16 

 

  A Wins(>)  Loses (<) Level of 

significance B 

GA elite 1 158 142 - GA elite 3 
GA elite 2 147 153 - GA elite 3 

 

  A Wins(>)  Loses (<) Level of 

significance B  

GA stall 10 150 150 - GA stall 30 
GA stall 15 169 131 0.05 GA stall 30 
GA stall 20 157 143 - GA stall 30 

 

 A Wins(>)  Loses (<) Level of 

significance  B 

GA population 14 64 236 0.001 GA population 32 
GA population 16 82 218 0.001 GA population 32 
GA population 18 94 206 0.001 GA population 32 
GA population 20 109 191 0.001 GA population 32 
GA population 24 131 169 0.05 GA population 32 
GA population 28 142 158 - GA population 32 

 

Table 1. Sign test results with a sample size = 300 for A-vs-B paired optimisation parameters: µGA vs 

GA, stall count in µGA, elite count in GA, stall count in GA and population size in GA. 

 

A Performance p-value B 
µGA stall 7 < 0.09 GA 
µGA stall 8 = 0.13 GA 
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µGA stall 9 = 0.98 GA 
µGA stall 10 > 0.08 GA 
µGA stall 12 > 0.002 GA 
µGA stall 14 > <0.001 GA 
µGA stall 16 > <0.001 GA 

 

A Performance p-value B 
µGA stall 2 < <0.001 µGA stall 16 
µGA stall 3 < <0.001 µGA stall 16 
µGA stall 4 < <0.001 µGA stall 16 
µGA stall 5 < <0.001 µGA stall 16 
µGA stall 6 < <0.001 µGA stall 16 
µGA stall 7 < <0.001 µGA stall 16 
µGA stall 8 < <0.001 µGA stall 16 
µGA stall 9 < <0.001 µGA stall 16 
µGA stall 10 < <0.001 µGA stall 16 
µGA stall 12 < 0.005 µGA stall 16 
µGA stall 14 = 0.19 µGA stall 16 

 

A Performance p-value B 
GA elite 1 = 0.13 GA elite 3 
GA elite 2 = 0.75 GA elite 3 

 

A Performance p-value B 

GA stall 10 = 0.99 GA stall 30 
GA stall 15 > 0.08 GA stall 30 
GA stall 20 = 0.44 GA stall 30 

 

A Performance p-value B 
GA population 14 < <0.001 GA population 32 
GA population 16 < <0.001 GA population 32 
GA population 18 < <0.001 GA population 32 
GA population 20 < <0.001 GA population 32 
GA population 24 < 0.003 GA population 32 
GA population 28 = 0.37 GA population 32 

 
Table 2. Wilcoxon signed-rank test results with a sample size = 300 for A-vs-B paired optimisation 

parameters: µGA vs GA, stall count in µGA, elite count in GA, stall count in GA and population size 

in GA. The symbols “<” and “>” indicate clear winning performance by one parametric setting over 

the other, with a level of significance ≤0.1, while “=” indicates little statistical difference between the 

pair. 
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5 CONCLUSIONS 

The study successfully implemented an optimization framework for constant stiffness design of 3D 

woven composites. A mixed range of real and integer parameters enabled to generate realistic geometric 

unit cell model of 3D woven composites in TexGen. Automated TexGen interface with the solver 

ABAQUS made it computationally efficient to evaluate the relationship between 3D woven fibre 

architecture and the elastic properties of 3D woven composites. A case study set to optimize the buckling 

efficient of 3D woven composites in a landing gear brace. The MI-LXPM Genetic Algorithm and its 

adaptation to a micro-population proved to be efficient and robust, as the Sign test and Wilcoxon signed-

rank test assessed the performance of the Genetic Algorithms in the case study. The optimized 3D woven 

composites improved the buckling coefficient by doubling that of cross-ply composites, and 50% higher 

than that of conventional 3D orthogonal woven composites.  
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