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Biological brains have a natural capacity for resolving certain classification tasks. Studies on biologically
plausible spiking neurons, architectures and mechanisms of artificial neural systems that closely match
biological observations while giving high classification performance are gaining momentum. Spiking
neural P systems (SN P systems) are a class of membrane computing models and third-generation
neural networks that are based on the behaviour of biological neural cells and have been used in various
engineering applications. Furthermore, SN P systems are characterised by a highly flexible structure
that enables the design of a machine learning algorithm by mimicking the structure and behaviour of
biological cells without the over-simplification present in neural networks. Based on this aspect, this
paper proposes a novel type of SN P system, namely, layered SN P system (LSN P system), to solve
classification problems by supervised learning. The proposed LSN P system consists of a multi-layer
network containing multiple weighted fuzzy SN P systems with adaptive weight adjustment rules. The
proposed system employs specific ascending dimension techniques and a selection method of output
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neurons for classification problems. The experimental results obtained using benchmark datasets from
the UCI machine learning repository and MNIST dataset demonstrated the feasibility and effectiveness
of the proposed LSN P system. More importantly, the proposed LSN P system presents the first SN P
system that demonstrates sufficient performance for use in addressing real-world classification problems.

Keywords: Spiking neural networks, Spiking neural P systems, layered weighted fuzzy spiking neural P
systems, supervised learning.

1. Introduction

Following the advent of the perceptron algorithm,1

three generations of artificial neural networks have

been developed. With regard to the first-generation,

examples Hopfield network.2 Meanwhile, in terms

of the second-generation networks, examples include

backpropagation 3,4 and ensemble learning5 , while

third-generation networks include spiking neural net-

works (SNNs).6 It should be mentioned that Deep

Learning Networks (DLNs), which have multiple hid-

den layers between input and output, belong to the

second generation, as stated in.7 Furthermore, the

authors of Ref7 report that researchers are currently

working at the design of SNNs capable to match the

performance of DLNs.

Throughout the history of neural networks, var-

ious models have been proposed for voice recogni-

tion,8 autonomous vehicle issues,9 and brain tumor

classification.10 Since classification problems are gen-

erally easy tasks to the human brain, artificial neural

network models attempt to mimic the functioning of

biological neural networks. However, the simplifica-

tions of the synthetic neural models present serious

limitations in terms of the capability of artificial in-

telligence to resolve this type of problem.11

For example, the feed value of the first-

generation neural networks must be discrete, which

limits to Boolean functions only.12,13 Further-

more, while, unlike first-generation neural networks,

second-generation neural networks are able to pro-

cess continuous values of input and output, they

adopt frequency coding that is not suited to cer-

tain biological neurons.12,13 To address this prob-

lem, SNNs encode the information by spikes 14,15. On

the other hand, the “integrate-and-fire” type of spik-

ing neurons are used primarily, 6,16 while in neural-

biological systems, other types of brain cells, such as

astrocytes,17 exists besides the spiking neurons.

Membrane computing models (generally known

as P systems) are computational models first pro-

posed by Gh. Păun,18 which are formalised on the

basis on an inspiration from biological cells. Some

examples of modified instances of P systems include

tissue-like P systems,19 cell-like P systems,18 and

neural-like P systems.20 Among the various models,

spiking neural P systems (SN P systems) present an

interesting option since they combine the potentials

of both the SNN and the P systems, thus generat-

ing a model that accurately mimics the biological

functions of brains21. SN P systems have become in-

creasingly popular due to their similarity to SNNs.

However, unlike SNNs, which generally perform spe-

cific simplifications, P systems can easily represent

different types of neurons and the communication

mechanisms among them (see20).

Several variants on the SN P systems, with dif-

ferent biological phenomena, have been proposed.

Here, examples include the SN P systems with as-

trocytes,22 systems with extended channel rules,23

systems with communication on request,24,25 sys-

tems with polarizations,26 and coupled neural P sys-

tems27. These variants have solved many theory and

applications problems.28–30 As well, SN P systems

have been successfully applied in various real-world

scenarios, including combinatorial optimisation,31,32

fault diagnosis33 and arithmetic calculator.34

The capabilities of SN P systems for addressing

classification problems have also been investigated

(see e.g.35–37). However, while these pioneering stud-

ies indicate the potential of SN P systems for classifi-

cation, they do not propose classification algorithms

that can be used in real life, albeit that the SN P sys-

tem in35 is endowed with a dynamic fuzzy reasoning

algorithm and learning algorithm, with the theoret-

ical results indicating the viability of the approach

in principle. However, the model only analyses the

changing weights rule and cannot be used to resolve

real-world problems.

Other papers36,37 have proposed SN P sys-

tems that employ an element with the capacity to

strengthen and weaken the connections among neu-

rons to address classification problems. The main
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limitation of this approach is its fixed structure,

which requires the pre-determination of the input

and output sizes, meaning they can only be applied

to specific classification problems. Elsewhere, in,36,37

successful applications to the problems pertaining to

nuclear export signal identification and binary image

recognition have been presented.

In contrast to the existing models35–37 that are

based on a fixed structure or theoretical research, to

the best of our knowledge, SN P systems to perform

classification ability have not been proposed yet. In

the present work, we propose a supervised learning

algorithm that makes use of membrane computing

theory to achieve classification ability, namely, lay-

ered weighted fuzzy SN P system (LSN P system).

The proposed LSN P system can be flexibly used on

an array of classification problems and can process

inputs and outputs of any size by maintaining the

same network structure.

The proposed LSN P system is composed of mul-

tiple instances of a modified implementation of the

weighted fuzzy spiking neural P system (WFSN P

system)38 and a novel learning element. We chose to

base our classifier on a WFSN P system since it al-

lows for both real-valued and integer input and thus

presents a flexible building block to address clas-

sification problems. It should be noted that, much

like biological brains, WFSN P systems use different

types of neurons. The Widrow–Hoff learning law39

is used to ensure the model learns from data ef-

ficiently. Moreover, nonlinear mixed selectivity40 is

used to mix different input features so as to gener-

ate higher-dimensional information and to transform

non-linearly separable data into linearly separable

data.

With this architecture, specific classification

problems can be resolved by the LSN P system. In

fact, the proposed LSN P system is the first super-

vised learning algorithm based on a WFSN P system

for performing classifications.

The remainder of this paper is organised as fol-

lows. In section 2, the WFSN P system is briefly out-

lined before the proposed LSN P system is described

in detail in section 3. The experimental results are

then presented in section 4. The conclusions of this

work are then presented in section 5.

2. Weighted Fuzzy Spiking Neural P
Systems

This section formally defines WFSN P systems and

explains how they are the building blocks for LSN P

systems.

Definition 1.

A WFSN P system38 of degree m(≥ 1) is con-

structed as follows:

Π = ({a}, Np, Nr, syn, IN,OUT )

where

(i) a denotes the spike.

(ii) The set Np = {σp1, σp2, . . . , σpm} is called propo-

sition neurons set. Each neuron σpi (proposition

neuron) with (1 ≤ i ≤ m) is a tuple of the type

σpi = (αi, ω⃗i, λi, ri) where

(a) The scalar αi ∈ [0, 1] is a fuzzy truth value to

express the potential value in the σpi.

(b) The vector ω⃗i = (ωi1, ωi2, . . . , ωisj ) is the

weight vector for the set of synapses within the

σpi. Each element ωij ∈ [0, 1] is called weighted

value with 1 ≤ j ≤ sj , and sj is the number of

synapse.

(c) ri is a firing rule set and has the form E/aα →
aα; d, where E = {α ≥ λi} is the firing condi-

tion, that is, the firing rules are activated when

α ≥ λi. The values of λi ∈ [0, 1) denotes firing

threshold. d ∈ N is the delay time to imple-

ment firing rules for proposition neurons. If the

proposition neuron has no delay, the parameter

d is omitted.

(iii) The set Nr = {σr1, σr2, . . . , σrn} is the rule neu-

ron set. For each rule neuron, σrj (1 ≤ j ≤ n) is

in the form σrj = (αj , γj , v⃗j , τj , rj) where

(a) αj ∈ [0, 1] is the potential value in the σrj .

(b) γj ∈ [0, 1] is the certainty factor, which repre-

sents the probability of firing rules in the σrj .

(c) The vector v⃗j = (vj1, vj2, . . . , vjti) is the

weight vector for σrj . The elements vji ∈ [0, 1]

is the weight value on the ith synapse of σrj ,

where 1 ≤ i ≤ ti, and ti is the number of

synapse on neuron σrj .

(d) rj is a firing rule set and has the form E/aα →
aβ ; d where α, β ∈ [0, 1] and d ∈ N. The expres-
sion E = {α ≥ τj} is called firing condition, it
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means that the firing rule is executed when the

firing condition is satisfied, where τj ∈ [0, 1)

denotes the firing threshold. The parameter d

is omitted when no delay is involved.

(iv) The set of synaptic connections syn ⊆ (Np×Nr)∪
(Nr × Np) associated the proposition with rule

neurons.

(v) IN, OUT ⊆ Np are special proposition neurons,

that is, the input and output neurons.

The formula of potential value for proposition

neurons and rule neurons is discussed below.
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Figure 1. Proposition and rule neurons in the WFSN P
system.

In terms of proposition neurons, if multiple

spikes are received, a Boolean OR operator is used

to assess whether or not the firing condition is sat-

isfied. The OR operator is here indicated as ∨. As

shown in Fig.1a, if a series of potential spike val-

ues are sent to the proposition neuron, the poten-

tial value is αin
i = α1

i ∨ α2
i ∨ . . . ∨ αti

i . As such, if

αin
i ≥ λi, then the environment receives the poten-

tial αout
i = αin

i ⊗ ω⃗i, where ⊗ is the multiplication

operator, see38 for formal details. However in this pa-

per, the potential is considered as an interval number

with an equal upper and lower limit. Therefore, the

fuzzy operator is consistent with algebraic multipli-

cation and αout
i = αin

i ω⃗i.

Similar for rule neurons, if multiple spikes have

arrived, then the operator “⊕” is used to determine

the potential values and assess whether the firing

condition is satisfied. If a rule neuron receives a se-

ries of potential spike values, the potential value is

αin
j = α1

j ⊕ α2
j ⊕ . . . ⊕ α

sj
j , see Fig.1b. As such, if

αin
j ≥ τj , then the environment receives the value

αout
j = (αin

j ⊘ v⃗j) ⊗ γj , where ⊕ and ⊘ are addi-

tion operator and division operator respectively for

fuzzy truth values, see.38 Also in this case, the ad-

dition and division operators are the same as alge-

braic addition and division, respectively, and hence

αout
j = (αin

j /v⃗j)γj .

Clearly, the WFSN P systems combine the ad-

vantages of fuzzy logic with SN P systems, that is,

the model can not only process information within

the SN P system framework but can also perform, by

means of fuzzy logic, operations on real numbers.41

These properties modify substantially the function-

ing of WFSN P systems and make them suitable to

address classification problems.

3. layered Spiking Neural P Systems

This section describes the proposed LSN P system.

Section 3.1 describes the structure of the LSN P sys-

tem, while section 3.2 describes the novel learning

element and section 3.3 the novel learning process.

3.1. LSN P systems and their structure

The structure of a LSN P system is composed of two

parts: a high-dimensional encoder and a weighted

fuzzy SN P system classifier, as depicted in Fig.2.

The input data are fed into the weighted fuzzy SN P

system classifier by a high-dimensional encoder (that

is a WFSN P system itself), the weighted fuzzy SN P

system classifier consists of an example of a WFSN

P system (see section 2) defined in terms of the fol-

lowing tuple Π:

Π = ({a},
{
σ1
p1, . . . , σ

1
pk, σ

3
p1, σ

5
p1

}
, {σ2

r1, . . . , σ
2
rn, σ

4
r1,

. . . , σ4
rn}, syn, IN,OUT )

where

(i) a denotes a spike.

(ii) The proposition neuron takes the form that σh
pi ={

0, wh
ij , λ

h
i , r

h
i

}
, where h is the layer label.

(a) 0 denotes that no initial potential value is in

proposition neurons.

(b) The weights take the form of w1
ij = rand(0, 1)

and w3
1j = 1, where 1 ≤ i ≤ k, 1 ≤ j ≤ n.

(c) The firing rules are contained in a set rhi where

each rule is of the type r1i : E1/aαi → aαi ,
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where E1 = {αi ≥ 0} and 1 ≤ i ≤ k. The last

neuron is termed the bias neuron and αk = 1.

r31 : E3/ao → ao, where E3 = {o ≥ 0}, and
o = θ1 ∨ θ2 ∨ . . . ∨ θn. The θj is defined and

presented in the next paragraph. r5 : a → a,

the omission of firing condition means that the

firing rule is always enabled when coming po-

tential across 1.

(iii) A rule neuron is a set of the type σk
rj ={

0, 1, 1⃗, τkj , r
k
j

}
, where k is the layer label.

(a) The initial potential value is 0 in rule neurons.

(b) The certain factor is 1 for all rule neurons.

(c) The weight synaptic from rule neurons are set

as 1.

(d) The firing rules of σ2
r1, . . . , σ

2
rn have the form

of r2j : E
2/aθj → aθj , where E2 = {θj ≥ 0},

θj = (w1j ⊗α1)⊕ (w2j ⊗α2)⊕ . . .⊕ (wkj ⊗αk),

and 1 ≤ j ≤ n. Neurons σ4
r1, σ

4
r2, . . . , σ

4
rn have

the spiking rules r41: E4
j /a

θj → a; dj , where

E4
j = {θj ≥ o}. It should be noted that the

fuzzy operation degenerates into algebraic op-

erations as discussed in Section 2.

(iv) syn = {(σ1
p1, σ

2
r1), (σ

1
p1, σ

2
r2), . . . , (σ

1
pk, σ

2
rn), (σ

2
r1,

σ3
p1), (σ

2
r2, σ

3
p1), . . . , (σ

2
rn, σ

3
p1), (σ

3
p1, σ

4
r1), (σ

3
p1, σ

4
r2),

. . . , (σ3
p1, σ

4
rn), (σ

4
r1, σ

5
p1), (σ

4
r2, σ

5
p1), . . . , (σ

4
rn, σ

5
p1)}

(v) IN = {σ1
p1, σ

1
p2, . . . , σ

1
pk}, OUT = {σ5

p1}.

We may note that the proposed LSN P system

is not just a generalization of WFSN P system. Two

reasons are listed as below.

(i) LSN P systems and WFSN P systems have differ-

ent syntactic structures. The LSN P system is a

layered model, while the WFSN P system only has

one layer. In the LSN P system, only neuron σp1
3

has the same syntactic structure as a proposition

neuron in the WFSN P system, while the other

neurons in the LSN P system have completely

different syntactic structure from the proposition

neuron or rule neuron in the WFSN P system.

It is noted that neurons both in the LSN P sys-

tem and the WFSN P system are considered as

variants or extensions in an SN P system.20 It is

also worth pointing out that weights in the LSN P

system originated from Spiking Neural P Systems

with Weights,42 instead of WFSN P system.38

(ii) LSN P systems and WFSN P systems have dif-

ferent semantics. In the LSN P system, only the

neuron σp1
3 has the same semantics as the propo-

sition neuron in a WFSN P system, that is, with

the fuzzy operators. The neurons in the other five

layers in a LSN P system perform arithmetic op-

erations, while all the proposition neurons or rule

neurons perform fuzzy operations in a WFSN P

system.

The proposed LSN P system is composed of a

pre-processing layer, located on the top of the LSN P

system as a high-dimensional encoder, and five sub-

sequent layers: an input layer, a hidden layer, a com-

parison layer, a selection layer and an output layer.

The high-dimensional encoder is implemented by a

series of rule neurons and the corresponding firing

rules are achieved by Taylor polynomials. Mean-

while, each pair of consecutive layers contain neu-

rons of different types, with the neurons generating

a new potential value every time the incoming po-

tential reaches the firing condition. The function of

pre-processing layer is to feed the dataset into the

LSN P system.

The transition from the pre-processing layer to

the first layer entails the encoding of the input of its

own length/dimension into a standard length vector

to be processed by the following layers (see section

3.2 for details). The input layer is fully connected

to the hidden layer (all the possible arrows are in-

dicated) through the synapses. The weight on each

synapse is a random value between 0 and 1, the aim

of training process is to detect those weights corre-

sponding to the lowest loss. The synapse with the

weight 1 is present in all the following layers, which

means that these weights do not participate in the

training process. The output of the LSN P system is

a spike that carries the information related to the re-

sult of the classification task. The following section

focuses on the functioning of the proposed LSN P

system and describes its learning element.

3.2. The novel learning element

The learning element of the LSN P system includes

two parts: high-dimensional coding and the weight

adjustment rule. The high-dimensional coding is

achieved via a high-dimensional encoder located be-

tween the pre-processing layer and the input layer.

The coding scheme is based on both biological phe-

nomena and the research on pattern recognition.

In terms of biological phenomena, various sci-

entists have found that decision-making involves
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Figure 2. The structure of the proposed LSN P system

highly diverse nonlinear mixtures of task-relevant

variables.40 The nonlinear mixtures of variables

carry more information which facilitates classifica-

tion. However, the actual encoding scheme remains

largely unclear.40 The classification task is a prob-

lem related to finding the smooth decision boundary.

The decision boundary can be a line, surface, or

higher-order surface, which depends on the dimen-

sions of decision variables. With any smooth deci-

sion boundaries having the potential for being ap-

proximated by the Taylor decomposition. The high-

dimensional encoder is represented by a nonlinear

mixture of variables and implemented by Taylor

polynomials.

f (x1, ..., xn) = f(x10 , ..., xn0
) + (h1

∂

∂x1
+ ...

+hn
∂

∂xn
)f(x10 , ..., xn0

) + ..+
1

k!
(h1

∂

∂x1
+ ....

+hn
∂

∂xn
)kf(x10 , ..., xn0) +Rk+1

(1)

where:

(i) −→x = (x10 , . . . , xn0
) is any point on the decision

boundary f(x1, . . . , xn);

(ii) hi = xi − xi0(1 ≤ i ≤ n);

(iii) Rk+1 = 1
(k+1)! (h1

∂
∂x1

+ . . . + hn
∂

∂xn
)K+1f(x10 +

ξh1, . . . , xn0
+ ξhn), where ξ ∈ (0, 1).

In Eq. (1), the constant term f(x10 , ..., xn0
) is
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mimicked by the bias neuron σ1
pk in the LSN P sys-

tem in view of fitting the decision boundary more ac-

curately. Decision variables are transmitted into the

Taylor polynomial to acquire the high-dimensional

form. Finally, it is clear that the decision boundary is

a linear combination of Taylor polynomial. It is noted

that the Taylor polynomial is only one of the feasible

ways to get high-dimensional representations. Other

ascending dimension techniques, such as the kernel

function, are also viable approaches which will de-

serve further investigation.

The other learning element is the Widrow–Hoff

learning law,39 which is for updating the weight on

the synapse. The error signal is transformed into

the hidden layer by the back-propagation, more de-

tailed description is shown in Section 3.3. The

Widrow–Hoff learning law is described as follows:

W ⇐ W + η(t− t̃)α (2)

where:

(i) W represents weight within the LSN P system;

(ii) η is the learning rate;

(iii) t is the expected output of neuron σ5
p1;

(iv) t̃ is the real output of neuron σ5
p1;

(v) α is the potential value within the input layer.

3.3. The learning process of the LSN P
system

The learning process of the LSN P system consists

of three sub-processes: the initialisation, the training

and the testing process of the system. First, the ini-

tialisation of the dataset and the LSN P system is

carried out. The real-valued dataset is scaled into

the interval between the maximum and minimum

fuzzy truth values using the coding scheme,43,44 as

described in Eq. (3).

T (x) =
f2 − f1

xmax − xmin
·x+f1 · xmax − f2 · xmin

xmax − xmin
(3)

where f2 and f1 are the maximum and minimum of

the fuzzy truth value, respectively. xmax and xmin

are the maximum and minimum of each feature in

the dataset, respectively.

To employ a LSN P system, the structure and

parameters need to be pre-determined. In terms of

the structure, the number of neurons in the pre-

processing layer is the length of the input vector (m)

within the dataset. The number of neurons in the in-

put layer is determined by the degree of Taylor poly-

nomial (K ), with the number
∑K

i=1 C
i
m+i−1 based on

the number of Taylor expansion terms. Meanwhile,

the number of neurons in the hidden layer and the

selection layer is determined according to the output

labels of the dataset, with the neuron number within

the comparison layer and output layer fixed at one.

In terms of the weight, these parameters are ini-

tialised to be a randomly value at between 0 and 1

between the pre-processing layer and the input layer,

with the maximum number of iterations set as a large

enough number and the learning rate set to an ap-

propriate size. The other parameters are set in terms

of the description of the LSN P system.

Following this, the training process of the LSN

P system is introduced. Here, the input potential of

the neurons σ0
p1, σ

0
p2, ...σ

0
pm within the pre-processing

layer is the normalised value of the dataset by us-

ing the Eq. (3). The information processing mech-

anism of the high-dimension encoder between the

pre-processing layer and the input layer entails trans-

mitting the length of the input vector into a higher

length based on the Taylor expansion theory. The

potential value within the neurons σ1
p1, σ

1
p2, ...σ

1
pk

is the numerical value of Taylor polynomial term

by using Eq. (1) in terms of the feed data. The

output potential values are multiplied by the ini-

tialised weights and are delivered to the neurons

σ2
r1, σ

2
r2, ...σ

2
rn within the hidden layer. Meanwhile,

the comparison layer is composed of the neuron σ3
p1,

and the output spike is the maximum potential value

of the neurons in the hidden layer, while in the selec-

tion layer, only one neuron is activated, which emits

a spike to the output layer with a delay correspond-

ing to the fire rule in the neurons σ4
r1, σ

4
r2, ...σ

4
rn. The

output layer is composed of the neuron σ5
p1 and the

spike emission time is the label of output.

Then, the mean square error between the real

output time and the desired output time is calculated

as the loss of the LSN P system, as shown in Eq. (4).

The loss is backpropagation to all layers of LSN P

system to minimize. For constant weights, since the

partial derivative of the loss is 0, these weights do not

change during the back-propagation. Because of only

one layer of variable weights, the partial derivative

of the loss with respect to the weight is the manifes-

tation of the Widrow-Hoff learning law. So the The

training process is performed until the maximum it-
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erations (max iter) are reached.

Loss =
1

N

N∑
i=1

(ti − t̃i)
2 (4)

where N is the total number of samples.

The last part is the testing process of the LSN P

system. Here, all the parameters of the trained LSN

P system are saved and the LSN P system is assessed

based on the testing set to determine the classifica-

tion ability and the generalisation ability.

To further explain the structure and functioning

of the proposed LSN P systems, Algorithm 1 presents

the training algorithm of the LSN P system in terms

of pseudocode.

Algorithm 1 Training algorithm

Input: N sets of labeled dataset.

Output: Weights value W .

1: Initialisation parameters: K, η, max iter, W .

2: The dataset is normalised by using Eq. (3).

3: Feed normalised values into neurons

σ0
p1, σ

0
p2, . . . , σ

0
pm.

4: Compute spike potential for neurons

σ1
p1, σ

1
p2, . . . , σ

1
pk by using the numerical value of

the Taylor polynomial shown Eq. (1).

5: for iter = 1:max iter do

6: Compute output potential within neurons

σ2
r1, σ

2
r2, . . . , σ

2
rn.

7: Compute the output potential of neuron σ3
p1.

8: Activate rule neurons σ4
r1, σ

4
r2, . . . , σ

4
rn via the

firing rule.

9: Get data class by the spiking time of σ5
p1.

10: Compute the loss and update W by using (4)

and (2), respectively.

11: end for

4. Experimental Results

This section displays the potential of LSN P systems

to resolve specific classification problems.

The performance evaluation was based on the

overall training/testing accuracy, with the accuracy

rate the ratio between the number of correctly clas-

sified samples and the total number of samples.

The comparison of the performances of the

learning algorithms was implemented using the non-

parametric Holm–Bonferroni procedure.45 Mean-

while, the attendant rank is the average rank be-

tween the training set and the testing set, as de-

scribed in Eq. (5).

R = 0.5 ∗R1 + 0.5 ∗R2 (5)

where R1 and R2 are the average rank within the

training set and the testing set, respectively, and R

is the overall rank of the learning algorithm.

The performance results of the LSN P system

were generated using Python 3.7.0 in a Windows Op-

erating system on a machine with 28 logical cores, 64

GB of RAM and a speed of 3.3 GHz. All the results

reported in this section represent the average train-

ing/testing accuracy obtained over 20 random trials.

4.1. Boolean Logic Problems

In this subsection, we use the LSN P system to clas-
sify specific Boolean logic problems, including the
OR-problem and the XOR-problem. To ensure that
readers can gain a better understanding of how the
LSN P system works, examples are used to elaborate
on the solution for boolean logic problems.

Table 1. The iteration process of the OR-problem

Iterations w1
11 w1

21 w1
31 w1

12 w1
22 w1

32 Loss

1st 0.56 0.28 0.67 0.53 0.52 0.49 0.5

2nd 0.66 0.38 0.67 0.43 0.42 0.49 0.25

3rd 0.66 0.38 0.57 0.43 0.42 0.59 0.5

4th 0.66 0.48 0.57 0.43 0.32 0.59 0

4.1.1. OR-problem

The so-called OR-problem consists of a linear clas-

sification with two input values and states. As such,

the structure of the network can be confirmed and

the weight between σ1
pi and σ2

rj can be randomly

initialised. Let us suppose that w1
11 = 0.46, w1

21 =

0.18, w1
31 = 0.67, w1

12 = 0.63, w1
22 = 0.62, w1

32 = 0.49

and the learning rate is set as 0.1, where w1
31 and w1

32

are the weights from the bias neuron. The maximum

and minimum fuzzy truth values are set as 0 and 1,

respectively. Table 1 shows the functioning of the

algorithm across multiple iterations.

The loss of the LSN P system is 0; then, the

training process will stop and the set of weights will

be saved.
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4.1.2. The XOR-problem

Since the XOR-problem is non-linear, the high-

dimensional encoder is crucially important. The in-

crease in dimensions is given by the following for-

mula:

(x1, x2) → (x1, x2, x
2
1, x

2
2, x1x2) (6)

From the above formula, it is clear that the de-

gree of Taylor polynomial is two. The main reason is

that the XOR-problem presents an extremely simple

non-linear model. In the case of non-linear data, a

higher-degree Taylor polynomial must be used. The

computational budget in terms of number of itera-

tions is set as 20 and the learning rate is set as 0.1.

Here, these higher-dimensional information were fed

into the model, with the attendant loss (see Eq. (4))

shown in Fig.3.

5 10 15 20

Iterations

0.0

0.2

0.4

0.6

0.8

1.0

L
o
s
s

Figure 3. The XOR-problem loss.

4.2. Simple classification problems

4.2.1. Breast cancer problem

The breast cancer problem is a binary classification

problem, one that is composed of nine labels, includ-

ing age, menopause and the size of the tumour. The

final output is the phenomenon of recurrence or no-

recurrence. Given the 13 missing data, the total num-

ber of training sets and testing sets is 350 and 333,

respectively. The proportion of target and non-target

classes in the training set is 49.8% and 52.0%, respec-

tively.

The fuzzy coding scheme is carried out as de-

scribed in Eq. (3), with the maximum and minimum

of the fuzzy truth value 1 and 0, respectively. Here,

the expansion order of the Taylor series was chosen

to be three in the coding scheme, while the learning

rate and the maximum number of iterations were set

to be 0.05 and 450 respectively via the trial and error

method. The high-dimensional normalised data can

then be fed into the network for training the LSN P

system.

Here, 20 independent runs were performed to

test the convergence of the systems. The mean loss

(over the 20 runs) calculated as in Eq. (4) and 90%

confidence interval (calculated by empirical distri-

bution function46) are presented in Fig.4, with the

testing accuracy = 100%. Here, it was clear that the

LSN P system was convergent and exhibited a good

learning ability.

50 100 150 200 250 300 350 400 450
Iterations

0.00

0.02

0.04

0.06

0.08

0.10

Lo
ss

Mean Loss
Confidence Interval

Figure 4. The breast cancer problem mean loss over 20
run (red line) and associated confidence interval (blue
band) at 90%.

4.2.2. Iris flower problem

The iris flower problem consists of specific iris charac-

teristics (four features), with the aim being to deter-

mine the species of the irises based on the provided

sample information. Here, the total number of sam-

ples was 150, which were evenly divided into three

classes (Setosa, Versicolour, Virginia), with 50% of

the samples used for training and the remaining 50%

of the dataset used as the testing set. The propor-

tion of different classes in the training set is 52.0%,

52.0%, and 46.0%, respectively.
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Figure 5. The iris problem mean loss over 20 run (red
line) and associated confidence interval (blue band) at
90%.

The parameters used with the iris flower prob-

lem were the same as those used with the breast

cancer problem, but the maximum number of iter-

ations set as 80 is enough. Again, the convergence of

the LSN P system was verified using 20 independent

runs. The results indicated that the LSN P system

has excellent potential in terms of learning ability

and convergence, see the trends in Fig.5.

4.3. Performance comparison using
other learning algorithms

In this subsection, we discuss the performance eval-

uation of the LSN P system in terms of five bench-

mark datasets from the UCI machine learning repos-

itory.47 Here, the Breast Cancer, Ionosphere, and

PIMA datasets are binary classification problems,

while the Iris and Wine datasets are multiple classi-

fication problems. The number of input features and

output classes are shown in Table 2.

Table 2. Description of data sets.

Data set Features Classes
Samples

Training Testing

Breast Cancer 9 2 350 333
Ionosphere 34 2 175 176

PIMA 8 2 384 384
Iris 4 3 75 75
Wine 13 3 60 118

The performance results were compared with

some spiking learning algorithms for SNNs and

non-spiking classifiers, namely, the SpikeProp,48

SWAT,49 SRESN,50 OMLA,51 MC-SEFRON,52

TMM-SNN,53 DC-SNN,54 MeST,55 finite element

machine (FEMa),56 deep belief network (DBN)57

and ResNet58. The results of the spiking learning al-

gorithms were obtained from the respective literature

and the non-spiking classifiers were implemented on

python library, with the results for all algorithms

generated using the same spilt regarding the train-

ing/testing data. The degree of certainty for FEMa is

set as 3. For the DBN model, the activation function

is selected as Rectified Linear Unit (ReLu), the net-

work layers of DBN are set as 5 and neurons in the

hidden layers are chosen to be 10, 15 and 5. For the

ResNet, a four-layer fully connected neural network

and a residual block from the first layer to the last

layer. The neurons in the hidden layer are 10 and 15

respectively and a ReLu activation function.

Table 3. Hyperparameters of the
model.

Data set η K max iter

Breast Cancer 0.05 3 450
Ionosphere 0.01 3 150
PIMA 0.0005 3 1000
Iris 0.05 3 80
Wine 0.05 3 100

The results of the LSN P system are presented in

terms of mean accuracy, which was obtained follow-

ing 20 random trials. The maximum and minimum

fuzzy truth values are set as 0 and 1 for all datasets

while the other hyperparameters of the LSN P sys-

tem are as shown in Table 3 via trial and error. For

the PIMA datasets, due to the overlap of the high

interclass, a larger learning rate may cause the LSN

P system to oscillate and experience some difficulty

in converging.

Table 4 shows the results of the performance

evaluation and the number of configurable parame-

ters for the LSN P system. Here, it was clear that

in terms of classification problems with low input

dimensions, such as the iris problem, both the train-

ing and the testing accuracy of the LSN P system

were superior to that of the other algorithms. Mean-

while, with regard to classification problems with

medium/high input dimensions, the proposed algo-
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Table 4. Performance evaluation and the number of configurable parameters on UCI data sets.

Breast Cancer Ionosphere PIMA Iris Wine
(# parameters) (# parameters) (# parameters) (# parameters) (# parameters)

FEMa56 100/96.9(1) 100/63.8(1) 100/70.1(1) 100/96.9(1) 100/97.4(1)

DBN57 97.8/97.3(357) 96.0/90.2(607) 78.9/73.7(347) 98.6/97.4(313) 99.7/96.8(403)

ResNet58 95.0/97.3(317) 97.7/89.4(617) 77.5/72.1(305) 98.2/93.8(278) 99.6/96.5(395)

SpikeProp48 97.3/97.2(13680) 89.0/86.5(82800) 78.6/76.2(16640) 97.2/96.7(4480) 99.2/96.8(12960)

SWAT49 96.5/95.8(1404) 86.5/90.0(5304) 77.0/72.1(1404) 96.7/92.4(936) 98.6/92.3(2028)

SRESN50 97.7/97.2([432,648]) 91.9/88.6([3264,4692]) 70.5/69.9([486,756]) 96.9/97.3([144,240]) 96.9/91.0 ([390,780])

OMLA51 97.4/97.8(162) 94.0/93.5([4080,5304]) 78.6/77.9(1134) 97.9/97.9([144,192]) 98.5/97.9([312,546])

MC-SEFRON52 98.4/97.4(32508) 94.2/89.7(122808) 77.5/75.4(28896) 98.4/97.1(21672) 98.8/94.6(70434)

TMM-SNN53 97.4/97.2(48762) 98.7/92.4(184212) 79.7/78.1(43344) 97.5/97.2(28896) 100/97.5(93912)

DC-SNN54 97.4/97.8(448) 97.1/92.7(4020) 78.6/77.8(612) 96.1/97.7(297) 98.2/96.3(810)

MesT55 98.2/98.0(48762) 98.3/93.2(184212) 78.4/77.3(43344) 98.1/98.0(28896) 100/98.0(93912)
LSN P system 100/97.9(440) 100/92.6(15540) 80.9/75.6(330) 99.5/98.8(105) 100/97.5 (1680)

rithm exhibited a similar performance as the other

algorithms, while its performance in terms of train-

ing set accuracy with the classification problem was

better than that of the majority of the existing learn-

ing algorithms. Overall, nonlinear mixed selectivity

is clearly a powerful tool for addressing a variety of

classification problems.

4.4. Statistical analysis of the
performance comparison

The performance of the existing learning algorithms

(OMLA, SWAT, SRESN, etc.) were compared us-

ing the non-parametric Holm–Bonferroni procedure

in relation to all the classification datasets presented

in this paper, with the average ranks of both the

training set and the testing set under consideration.

The results of the ranking are presented in Table

5. which clearly indicated that the proposed LSN

P system achieved the highest rank among the en-

tire set of the eleven learning algorithms considered

in this study. Specifically, while the results of the

Holm–Bonferroni procedure indicated that the LSN

P system did not significantly outperform the MeST

,TMM-SNN, OMLA, FMEa and DBN learning al-

gorithm, it clearly did significantly outperform the

other six competitors. The obtained results (Tables

4 and 5) demonstrated that the proposed LSN P

system displays a good performance in classification

problems.

4.5. Image classification problem

To assess the proposed algorithm on a more complex

classification problem, we evaluate the LSN P system

on the MNIST dataset.59 The MNIST dataset con-

sists of 70000 handwritten digits with 28 × 28 pix-

els. Compared with the UCI dataset, MNIST dataset

is a large-sized dataset. The ascending dimensional

technology used directly will cause “the curse of di-

mension”, therefore, we use multi-layers convolution

and pool technique to mine the feature of an image.

For the convolution layer, three-layer small con-

volution kernels (5*5) and the number of channels

are set as 8-16-32 for each convolution layer. The

stride and padding parameter for each convolution

layer is set as 1 and 2, respectively. The max-pooling

layer is the successor of the convolution layer, the

kernel size is 2*2, the stride and padding parameter

for each convolution layer is set as 1 and 0, respec-

tively. The implementation of convolution and max-

pooling convert the original image into 32 feature

maps with the size of 3*3. The ascending dimensional

technology is applied for every feature map and the

LSN P system is proposed to recognize the class in-

formation based on ascended dimensional data. The

learning rate, the degree of Taylor polynomial and

maximum number of iterations is set as 3, 0.001

and 3000, respectively. The error signal is propagated

within the LSN P system, not backpropagate into the

multi convolution-pooling layers. That is, the weights

and biases in the multi convolution-pooling layers are

fixed at random values. The test accuracy and con-

figurable parameters of LSN P system is shown in

Table 6 and compared with the result reported in

some state-of-art learning algorithms.60–68 Further-

more, it should be noted that the number of parame-

ters of the Spiking ConvNet66 is inherited from that
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Table 5. Holm–Bonferroni procedure in terms of accuracy rate; reference al-
gorithm = LSN P (Rank = 10.4).

j Learning Algorithm Rank zj pj δ/j Hypothesis

1 MeST 9.55 -0.57 2.83e-01 5.00e-2 Accept
2 TMM-SNN 8.00 -1.62 5.28e-02 2.50e-2 Accept
3 OMLA 7.85 -1.72 4.28e-02 1.67e-2 Accept
4 FEMa 7.45 -1.99 2.34e-02 1.25e-2 Accept
5 DBN 7.40 -2.02 2.16e-02 1.00e-2 Accept
6 DC-SNN 6.45 -2.66 3.87e-03 8.33e-3 Rejected
7 MC-SEFRON 5.95 -3.00 1.35e-03 7.14e-3 Rejected
8 ResNet 4.85 -3.74 9.13e-05 6.25e-3 Rejected
9 SpikeProp 4.55 -3.94 4.01e-05 5.56e-3 Rejected
10 SRESN 3.00 -4.9 3.03e-07 5.00e-3 Rejected
11 SWAT 2.55 -5.29 6.03e-08 4.45e-3 Rejected

Table 6. Comparison with typical SNNs and DLNs

Learning algorithm Training type Accuracy (%) # parameters

NDC60 Supervised 88.2 23560

Rectangular STDP61 Unsupervised 93.5 313600

Exponential STDP62 Unsupervised 95.0 5017600

AMAP-GABP STDP63 Unsupervised 95.1 5001605

BP-STDP64 Supervised 97.2 468500

Alpha Synaptic65 Supervised 97.96 269960

Spiking ConvNet66 Supervised 99.12 51140

MCDNN67 Supervised 99.77 1932895

DropConnect68 Supervised 99.79 3125047
LSN P system Supervised 96.87 70090

of a convolutional neural network. Thus, the train-

ing of ConvNet is closer to a backpropagation-based

algorithm than to a bio-inspired learning algorithm.

Although the backpropagation-based algorithm64–68

is effective and outperformance, however, some stud-

ies show that multilayer backpropagation appears

biologically unrealistic.69 The biologically plausible

learning rule is also comparable to SNNs and DLNs.

4.6. Algorithm Complexity analysis

The time cost for spiking learning algorithms is

rather large and usually executed on parallel com-

puting units, such as FPGA and Memristor. Also

develop chips or system-on-chip for spiking neu-

ral networks have been used, see SpiNNaker70 and

TrueNorth.71 The complexity of spiking learning al-

gorithms is much higher than that of other machine

learning algorithms. The time cost is rather high

when it meets big data. For the FEMa, the time

complexity is O(n), where n is the number of train-

ing points. For the DBN algorithm, the worst time

complexity is O(2N1n + N2n), where N1 and N2 is

the maximum iteration of the contrasting divergence

algorithm and back fine-tune learning algorithm re-

spectively, n is the number of training points. The

time complexity of ResNet and the proposed algo-

rithm is O(N ·n), where N is the maximum iteration

of the training process, n is the number of train-

ing points. This phenomenon shows that the pro-

posed algorithm has a modest time cost in the case

of rather high accuracy. In terms of space cost, Tay-

lor polynomials generally produce more parameters

when compared with other algorithms such as NN

and SVM. This drawback affects the entire family of

spiking learning algorithms. On the other hand, even

spiking learning algorithms that simulate structure

and size of biological neural systems, e.g. about 1011

neurons with each neuron associated with 103 ∼ 104

synapses, the “space cost” is perfectly manageable

by a modern computer 72.
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5. Concluding Remarks

In this paper, we proposed a computational model

belonging to the family of membrane computing sys-

tems for resolving classification problems. The pro-

posed model, namely, the LSN P system, is a multi-

layer network composed of a number of WFSN P sys-

tems. The proposed model makes use of the flexibility

of membrane computing to build a learning system

that mimics the behaviour of a biological neural sys-

tem more accurately than classical neural networks.

This accuracy is achieved through the use of the mul-

tiple types of neurons and rules that P systems can

accommodate. The motivation behind this study was

based on the observation that certain classification

tasks can generally be resolved by a biological brain.

The proposed LSN P system was tested in terms

of four classification problems: a base classification

problem, a binary classification problem, a multiple

classification problem and the image classification

problem. The obtained numerical results indicated

that for all problems, the proposed LSN P system

exhibited an excellent performance. We anticipate

that in the future, the LSN P system will be ap-

plied to more sophisticated scenarios, including fault

diagnosis, handwriting recognition, natural language

processing, etc., where its powerful classification ca-

pabilities can be further exploited

Further improvements on this work will take two

specific directions. The first will involve the spike-

timing-dependent plasticity rule to adjust the weight

on the synapse, while the second will involve investi-

gating specific regularisation techniques to improve

the generalization.
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