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ABSTRACT
We present a new pixelized method for the inversion of gravitationally lensed extended source
images which we term adaptive semi-linear inversion (SLI). At the heart of the method is
an h-means clustering algorithm which is used to derive a source plane pixelization that
adapts to the lens model magnification. The distinguishing feature of adaptive SLI is that
every pixelization is derived from a random initialization, ensuring that data discretization
is performed in a completely different and unique way for every lens model parameter set.
We compare standard SLI on a fixed source pixel grid with the new method and demonstrate
the shortcomings of the former when modelling singular power-law ellipsoid (SPLE) lens
profiles. In particular, we demonstrate the superior reliability and efficiency of adaptive SLI
which, by design, fixes the number of degrees of freedom (NDOF) of the optimization and
thereby removes biases present with other methods that allow the NDOF to vary. In addition,
we highlight the importance of data discretization in pixel-based inversion methods, showing
that adaptive SLI averages over significant systematics that are present when a fixed source
pixel grid is used. In the case of the SPLE lens profile, we show how the method successfully
samples its highly degenerate posterior probability distribution function with a single non-
linear search. The robustness of adaptive SLI provides a firm foundation for the development
of a strong lens modelling pipeline, which will become necessary in the short-term future to
cope with the increasing rate of discovery of new strong lens systems.
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1 IN T RO D U C T I O N

Strong gravitational lensing has seen rapid progress over the past
decade thanks to the advent of targeted searches for strongly lensed
systems. Surveys such as the Sloan Lens ACS Survey (SLACS;
Bolton et al. 2006; Auger et al. 2009), Strong Lensing in the Legacy
Survey (SL2S; Sonnenfeld et al. 2013a), Sloan WFC Edge-on Late-
type Lens Survey (SWELLS; Treu et al. 2011) and Baryon Os-
cillation Spectroscopic Survey (BELLS; Brownstein et al. 2012)
have together found over a hundred strong galaxy–galaxy lenses.
Of these observed systems, the source and lens galaxies span a
range of redshifts, morphologies and environments and are thus
beginning to bring unique insight to our understanding of galaxy
structure and its evolution. With the number of observations set
to significantly increase over the next decade, strong lensing will
play an ever growing role in the foreseeable future of extragalactic
astronomy.

Accompanying this fast-growing data set of strong lenses has
been the development of a number of different methods for their
modelling. These fall broadly into two categories depending on
whether the source is modelled by a smooth parametric light profile
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or a discretized surface brightness distribution. Methods that fall
within the former category tend to search over a fully non-linear pa-
rameter space spanned by both the lens and source parameters. Such
methods have seen regular use in the literature, for example, in the
analysis of both SLACS (Bolton et al. 2008a) and SL2S (Gavazzi
et al. 2012) where the method has been used to confirm the lensing
nature of many systems and determine their Einstein radii. The fast
run time and ease of use creates a niche for these fully non-linear
methods but they lack sufficient accuracy to perform more complex
lens modelling and they break down with irregular source mor-
phology. Furthermore, owing to the typically large and complicated
non-linear parameter space, these methods cannot guarantee that
the global best fit has been reached.

Methods using discretized source surface brightness distribu-
tions, which we will refer to hereafter as ‘pixelized methods’, cir-
cumvent these shortcomings; reconstruction of the source using
a pixel grid inherently accounts for the possibility of an irregu-
lar source morphology and makes calculation of the source light
a linear problem (Warren & Dye 2003, hereafter WD03). This ul-
timately leads to an improved accuracy in fitting to the observed
lensed image which subsequently enables lens modelling of greater
complexity. However, pixelized methods can be computationally
more expensive to run, especially when a high-resolution source
grid is used, and typically involve a greater investment of time to
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set up. These time demands have resulted in a mixture of fully non-
linear and pixelized methods finding use in the literature, rather than
sole application of the more sophisticated pixelized methods.

A striking omission among strong lensing studies is a demon-
stration of the reliability of pixelized methods with lens models
that are more complex than simple isothermal density profiles. The
singular power-law ellipsoid (SPLE) is one such model which gives
rise to a more complex parameter space. The SPLE, with a volume
mass density of the form ρ ∝ r−α , where the power-law slope, α,
is a free parameter, is shown to be an excellent representation of
the overall density profile of early-type galaxies (ETGs; Koopmans
et al. 2006; Barnabe et al. 2009). Accordingly, the SPLE gives a sig-
nificant improvement to the fitting of strong lensing data compared
to a singular isothermal ellipsoid (SIE) profile.

SLACS, BELLS and SL2S have made great progress in measur-
ing α for over 100 strong lenses (Koopmans et al. 2006; Bolton
et al. 2012; Sonnenfeld et al. 2013a). This work indicates that
the observed total density profile of massive ETGs steepens with
decreasing redshift, a measurement now being used to constrain
galaxy formation models (Dutton & Treu 2014; Oguri, Rusu &
Falco 2014). However, determination of α was not made by fitting
an SPLE to the strong lensing data, but instead by combining the
velocity dispersion of the lens with the Einstein mass calculated
from a SIE lens profile. This gives two measurements of a galaxy’s
mass at two different radii, which is combined through either an
empirical mass scaling (Bolton et al. 2008b) or kinematic analy-
sis (Treu & Koopmans 2002; Sonnenfeld et al. 2013b). Whilst this
approach has its advantages, for example that an average slope is
measured over a relatively wide range of radii, there are also lim-
itations such as assumptions regarding lens mass sphericity when
solving the Jeans equations and the fact that the error on the veloc-
ity dispersion usually dominates the uncertainty in α (Koopmans
et al. 2009).

In this paper, we advocate the use of purely strong lens data, on
the basis that the stronger constraints arising from a full exploita-
tion of the information contained in lensed images offsets the lack
of dynamical data (and dispenses with the need for noisy kinemat-
ics). We present a new implementation of the semilinear method of
WD03, which we refer to as ‘adaptive semi-linear inversion’ (adap-
tive SLI). We demonstrate several important improvements brought
about by adaptive SLI over existing implementations. In particular,
we concentrate on the application of adaptive SLI to the reconstruc-
tion of SPLE lens models and, crucially, we show how standard SLI
introduces biases when measuring α. We also advocate the use of
the adaptive SLI method in a strong lensing reconstruction pipeline
for application to large data sets from both existing surveys, e.g.
SLACS, SL2S and SWELLS, and future surveys such as the Dark
Energy Survey (DES) and Large Synoptic Survey Telescope (LSST;
Oguri & Marshall 2010).

Several other pixelized methods have been developed over the
past decade which improve on the use of a regular Cartesian
square grid. Dye & Warren (2005) split up square pixels in high-
magnification regions to obtain a square grid adapted to the magni-
fication, however the method retains the biases we describe. Tagore
& Keeton (2014) make a number of improvements to this method
in their PIXSRC program. Dye et al. (2014) perform lens modelling
on multiwavelength observations simultaneously, a feature we have
implemented in adaptive SLI but not used in this work. Adaptive
SLI has the most in common with the adaptive grid of Vegetti &
Koopmans (2009). We will show, however, how our different ap-
proach to source plane pixelization removes biases which are still
present with their adaptive scheme.

The paper is laid out as follows: Section 2 describes the adaptive
SLI method. We first describe how source plane pixelization is
performed, followed by the linear regularization scheme and lens
mass optimization. Section 3 presents a thorough comparison of the
square and adaptive SLI methods with a focus on the biases inherent
to the SPLE lens model with a square grid. We demonstrate how
adaptive SLI removes these biases. Finally, a summary is given in
Section 4.

2 M E T H O D O L O G Y

In this section we describe the adaptive SLI method. Section 2.1 out-
lines source plane pixelization and inversion without regularization.
We introduce regularization with a fixed lens model in Section 2.2.
Section 2.3 then deals with our approach to optimization of the
non-linear lens parameters before concluding with a discussion of
practicalities in Section 2.4.

2.1 Adaptive source plane pixelization and inversion

For a fixed set of lens model parameters, the SLI method of WD03
solves the linear problem of determining the surface brightnesses of
source plane pixels such that coaddition of their individual lensed
images provides the best fit to the observed lensed image. The
goodness of fit is quantified by a merit function, G, which in the
non-regularized case is simply χ2. The solution vector, s, of source
pixel surface brightnesses, si, is given by

s = F−1 D, (1)

where the square matrix F has elements Fik = ∑J
j=1 fijfkj /σ

2
j , the

column vector D has elements Di = ∑J
j=1 fij dj /σ

2
j and fij is the

jth pixel of the lensed point spread function (PSF) convolved image
of source pixel i. dj ± σ j is the flux and statistical uncertainty of
observed image pixel j. This gives a total of I source pixels and J
lensed image pixels. In this unregularized case, for a square grid
there may exist pixels unconstrained by the lens mapping, in which
case F−1 may not exist. We refer to the method of WD03 which
uses a regular source pixel grid as ‘square SLI’ hereafter.

As noted in WD03, discretization of the source plane is unre-
stricted. Adaptive SLI exploits this freedom in the way it allocates
traced image pixels to source plane pixels. The spatial source plane
coordinates of all J traced image pixels are fed into an h-means clus-
tering algorithm (Hartigan & Wong 1979), which determines a set
of ‘h-clusters’. An h-cluster is a region in the source plane to which
a sub-set of image pixels is allocated. In this way, an h-cluster plays
the role of a source plane pixel. Each h-cluster is then defined by
its centre coordinates which are found by minimizing the statistic
E given by

E =
I∑

i=1

ei =
I∑

i=1

K∑

k=1

rk
2 . (2)

E is the sum of cluster ‘energies’, where a cluster energy ei is the
quadrature sum of the distances rk of each of its associated traced
image plane pixels to the h-cluster centre.

The h-means algorithm first calculates an initial set of h-cluster
centres dependent on the source plane coordinates of all traced
image pixels. This centre initialization is randomized, such that a
completely different set of centres will be calculated for a nearly
identical set of coordinates. As we discuss later, this randomiza-
tion is crucial in ensuring adaptive SLI addresses the discretization
biases resulting from a fixed grid. The algorithm then proceeds
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by alternating between two processes: (i) for the current set of h-
cluster centres, it allocates all traced image pixels to their nearest
h-cluster centre; (ii) for this new set of h-cluster assignments, all h-
cluster centres are recalculated. This continues until either no point
is moved or 20 iterations are performed. The resulting pixelization
of the source plane is then dependent on the spatial distribution
of traced image pixels and therefore also the magnification of the
lens model, unlike the Cartesian grid used in square SLI and in a
considerably more flexible way than the adaptive scheme of Dye &
Warren (2005).

Each source plane h-cluster is the equivalent of a source plane
pixel in the sense that all pixels in the image which belong to it
are assigned the same surface brightness. However, unlike previ-
ous adaptive schemes, the pixels are completely arbitrary in shape
and are not forced to adhere to any prescribed geometric forms
which may bias the lens reconstruction. Furthermore, minimization
of cluster energies given in equation (2) ensures that the clusters
are contiguous and do not overlap in spatial extent with neigh-
bouring clusters. To simplify plotting of reconstructed sources with
this scheme, in this paper we approximate clusters as Voronoi cells
whose centres are the cluster centres. As described in the next sec-
tion, this Voronoi gridding is also used to perform source plane
regularization. However, we stress that while used for both visual-
ization and regularization, the Voronoi grid itself is not a feature of
the adaptive gridding scheme but rather only used after the adaptive
grid is derived.

We also employ sub-gridding of the image plane, which splits
each image pixel into a set of square sub-pixels. The centres of
these sub-pixels are then traced to the source plane for the clus-
tering algorithm and inversion, rather than the centres of the full
pixels. This increases the workload1 of the clustering algorithm but
removes pixel aliasing effects from the overall inversion which as
we discuss later, are problematic when recovering lens model pa-
rameters. Note that this scheme achieves direct sub-gridding of the
image unlike the reverse approach of Treu & Koopmans (2004, see
their appendix B) who bilinearly interpolate the source plane for
each full image pixel traced there. Throughout this paper, we divide
image pixels into 4 × 4 sub-pixels except where otherwise stated.

We next mask the observed image to remove background noise.
The source plane maps only to points within this mask and there-
fore the goodness of fit is computed only for pixels within this
mask. Masks were constructed to include all pixels affected by PSF
smearing. The removal of background noise reduces the number
of coordinates fed to the clustering algorithm. This ensures both
greater efficiency and that a larger fraction of source plane pixels
are dedicated to relevant regions in the image. We note that such
tight masking can, in principle, result in additional extraneous im-
ages being masked out and thus incorrect solutions being deemed
acceptable, although in practice this can be easily checked by com-
puting final unmasked lens model images.

2.2 Source plane regularization

Regularization adds an additional linear term, GL, weighted by
a scalar, λ, referred to as the regularization weight, to the merit
function such that G = χ2 + λGL. In essence, this acts like a
prior by more heavily penalizing reconstructed sources which are
less smooth. In this way, regularization suppresses overfitting to the

1 The increase in clustering workload results in an insignificant increase to
the duration of one full iterative step when optimizing lens model parameters.

image noise. The solution vector s of source pixel brightnesses is
then

s = [F + λH]−1 D , (3)

where H is the regularization matrix which relates to the second
derivative of GL as detailed by WD03. Unlike the unregularized
case, for which F−1 may not exist, in this case [F + λH]−1 is guar-
anteed to exist for any sensible regularization scheme.

The regularity of a square grid makes regularization very straight-
forward, but with an adaptive grid, this is less so. We opt to use a
Voronoi-neighbour based regularization scheme of the form

GL =
I∑

i=1

Nv∑

n=1

[si − si,v]2 , (4)

where we use the h-cluster centres to determine the Nv Voronoi
neighbours for each cluster. Specifically, for each source plane pixel
we find all neighbouring pixels with which it shares a Voronoi ver-
tex, with this Voronoi grid derived from the h-cluster centres. This
scheme then computes the difference in surface brightness between
neighbouring source pixels, analogous to gradient regularization for
a square grid.

The primary motivation for using this scheme is that it ensures
regularization between pixels is evenly spread. We initially tested
a nearest-neighbour scheme which regularized each source pixel
with its three nearest neighbours. While this scheme still gave gen-
erally accurate results, it did not spread the regularization across
source pixels evenly. For example while every pixel had three near-
est neighbours with which they were paired to be regularized with,
some pixels were the neighbour of more or less than three pixels.
A consequence of this uneven spreading was that at caustic edges,
where the cluster centres within the caustic are closer together, pix-
els were predominantly paired only to those also inside the caustic.
This uneven spread of source regularization resulted in inaccurate
source reconstruction at caustic edges and systematically offset lens
parameter estimation. Our Voronoi scheme corrects this, pairing all
pixels evenly and ensuring accurate source reconstruction and pa-
rameter estimation at caustic edges.

Different approaches to source plane pixelization have led to a
variety of regularization schemes appearing in the literature. For
example, the Voronoi grid of Vegetti & Koopmans (2009) uses a
scheme analogous to curvature regularization whilst Tagore & Kee-
ton (2014) present multiple schemes for their square grid adaptive
mesh, including one which imposes a Sérsic light profile on source
reconstruction. It is likely that different regularization schemes will
suit different types of source morphology. The degree to which this
effect influences lens model parameters is beyond the scope of the
current work. Nevertheless, we find that our scheme outlined here
is perfectly adequate for the test cases investigated in this work.

2.3 Model optimization

The SLI method was placed within a Bayesian framework by Suyu
et al. (2006, hereafter S06), allowing the regularization weight to
be set automatically by the data. Adaptive SLI uses this Bayesian
wrapper in the form derived by Dye et al. (2008) and given by

− 2 ln ε = χ2 + ln [det(F + λH)] − ln [det(λH)]

+λsTH s +
K∑

k=1

Jk∑

j=1

ln
[
2π(σ k

j )2
]

, (5)

where ε is the Bayesian evidence which is maximized.
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There are three levels of inference in our model optimization.
At the first level the model is assumed true (i.e. mass model and
λ are fixed) and we solve for the source surface brightnesses that
best fit the observed image, as described in Section 2.1. The second
level finds the hyper-parameter, λ, which maximizes the evidence
for a given set of lens model parameters. This normalizes the pos-
terior probability distribution in both lens and hyper-parameters to
give the most probable solution. Dye et al. (2008) set a second
hyper-parameter at this level, the ‘splitting factor’, which deter-
mines the magnification threshold beyond which source pixels are
split into finer pixels. In principle, we could introduce an additional
hyper-parameter to our adaptive SLI to mimic this behaviour, for
example, the source grid resolution. However, since this reduces
computational efficiency, we opt not to implement it in this work.
The third and final level of inference then maximizes ε to calculate
the most probable lens model. This is a search of the posterior dis-
tribution of the lens parameters. We adopt the approximation of S06
by assuming that the probability distribution for λ is a delta function
which permits direct comparison of evidence between models. In
this work, we use this three-tier approach for model optimization in
the case of both square and adaptive SLI. In some instances, when
demonstrating the effects of fixing the regularization weight, we in-
stead minimize the more basic merit function G = χ2 + λGL. This
is simply motivated by the fact that the other terms in the evidence,
as given in equation (5), remain constant in this case.

2.3.1 Data discretization

Square SLI uses a fixed source plane grid, giving a non-linear param-
eter space which is smooth over small scales. A small perturbation
to the lens parameters gives only a small change in ε. This is because
the source plane coordinates of traced image pixels remain nearly
identical; the way the data is discretized, i.e. the allocations between
image and source pixels also remains nearly identical. Source and
image reconstruction then proceeds essentially unchanged, leading
to only a fractional change in ε.

With adaptive SLI, small perturbations to the lens parameters
have a far more pronounced effect. Although the initial traced im-
age pixel coordinates are nearly identical, their use in calculating
the initial h-cluster centres is randomized. This means that even a
tiny perturbation to these coordinates gives a different set of initial
h-cluster centres. Given a different initialization, the clustering al-
gorithm will then ultimately calculate a completely different set of
final h-clusters and thus a completely unique source plane pixeliza-
tion. Overall, source and image reconstruction remain similar given
the lens model only changes minimally, however a relatively large
change in ε is still possible. This is because for each lens model,
adaptive SLI performs data discretization in a different and unique
way, giving fij matrices that are potentially very different.

Adaptive SLI is seeded such that identical lens parameters de-
rive the same set of clusters, F matrix and therefore ε. However,
initialization is different for perturbations to the lens parameters
of the order of just one part in 108, a scale far smaller than that
which model optimization probes. Therefore, in the context of a
full non-linear search, the inversion of every lens model uses a set
of h-clusters which always discretize the data in a different, unique
and unrelated way.

The notion of data discretization being unrelated to previous dis-
cretizations turns out to be vitally important. This property is not
present in previous methods since in these methods, pixelization is
computed in a manner that is deterministic and/or smoothly vary-

Figure 1. Inversion of image 1 (see Fig. 2) using the true lens model except
the velocity dispersion, σ , which is varied over ±0.5 km s−1 about the true
value. Square SLI (dashed line) gives a smooth and relatively noiseless evi-
dence. Adaptive SLI (solid lines) gives rise to a much noisier and fluctuating
evidence, owing to its constantly changing data discretization. The evidence
is noisy both with (grey line) and without (black line) sub-gridding, although
sub-gridding acts to slightly reduce the noise.

ing with lens model parameters. A consequence of this for our
adaptive scheme, however, is that the non-linear parameter space
is very noisy, making determination of convergence and parameter
marginalization challenging.

This is illustrated in Fig. 1. The figure shows the variation of
evidence with velocity dispersion, σ , computed using the set-up for
simulated image 1 described later, keeping all other lens parameters
fixed. We show this variation for square SLI and adaptive SLI
with and without image sub-gridding. Square SLI gives rise to a
relatively smooth evidence surface as σ is varied. However, in the
adaptive SLI case, large jumps in ε occur even over the very small
steps in σ of 1 m s−1 plotted, as a result of the unrelated data
discretization with each step. Image sub-gridding slightly lessens
the size of the jumps by largely removing pixel aliasing effects but
the discretization effect remains present.

2.4 Optimization practicalities

Our non-linear search must be suited to sampling this noisy and
fluctuating parameter space. This is something traditional Markov
Chain Monte Carlo searches are not equipped to deal with, owing
to their reliance on a walk up a relatively smooth likelihood sur-
face. Therefore, we instead use the MULTINEST algorithm (Feroz &
Hobson 2007; Feroz, Hobson & Bridges 2009), which implements
the nested sampling Monte Carlo technique of Skilling (2006). The
algorithm initially generates a set of live points within parameter
space which probe the smoother large scales to map out the high
evidence regions. The lowest evidence points are subsequently re-
placed iteratively, resulting in convergence towards high evidence
regions where noise slowly becomes more prominent. We find that
this is a very efficient way to cope with the noise within our pa-
rameter space and with a sufficient number of live points, MULTINEST

accurately determines the most probable solutions. We use MULTI-
NEST to perform model optimization with both square and adaptive
SLI, the latter requiring comparatively more iterations to complete
given its noisy parameter space.

A well-recognized problem when performing model optimiza-
tion of strong lens data is the existence of unwanted solutions which
correspond to either an over- or underestimated lens mass. In both
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cases, the reconstructed source resembles a demagnified version of
the observed lensed image rather than a much more compact source
at the correct solution. While regularization ensures that the evi-
dence of these solutions is well below that of the global maximum,
they occupy a large volume of parameter space which MULTINEST

can waste significant time exploring. We therefore apply a set of
coupled priors which ensure that these incorrect solutions are not
accessible to MULTINEST. We determine these with a grid search over
the lens parameters α, the axis ratio, q, and the velocity dispersion,
σ , to identify the distinct and isolated regions where the incor-
rect solutions lie. Initial MULTINEST sampling then uses randomized
triplets of σ , q and α drawn from this region, with care taken to
ensure the entire volume of this region is sampled and no viable
solutions are trimmed or lost. After MULTINEST has run for a while
and achieved a specific accuracy, it switches to elliptical sampling
mode where the current live points create an ellipsoidal sampling
contour in parameter space and σ , q and α are then drawn instead
from these contours.

Once sampling is complete, the set of all accepted points, in-
cluding the current live points, then map out the evidence surface
in parameter space. Each parameter is marginalized over in one di-
mension to calculate its posterior probability distribution, of which
the median is computed to give final parameter estimates. Errors
presented correspond to 1σ confidence bounds, i.e. the 16th and
84th percentile of the posterior probability distribution.

3 C O M PA R I S O N O F SQUA R E A N D A DA P T I V E
SLI

In this section, we demonstrate the advantages of the adaptive SLI
method over conventional square SLI. In particular, we emphasize
a variety of reconstruction biases inherent with square SLI which
adaptive SLI eliminates. Our comparison makes use of the SPLE
lens model which has a volume mass density profile of the form

ρ(r) = ρ0(r/r0)−α, (6)

with a variable power-law index, α, and fixed normalization ρ0r
α
0 .

We also use an SIE lens profile achieved by fixing α = 2.
Deflection angles are computed using the formalism of Keeton

(2001) which uses an equivalent velocity dispersion parameter, σ ,
for lens mass normalization, relating to the Einstein radius, b, by
σ =

√
(bc2/4π)(Dos/Dls), where Dos and Dls are the angular di-

ameter distances from the observer to the source and from the lens
to the source respectively. The SIE model has a total of five free
parameters; the coordinates of the lens centre, (x, y), the velocity
dispersion, σ , the axis ratio, q (semiminor axis/semimajor axis), and
lens rotation angle, φ, defined counter-clockwise from the y-axis.
The SPLE model has the additional sixth parameter, the density
slope, α.

We use two synthetic lensed images in our comparison. These
are generated using a SPLE lens model with parameters (x, y) = (0,
0), σ = 285 km s−1, q = 0.8, φ = 45 ◦ and α = 2. Both images have
a pixel scale of 0.048 arcsec and are convolved with a Gaussian
PSF with a full width at half-maximum (FWHM) of 0.13 arcsec.
A Gaussian noise map to mimic fixed read noise is added to both
images, giving a total signal to total noise ratio (S/N) of 116 and 104
in the masked regions of image 1 and 2, respectively. Sources are
modelled as 2D symmetric Gaussians with FWHM = 0.071 arcsec.
The source of image 1 is centred exactly on the optic axis, giving an
Einstein cross image, whereas in image 2, the source is positioned
just above the top-right cusp of the inner caustic, giving a standard
cusp-caustic image. We place the source at a redshift of z = 3.0,

the lens at a redshift of z = 0.3 and the cosmological parameters
assumed are 
m = 0.3, 
� = 0.7 and h = 0.7. Fig. 2 shows
both simulated images, their masks and corresponding simulated
sources.

It is likely that accurate modelling of these images is more chal-
lenging than the majority of real lensed images. As Lagattuta &
Vegetti (2012) discuss, the typically more irregular distribution of
light in a real source gives rise to a less degenerate lensed image
which in turn allows tighter constraints on the lens modelling. More-
over, our S/N and image resolution are selected to be lower than
that presently achieved in the highest quality strong lensing data
sets. In addition, multiwavelength observations of strong lenses are
becoming commonplace and through their simultaneous analysis,
offer lens modelling of even greater accuracy (e.g. Dye et al. 2014).
Our results therefore offer a fairly conservative view of what can
be achieved with higher quality and more comprehensive imaging
but nevertheless provide a suitable basis upon which to make our
comparison of inversion methods.

3.1 Source plane pixelization

The top row of Fig. 3 shows the source plane pixelization and
reconstruction of image 1 using the input lens model for both square
and adaptive SLI. There are clear disadvantages with the use of a
fixed grid in square SLI. (i) The grid is set up prior to the inversion,
meaning that both the grid size and position are not determined
by the lens model and that it may align poorly with the intrinsic
distribution of source light. (ii) The fixed pixel area results in a
highly varying magnification between source pixels such that a
sub-set of pixels will dominate the inversion and unevenly spread
the uncertainty. (iii) Outer source pixels may not map to any image
pixels and are then constrained solely by regularization.

By contrast, adaptive SLI’s pixelization matches the lens model
magnification and completely removes the need to specify a source
plane size or location. Furthermore, uncertainty between source pix-
els is more evenly spread and there are no source pixels constrained
solely by regularization.

The bottom row of Fig. 3 shows two additional source recon-
structions performed on the adaptive grid. Both use the same lens
model as before apart from a tiny perturbation to the velocity dis-
persion of ±1 m s−1 (i.e. a fractional change of 3.5 × 10−6). All
three adaptive pixelizations are globally similar, as expected given
the almost identical magnification pattern, but upon closer inspec-
tion, it is apparent that the source pixels have significantly different
centres, sizes and shapes. We stress again that we use Voronoi cells
to simplify plotting whereas the underlying source pixelization is
set by clusters of traced image pixels. The figure serves to illustrate
the effect described in Section 2.3.1, whereby adaptive SLI derives
a completely different set of h-clusters for every lens model and
therefore always discretizes the source plane data in a unique and
unrelated way.

3.2 SIE lens parameter estimation

Our next aim is to investigate how well the square and adaptive SLI
methods can recover the parameters of the input lens model used
to generate our simulated images. In this section, we consider the
simpler case of the SIE model, i.e. we fix the density slope to α = 2
to match the input value.

In this case, the non-linear search has five free parameters which
we limit with top hat priors to reduce the search volume of parameter

MNRAS 452, 2940–2959 (2015)



Adaptive semi-linear inversion 2945

Figure 2. Top row – simulated images 1 and 2 generated with the same input SPLE lens model (lens x and y offsets = 0, σ = 285 km s−1, q (b/a) = 0.8,
φ = 45 ◦ and α = 2.0). Images have a pixel scale 0.048 arcsec, are convolved with a Gaussian PSF with FWHM = 0.13 arcsec and have S/N=116 and 104.
Only pixels within the image masks, plotted with a dashed line, are used during an inversion. Bottom row – simulated sources of images 1 and 2 created using a
symmetric Gaussian with FWHM = 0.071 arcsec, located centrally for image 1 (x = y = 0 arcsec) and on the top-right caustic cusp for image 2 (x = 0.1 arcsec,
y = 0.18 arcsec). The caustic and magnification are illustrated by the black dots which are traced image pixels for the entire image plane using the input lens
model.

space: x and y (each with priors −0.05 to 0.05 arcsec), σ (prior 260–
305 km s−1), q (prior 0.7–0.9) and φ (prior 40 ◦–50 ◦). For the square
SLI, we set the source plane grid to a size of 0.5 arcsec × 0.5 arcsec
with 20 × 20 pixels. The adaptive SLI grid has an arbitrarily large
source plane size and we use 200 adaptive pixels. Both inversions
use image sub-gridding of 4 × 4. We check all results to ensure that
none has a solution near a prior edge.

The results are shown in Table 1. As the table shows, both meth-
ods estimate all parameters correctly with similar errors for both
images.

3.3 SPLE lens parameter estimation

In this section, we apply square and adaptive SLI to our simulated
images with the more general SPLE lens profile. We use the same
inversion set-up as in Section 3.2 and the same priors on the lens
position and φ. We use a top hat prior on α over the range 1.75–2.25
and we calculate σ and q using randomized triplets as described in
Section 2.4.

Our initial run using square SLI finds α = 2.041+0.026
−0.037 for image

1 and α = 2.114+0.0585
−0.0530 for image 2. Clearly, both results are incon-

sistent with the input lens model. As we discuss below, this failure is
due to degeneracies within the SPLE lens profile and biases within
the square SLI method itself.

In terms of degeneracies, the SPLE model has the well-
documented mass-slope degeneracy, whereby a more centrally con-
centrated mass distribution (i.e. higher α) and a lower overall lens
mass normalization produces a similar lensing effect (and vice
versa). The net result of this is a geometric scaling of the source
plane, such that the source expands for increasing α. This is similar
to both the fully degenerate mass-sheet transformation (Schneider
& Sluse 2013) and source plane transformation (Sluse & Schnei-
der 2013), where a transformation of the lens mass alongside a
geometric scaling of the source plane produces an identical set of
observables. As shown in Schneider & Sluse (2013) and Sluse &
Schneider (2013), both these degeneracies are formally broken for
the specific case of a SPLE lens, ensuring that for our simulated im-
ages the correct lens model corresponds to a unique solution, which
can be measured providing modelling is performed accurately. We
stress that these degeneracies are broken only because we know
an SPLE model was used to create our lensed images. However a
strong degeneracy is still present and our lens parametrization is
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Figure 3. Top row – a comparison of square and adaptive SLI pixelizations for image 1 using the input lens model. Bottom row – two additional adaptive SLI
pixelizations using the input lens model but with σ perturbed by +1 m s−1 (left) and −1 m s−1 (right). The reconstructed source for each inversion is overlaid.
The square grid has a resolution of 20 × 20 pixels and size 0.5 arcsec × 0.5 arcsec. The adaptive grid uses a resolution of 200 pixels and an arbitrarily large
size to contain all traced image pixels (but shown here at 0.64 arcsec × 0.64 arcsec for comparison). All four inversions use image sub-gridding of 4 × 4;
however, to reduce the image size each black dot shows the traced location of image sub-pixels derived for sub-gridding of size 2 × 2. Red dots correspond to
each h-cluster centre. Note that source pixels are more organically shaped than the Voronoi cells which we display purely for clarity.

such that the degeneracy is also dependent on the axis ratio pa-
rameter, q. We refer to this three-way degeneracy as the ‘σ–q–α

degeneracy’ hereafter.
To illustrate this degeneracy we fit an SPLE lens profile to im-

age 1 using square SLI, with α fixed to 1.9, 2.0 and 2.1. The
most likely solution for each is given in Table 2 and the corre-

sponding image and source reconstructions are shown in Fig. 4.
The top row of Fig. 4 shows the lensed reconstructed source of
each solution, where it is immediately clear that solutions within
this degeneracy produce near-identical images. In the middle and
bottom rows of the figure, the geometric source scaling is clearly
visible.

Table 1. Estimated SIE lens parameters for both square and adaptive SLI using images 1 and 2. Square SLI
has a source plane resolution of 20 × 20 and size 0.5 arcsec × 0.5 arcsec. Adaptive SLI uses 200 source pixels.
Both inversions use image sub-gridding of 4 × 4. Both methods accurately model an SIE lens profile.

Image Method x y σ q ( = b/a) φ (◦)
(arcsec) (arcsec) (km s−1)

1 Adaptive −0.0003+0.0015
−0.0020 0.0010+0.0016

−0.0020 284.930+0.260
−0.197 0.8003+0.0022

−0.0026 44.578+0.166
−0.186

1 Square 0.0001+0.0023
−0.0016 0.0003+0.0022

−0.0023 285.057+0.253
−0.284 0.7991+0.0027

−0.0028 44.648+0.213
−0.228

2 Adaptive −0.0009+0.0038
−0.0031 −0.0043+0.0067

−0.0080 285.550+0.449
−0.449 0.7954+0.0042

−0.0043 45.709+0.514
−0.564

2 Square 0.0001+0.0041
−0.0045 −0.0063+0.0064

−0.0077 285.740+0.551
−0.574 0.7932+0.0054

−0.0055 45.540+0.549
−0.524
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Table 2. The most likely
parameters determined by
square SLI on image 1 for a
SPLE lens model with α fixed
to 1.9, 2.0 or 2.1. These are
the parameters used to plot the
image and source reconstruc-
tions in Fig. 4.

σ (km s−1) q (b/a) α

296.841 0.8381 1.9
285.033 0.8010 2.0
276.286 0.7564 2.1

This poses a significant challenge to lens modelling. Although
square SLI has the sensitivity to find the maximum evidence, the
presence of even minor systematic biases within this degeneracy
will push the solution a long way from the true parameter set. Such
biases arise due to the arbitrary manner in which the square source
plane is gridded as well as features inherent to the method itself. In
the following sub-sections, we describe these biases in detail and
demonstrate how adaptive SLI removes them.

3.3.1 Bias 1: the number of traced image pixels

In our preceding square SLI example, we used a source plane size of
0.5 arcsec × 0.5 arcsec as a compromise between being sufficiently
large to encompass the source light and small enough not to com-
promise the source plane resolution. A consequence of this is that a
significant fraction of image pixels trace back to locations outside
the source plane. Some of these image pixels which trace to just
outside the edge of the source plane still constrain the source due
to PSF convolution and sub-gridding, but many will not, and yet all
image pixels contribute to the χ2 term in equation (5). As Vegetti
& Koopmans (2009) point out, as the lens model is iterated during
optimization, the number of image pixels which trace to a point
within the defined source plane area can vary. The resulting varia-
tion in the number of degrees of freedom (NDOF) causes problems
for model inference if not taken into account.

To explore the effect of varying the NDOF, we use a square
source grid with a fixed SPLE model and vary the number of image
sub-pixels, Ni, that trace to within a circular source plane aper-
ture centred on the reconstructed source. By varying the radius of
this aperture and ignoring traced image pixels outside it, (i.e. we
set a null image for all exterior source pixels in fij described in

Figure 4. Top row – reconstruction of image 1 with square SLI using the most likely lens models given in Table 2 with α fixed to 1.9, 2.0 and 2.1. Middle row
– the corresponding reconstructed source obtained from square SLI (resolution 20 × 20, size 0.5 arcsec × 0.5 arcsec; caustic overlaid). Bottom row – the same
lens reconstruction but using adaptive SLI (200 source pixels). Both inversions use image sub-gridding of 4 × 4. The geometric scaling of the source plane
with α is immediately clear. Ni is the number of traced sub-gridded image pixels within the source plane. NPix is the number of source pixels with a count
above 1.5 times the background noise, highlighted by a bold pixel edge.
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Figure 5. Reconstruction of image 1 with the input lens model. To in-
vestigate the effect of changing the number of traced image pixels, Ni, a
circular mask is placed around source reconstruction and only points within
the mask are then used by the inversion. The mask shown by the thick line
corresponds to the smallest decrease in Ni and that shown by the dashed line
corresponds to the largest decrease in Ni. All other masks have intermediate
radii thus gradually reducing the value of Ni. All points omitted correspond
to background noise in the observed image.

Section 2.1), we vary Ni. The number of source pixels are kept con-
stant so as not to contribute to the changing NDOF; those pixels not
within the aperture remain constrained by regularization. This mim-
ics the effect of image pixels tracing outside a regular source plane
but without the added complication of varying the parametrization
of the problem.

We note that we calculate the NDOF as the number of image
pixels which successfully trace within the circular source plane
aperture minus the total number of source plane pixels, which is
fixed to 400. As discussed in S06, regularization correlates source
pixels thus decreasing the number of effective source pixels and
increasing the ‘true’ NDOF. Since in the example presented here we
allow the regularization weight to change, the number of effective
source pixels is varying and thus this does contribute to a change
in the ‘true’ NDOF. When referring to the NDOF we are ignoring
correlations between source pixels due to regularization, instead
holding its value fixed to 400. Either way, our interpretation of the
Ni bias does not depend on our definition of the NDOF, as Figs 6–8
are plotted and discussed as functions of Ni.

We first reconstruct image 1 using the input lens model and
investigate how λ and ln ε scale with Ni by changing the source
plane aperture radius. The χ2 term in the evidence is calculated in
the same fixed image mask for each aperture radius. Fig. 5 shows
the range of mask radii we use.

The results plotted in Fig. 6 show that as Ni increases, the regular-
ization weight (selected by maximizing the evidence) also increases.
However, the evidence falls with increasing Ni and thus lens opti-
mizations which allow the number of image pixels that trace to the
source plane to vary are biased towards lens models which give a
lower overall magnification. This is a manifestation of the σ–q–α

degeneracy.
To understand this behaviour at a more fundamental level, we

investigate this further in Fig. 7 by plotting the variation of two
components of the evidence as expressed in equation (5). The first
component is simply χ2, which as expected, reflects poorer image

Figure 6. Dependence of the regularization coefficient λ (thick black) and
evidence, ε, (dashed grey) on the number of traced image pixels Ni. A
reduction in Ni results in a lower λ being set and higher overall value of ε.

Figure 7. Dependence of the image residual subtraction χ2 (thick black)
and evidence regularization terms (dashed grey) on the number of traced
image pixels Ni. A reduction in Ni results in a worse residual fit and lower
regularization terms.

reconstruction by becoming larger as Ni is reduced. The second
component we plot is the sum of the second, third and fourth terms
in equation (5) which together account for the regularization depen-
dence of the evidence. The figure shows that despite poorer image
reconstruction, the overall behaviour of the evidence is dominated
by the more rapidly varying regularization terms (note that the sum-
mation of both terms determines the behaviour of −2ln ε since the
last term in equation 5 is constant).

Since the evidence appears to cause a bias towards solutions with
fewer traced image pixels, we repeat this analysis with a fixed value
of λ and the non-Bayesian merit function G = χ2 + λGL, originally
advocated by WD03. The results are plotted in Fig. 8 which shows
that, in exactly the same way that χ2 in Fig. 7 behaves, the bias is
now present in the opposite sense, whereby solutions favoured are
those with the highest value of Ni. This is more intuitive given that
image reconstruction should be more accurate when given every
possible data point. This demonstrates that regardless of whether
the evidence is used or not, lens modelling with a varying NDOF
will be biased to solutions which either minimize or maximize Ni

and accurate lens modelling with the SPLE profile therefore requires
this to be fixed throughout model optimization.
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Figure 8. Dependence of the image residuals χ2 (thick black) and overall
merit function χ2 + λGL (dashed grey) on the number of traced image
pixels Ni where the evidence term of equation (4) is not used and λ is fixed.
A reduction in Ni results in a higher χ2 and higher overall merit function
χ2 + λGL.

In the case of the SIE profile, while this bias is still present,
the σ–q–α degeneracy, which allows the source to geometrically
scale, is not. Therefore, even though square SLI allows the NDOF
to vary, only parameter sets near the true SIE model actually give
accurate image reconstructions. The variation of the χ2 term in
the evidence for the SIE profile dominates the variation of the
regularization terms. In the case of the SPLE profile, the evidence
coupled with the σ–q–α degeneracy tries to minimize Ni which
corresponds to positively biasing α thus explaining the incorrect
lens models initially found. Of course a cut-off will be reached when
the expanded source covers the entire source plane and the increase
in the contribution from the regularization terms in the evidence
from reducing Ni is offset by the more rapidly increasing χ2 term as
source light is lost and the observed lensed image becomes poorly
fit.

One would therefore expect a relationship between the source
plane size and the bias in α, �α = αcalc − αtrue. Reverting back to
the Bayesian merit function, a larger source plane allows solutions
corresponding to higher α to be attained before the source expands
outside the source plane boundary. Fig. 9 confirms that �α does
increase with increasing source plane size as expected. This contin-
ues until a turnover point when the source plane starts to become
larger than the maximum extent of the source expansion allowed by
the σ–q–α degeneracy. Just beyond the turnover point are interme-
diate values where Ni still varies but the source plane becomes large
enough to lessen the bias. The turnover occurs at different source
plane sizes between images 1 and 2 due to differences in the source
position with respect to the image caustic and thus differences in
Ni.

The requirement that the NDOF must be fixed during lens op-
timization is naturally satisfied by the adaptive SLI method since
every source plane pixelization is derived directly from the mag-
nification map and is independent of the source plane size which
keeps Ni fixed. Other inversion methods found in the literature have
also identified this problem (for example, Vegetti & Koopmans
2009; Suyu et al. 2013; Collett & Auger 2014), although the level
of efficacy with which it has been managed is somewhat variable.
Nevertheless, as we discuss below, there are other more pertinent bi-

Figure 9. α bias, �α = αcalc − αtrue, plotted against source plane size
for both images 1 and 2. All points are generated using a full MULTINEST

non-linear search.

ases which have not been fully appreciated and which are explicitly
addressed by adaptive SLI.

3.3.2 Bias 2: discreteness biases

Following our discussion in the previous sub-section, we fix the
NDOF hereafter when using square SLI, by increasing the source
plane size to 0.7 arcsec × 0.7 arcsec. We also narrow the priors on
the lens offsets to ±0.02 arcsec and on φ to ±2◦ to reduce caustic
movement and we use a prior on α of ±0.15 to limit the largest caus-
tic size. These changes are applied to the inversion of both images 1
and 2 and we maintain a source plane resolution of 20 × 20 pixels.
As discussed, these changes to the inversion set-up lead to a far less
efficient and less robust inversion, demonstrating the disadvantage
of using a fixed grid which is initialized independently of the lens
model. Results presented using adaptive SLI retain the wider priors
given at the beginning of this section, i.e. those used for the SIE
profile and α between 1.75 and 2.25.

Despite these changes, SPLE modelling with square SLI con-
tinues to be both inaccurate and dependent on the way in which
the source plane is pixelized. Similar findings have also been made
by Suyu et al. (2013) who found that the dominant systematic
uncertainty in their lens modelling is source plane resolution and
Tagore & Keeton (2014) who showed that the results of an SIE
lens model change if the set-up of either the observed image (noise
map, telescope pointing) or source plane (regularization scheme)
is varied. Clearly, these systematic effects must be eradicated in
order to robustly determine lens model parameters and their error
distributions.

The importance of data discretization was, in fact, already high-
lighted in Fig. 1, where adaptive SLI’s noisy parameter space is a
direct consequence of changing just the source plane discretization.
The figure shows that a change in the data discretization can give
a relatively large change in the value of ln ε � 10. The scale of
this change is comparable to the scale over which solutions within
the σ–q–α degeneracy vary and therefore selecting a single source
plane discretization with square SLI will generally give rise to a
significantly biased solution. We hereafter refer to this effect as
‘discreteness bias’.
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Table 3. The values of α estimated using square SLI on a set of nine phase-shifted grids. Each result corresponds to an
individual non-linear search with the NDOF fixed for every lens model. For the third to sixth columns the source plane is size
0.7 arcsec × 0.7 arcsec and resolution 20 × 20 pixels. The first third and fourth columns are results for images 1 and 2 without
image sub-gridding and the fifth and sixth apply to sub-gridding of 4 × 4. The seventh column corresponds to a high resolution,
36 × 36, square grid for image 2 with sub-gridding of 4 × 4 and fixed λ set by maximizing equation (5) and merit function
G = χ2 + λGL. The bottom two rows show the marginalized value of α when summed over all nine phase shifts and the value
given by adaptive SLI. The PDFs are plotted in Figs 10 and 11.

Phase Phase Image 1: Image 2: Image 1: Image 2: Image 2:
shift x shift y no sub-gridding no sub-gridding sub-gridding 4 × 4 sub-gridding 4 × 4 high resolution

(36 × 36)

0. 0. 1.9533+0.0071
−0.0058 2.0616+0.0165

−0.0213 2.0017+0.0217
−0.0423 2.0277+0.0433

−0.0311 2.0506+0.0495
−0.0509

0.25 0. 1.9944+0.1060
−0.0345 1.9480+0.1064

−0.0379 2.0182+0.0147
−0.0167 2.0715+0.0241

−0.0353 2.0581+0.0453
−0.0599

0.5 0. 2.0631+0.0171
−0.0159 1.9777+0.0087

−0.0128 2.0247+0.0162
−0.0180 2.0884+0.0202

−0.0316 2.0500+0.0509
−0.0573

0. 0.25 2.0368+0.0117
−0.0153 2.0584+0.0118

−0.0156 2.0097+0.0099
−0.0234 2.0154+0.0343

−0.0309 2.0484+0.0511
−0.0429

0.25 0.25 2.0238+0.0165
−0.0191 1.9581+0.0114

−0.0159 2.0058+0.0143
−0.0129 2.0488+0.0375

−0.0435 2.0526+0.0518
−0.0552

0.5 0.25 2.0326+0.0150
−0.0074 1.9860+0.0066

−0.0123 2.0172+0.0170
−0.0111 2.0850+0.0253

−0.0697 2.0479+0.0553
−0.0467

0. 0.5 2.0415+0.0120
−0.0156 2.0871+0.0095

−0.0115 1.9987+0.0174
−0.0213 2.0260+0.0251

−0.0319 2.0545+0.0496
−0.0484

0.25 0.5 2.0137+0.0357
−0.0189 2.0905+0.0070

−0.1032 2.0032+0.0162
−0.0132 2.0472+0.0253

−0.0306 2.0565+0.0483
−0.0627

0.5 0.5 2.0319+0.0174
−0.0074 2.0047+0.0066

−0.0223 2.0226+0.0155
−0.0151 2.0631+0.0319

−0.0477 2.0505+0.0533
−0.0490

Average 2.0289+0.0187
−0.0635 1.9921+0.0779

−0.0365 2.0091+0.0144
−0.0194 2.0437+0.0372

−0.0414 2.0455+0.0410
−0.0502

Adaptive SLI 1.9481+0.0072
−0.0038 2.0934+0.0031

−0.0077 1.9958+0.0258
−0.0354 2.0231+0.0278

−0.0242 N/A

We test for discreteness biases by calculating lens models for
images 1 and 2 with square SLI, using the set-up described above to
fix the NDOF. However, for each lens model, we shift the position
of the square grid by a fractional pixel width. This gives a small
change in the data discretization such that there is a minor shift
in the overall allocation between image and source pixels for an
identical lens model. For each image we perform modelling using
nine different phase shifts spread over a 3 × 3 pattern, with sub-
gridding off and with sub-gridding of 4 × 4. Every non-linear search
uses 200 active MULTINEST points.

The results are shown in Table 3. The third and fourth columns
show the value of α obtained for each image without sub-gridding.
Phase shifting of the square grid directly impacts the value of α

estimated, with several of the values of α being significantly bi-
ased for both images. This demonstrates the effect of discreteness
bias. For comparison, in the last row of the table we also show
the results of adaptive SLI using 200 clusters, an arbitrarily large
source plane and 300 active MULTINEST points. As the table shows,
adaptive SLI also calculates an incorrect lens model without sub-
gridding because pixel aliasing effects in the image dominate the
inversion. Like Tagore & Keeton (2014), we also find that changing
the synthetic image noise realization changes the resulting set of
most probable lens parameters obtained if image sub-gridding is
not used.

The results of removing pixel aliasing by applying image sub-
gridding are shown in the fifth and sixth columns of Table 3. The
values of α obtained from image 1 with square SLI are now con-
sistent with the input lens model, although an element of scatter
still indicates the effect of source plane discretization. However, α

obtained with square SLI from image 2 continues to be significantly
discrepant with the input value, with many values inconsistent at
the 3σ confidence level. Applying sub-gridding with adaptive SLI
returns accurate values of α for both images.

We represent these results graphically in Fig. 10, where the
marginalized one-dimensional posterior distribution function (PDF)
of the sum of all nine phase shifts for square SLI, marginalized over

α, is plotted for both images with a thick black line. Alongside this,
the PDF of each individual phase shift is also shown, scaled by 1

3
for clarity. The PDF given by adaptive SLI is shown with a dashed
black line. The figure shows that although the summed PDF for
image 1 is consistent with the input value of 2.0, in image 2, this
is much less so. Since narrower lens model priors were introduced
for square SLI in this section, the PDF for α for image 2 falls off
more rapidly towards α = 2.15 which artificially lessens the incon-
sistency that would have otherwise been observed. Weighting the
calculation of the summed PDF by evidence gives near-identical
results owing to the small difference between the evidence values
of each individual PDF.

Conversely, as Table 3 and Fig. 10 show, adaptive SLI is accurate
for both images. The fact that data discretization is different and
unique for every trial lens model parameter set, regardless of the
size of the change in parameters, underlies the reliability of the
method (see Appendix A for a more detailed discussion).

Fig. 10 shows the PDF of individual square SLI runs are generally
both narrower and more sharply peaked than the PDF given either
by their summation or adaptive SLI. Discreteness biases lead to
higher evidence values being calculated at the favoured lens model,
resulting in significant error under estimation. While this can be
alleviated by the summing of multiple inversions with differing
methods of data discretization, as was done in Suyu et al. (2013)
and Fig. 10, this still only provides an approximation of the errors
and as shown for image 2 may still ultimately give a biased lens
model. In Appendix A we find error underestimation occurs if we
fix adaptive SLI’s initialization, thus reintroducing discreteness bi-
ases. Our general conclusion is that without fully accounting for
all systematics associated with data discretization, a comprehensive
estimation of all the lens models associated errors is not possible.
Moreover, by accounting for these systematics adaptive SLI permits
a more accurate calculation of the marginalized evidence improving
the prospects for accurate model comparison.

We next investigate the effect of changing source plane resolution.
We use the same phase shifting methodology as previously but
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Figure 10. Posterior distribution function (PDF) of α given by square SLI, using nine phase-shifted grids on image 1 (top) and image 2 (bottom). Results
correspond to the third and fourth columns of Table 3 (see caption for details). The PDF of individual phase shifts is scaled by 1

3 for clarity. The figure
demonstrates the variation between PDFs of different phase shifts resulting from discretization biases. The thick black line is the sum of the nine phase-shifted
PDFs and shows consistency with the lens model using image 1 but not image 2. The dashed line shows the PDF calculated using adaptive SLI, set up with
200 clusters and 300 MULTINEST live points for both images.

now use a higher source plane resolution of 36 × 36 pixels with
square SLI. In this case, to improve efficiency, we calculate λ by
maximizing equation (5) for each phase using the input lens model
and then keep λ fixed to that value for the entire inversion. We
then minimize the basic merit function G = χ2 + λGL instead
of the evidence. Of course this approach cannot be used for real
observations although we discuss strategies for improving efficiency
with real data in Section 3.3.3.

Fig. 11 shows the resulting PDFs obtained with the higher reso-
lution reconstruction. The most striking feature is that they show a

much broader PDF. This is a consequence of removing the Bayesian
wrapper and fixing the regularization weight. The variation in the
PDFs for each source grid phase indicates that discreteness biases
are still present, however, the presence of an additional bias dis-
cussed below in Section 3.3.3 leads to greater consistency amongst
their overall α estimation. A cut-off at the upper α prior is also
seen, showing the disadvantage of being forced to narrow priors to
ensure the NDOF remains fixed. It is clear from this test that dis-
cretization biases remain present regardless of the change in source
plane resolution. Figs 12 and 13 show the two-parameter adaptive
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Figure 11. As Fig. 10 but showing the PDF of α given by square SLI using nine high-resolution (36 × 36) phase-shifted grids on image 2. The Bayesian
wrapper of S06 is used to initially set λ but is then switched off for the inversion. Results correspond to the seventh column of Table 3. The PDF using adaptive
SLI is that given in the bottom panel of Fig. 10. The figure shows that a higher resolution source plane does not remove discretization biases.

Figure 12. Two dimensional PDFs of σ , q and α given by adaptive SLI for image 1 (top) and a lower S/N version of image 1 (bottom). The one-dimensional
PDFs for these parameters are shown in the top-right corner for each image.
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Figure 13. Two-dimensional PDFs of σ , q and α given by adaptive SLI for image 2 (top) and a lower S/N version of image 2 (bottom). The one-dimensional
PDFs for these parameters are shown in the top-right corner for each image.

SLI PDFs for images 1 and 2 respectively. In each of these figures,
we also show the results of a higher noise run where the S/N was
lowered to 70 in each image. The figures show the σ–q–α degener-
acy previously discussed and also that parameter errors increase for
poorer quality data. This effect is much less obvious with square
SLI due to the inherent discreteness biases present. Furthermore,
in Appendix B, we demonstrate that adaptive SLI again accurately
models a SPLE for both images 1 and 2 for a variety of source plane
resolutions, levels of image subgridding and inversion setups.

3.3.3 Bias 3: effective source resolution

The third and final bias is again relevant for the SPLE model and
also more generally, those with a degeneracy that allows geometric
source scaling. The degeneracy arises with any fixed source plane
pixelization if the regularization weight is not correctly optimized
by finding the maximum evidence with each iteration, or if a fixed
regularization weight is used.

To demonstrate this effect, we use square SLI with image 1 and
a SPLE lens model fixed with the input set of parameters. We vary
the source plane resolution in steps from 12 × 12 to 28 × 28
and reconstruct the source with each resolution, keeping the source

plane size fixed. With a fixed source plane size and fixed lens
model, the number of image pixels traced to the source plane also
remains fixed and hence this test is not sensitive to bias 1 where Ni

varies. We investigate how the figure of merit χ2 + λGL varies with
source plane resolution when λ is fixed at the optimal value for a
20 × 20 pixel source plane and then how the full evidence varies
when λ is optimized for each resolution.

Fig. 14 shows the results. When λ is fixed, the figure of merit
improves near-monotonically to higher source plane resolutions.
When λ is optimized, the evidence remains more constant (modulo
the variation due to data discretization effects previously discussed).
This shows that fixing λ biases lens models with degeneracies which
allow the source to geometrically scale on a fixed resolution grid.
The reason for this is because the number of source pixels represent-
ing the significant source flux varies, thus mimicking a changing
source resolution. We illustrate this in Fig. 4 for the SPLE model
where we outline in bold those source plane pixels that have a flux
that is a factor of 1.5 above the read noise. The total number of these
pixels is labelled NPix in the figure. NPix can be considered a measure
of the effective source plane resolution for reconstruction. In this
way, the figure shows that square SLI has a varying effective source
plane resolution with different SPLE lens model parameterizations
within the σ–q–α degeneracy.

MNRAS 452, 2940–2959 (2015)



2954 J. W. Nightingale and S. Dye

Figure 14. Variation of ln ε and −(χ2 + λGL)/2 with source plane reso-
lution for square SLI. In the case of ln ε, λ is optimized for each source
plane resolution by maximizing the evidence. For the figure of merit
−(χ2 + λGL)/2, λ is fixed at the optimal value for a source plane res-
olution of 20. The source plane resolution corresponds to the number of
pixels along one edge of a square grid of pixels for a fixed source plane size
of 0.7 arcsec × 0.7 arcsec.

The expectation with the SPLE model is therefore that fixed
source pixelizations with non-optimized regularization weights bias
lens model parameters to high values of α where the effective source
resolution is increased. This behaviour is clearly seen in Fig. 11 for
fixed λ where the PDFs for each source grid phase shift unanimously
agree on a value of α that is higher than the input value. We note
that the behaviour is also seen to a lesser extent in Fig. 10 where λ

is optimized and yet there remains a bias in the summed PDF for
α. In Appendix A we discuss this result more, suggesting it may in
fact be associated with discreteness biases.

The bottom row of Fig. 4 shows that by adapting to the magnifica-
tion, adaptive SLI retains a more equal effective source resolution
for all lens models. While NPix still varies, it fluctuates about a
mean value and ultimately the random nature of the pixelization
between iterations of the lens modelling average away any resulting
systematics, in the same manner in which discretization biases are
removed. Source pixelization schemes suggested in the literature
which adapt to the lens model by scaling the size of the source
plane according to the caustic size (e.g. S06; Collett & Auger 2014)
will remove the effective resolution bias to first order, but it is pos-
sible that the bias is not completely removed. This is most likely
to occur when the caustic is non-symmetric, for example, in the
presence of external shear, however this is something we have not
investigated in this work.

3.4 Lens model with fixed regularization

We have shown how adaptive SLI, when optimizing λ with each
lens model iteration, removes biases that occurs with the SPLE
model when using a fixed source plane pixelization. What we have
not considered is how well adaptive SLI copes if λ is not optimized
with every lens model iteration. A reduction in the rate of the number
of λ optimizations per lens model iteration has the advantage of a
significant increase in modelling efficiency, since this reduces the
number of times the computationally expensive determinants in
equation (5) must be evaluated.

To test the feasibility of adaptive SLI with such a reduced rate of
λ optimization, we carry out a simple test where we use adaptive
SLI with a fixed λ and the same inversion set-up as the previous
section. For both images 1 and 2 we perform lens modelling three

Table 4. Marginalized α for images
1 and 2 using the merit function
G = χ2 + λGL with adaptive SLI. λ
is fixed to 0.5, 1.0 and 1.5 times the
optimal value, λopt, set by maximiz-
ing the evidence.

Image λ α

1 1.5 λopt 1.9990+0.0355
−0.0331

1 1.0 λopt 1.9909+0.0366
−0.0321

1 0.5 λopt 1.9724+0.0384
−0.0364

2 1.5 λopt 2.0211+0.0156
−0.0252

2 1.0 λopt 2.0225+0.0297
−0.0269

2 0.5 λopt 2.0151+0.0202
−0.2900

times, each using a value of λ of 0.5, 1.0 and 1.5 times the optimal
value found by maximizing the evidence.

The results are shown in Table 4. All values of α are consistent
with the input lens model and minimal scatter is seen between results
using different λ. From a modelling efficiency point of view, this is
very encouraging, demonstrating that a reduced rate of optimizing
λ is feasible.

Both Vegetti & Koopmans (2009) and Collett & Auger (2014)
employ this strategy, although given real data is used their initial
lens model is estimated using a fixed λ corresponding to over-
regularization. This model then maximizes equation (5), giving a
new λ which is held fixed to estimate the final lens model. This pro-
cess therefore performs two non-linear searches with the Bayesian
wrapper off, which is only used once to optimize λ after the initial
run. While this strategy is clearly worthy of future investigation for
adaptive SLI, its handling of data discretization means it performs
lens modelling at comparatively lower source plane resolutions any-
way, for which the optimization of λ for every set of lens parameters
remains fast to compute and therefore viable. While this should be
generally preferred when possible, provided the aforementioned ap-
proximations are not dominant, a hybrid of both strategies may be
best when the analysis of large data sets or high resolution images is
considered. This will be of major consideration in the development
of adaptive SLI into a streamlined strong lens analysis pipeline.

4 SU M M A RY A N D D I S C U S S I O N

We have presented adaptive SLI, a new method for the inversion
of gravitationally lensed extended sources. The source plane pix-
elization is determined by clustering the coordinates of all traced
image pixels with an h-means algorithm, deriving a source plane
pixelization which matches the lens magnification for every lens
model parameter set. The distinguishing feature of adaptive SLI is
that it does this using a random initialization and therefore the dis-
cretization of source plane data is handled in a completely different,
unique way for every lens model. The method then efficiently sam-
ples the underlying posterior distribution of degenerate lens models
while naturally accounting for systematics which otherwise bias
lens modelling. We have demonstrated this unique feature using the
specific example of a SPLE lens model.

In this paper, we have compared adaptive SLI with the standard
SLI method of WD03 which uses a fixed square grid of pixels to
discretize the source plane. In this comparison, we have used two
realistic simulated images to highlight the benefits of a source plane
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pixelization which adapts to the lens magnification. Our selection
of the standard SLI method of WD03 for comparison with adap-
tive SLI was for simplicity, but many of the consequences arising
from use of a square grid apply to use of fixed source pixelizations
generally.

We have discussed two key biases inherent to pixelized inversions
and we have demonstrated how adaptive SLI removes them. These
are as follows:

(i) Dependent on the figure of merit chosen for optimization of
the lens model parameters, methods which allow the NDOF to vary
between model iterations, due to image pixels tracing outside the
source plane, try to either maximize or minimize the NDOF. Such
extremes in the NDOF are achieved by lens model parameters which
lie a significant distance from the correct parameters. Although a
fixed NDOF can be ensured with any pixelized inversion method,
this typically results in a less efficient and robust inversion as well
as the requirement that priors on lens parameters are narrowed. The
pixelizations calculated by adaptive SLI match the magnification
pattern of the lens model, allowing the NDOF to be fixed without
suffering the loss in performance of other methods.

(ii) The use of a fixed source plane pixelization, for example, but
not limited to, a square grid of pixels, generally gives rise to a bi-
ased set of model parameters with the SPLE lens. We demonstrated
this by phase shifting a square grid by fractional pixel widths and
showing that each phase gives a significantly different and gener-
ally biased lens model. By deriving the pixelization of every set
of lens model parameters in an always different and unique way,
adaptive SLI naturally explores all systematics associated with data
discretization and thus removes all associated biases. We investi-
gated the use of adaptive SLI with a fixed, not random, initialization
(see Appendix A), in line with some existing inversion methods and
found that the biases not only persisted but were in fact amplified
compared to square SLI, although we note that the severity of the
effect will vary significantly depending upon the exact implemen-
tation.

Through its removal of discretization biases, adaptive SLI gives
accurate and robust sampling of the lens model posterior probability
distribution function with just one non-linear search, something we
believe is not possible with existing methods. We demonstrated this
by fitting the highly degenerate SPLE to our two simulated images.
By design, adaptive SLI copes well with highly degenerate profiles
like the SPLE and it therefore offers strong potential for the fitting
of more sophisticated profiles, for which parameter degeneracies
are even more challenging. For example, models which decompose
the mass into a baryonic component and a dark matter component
possess a strong degeneracy between the two.

Of course, several methods in the literature use a source pix-
elization that depends on the lens model. However, as discussed in
Section 2.3, none use the random initialization of adaptive SLI. In
this way, they therefore calculate related pixelizations, restricting
them, like square SLI, to a specific sub-set of possible data dis-
cretizations which will therefore not fully remove the discretization
effects we have shown.

A future goal of adaptive SLI is its development into a strong
lensing analysis pipeline. The number of detected strong lens sys-
tems is presently undergoing a period of acceleration which is set to
continue in the foreseeable future with surveys such as DES, LSST
and Euclid. Accordingly, robust lens modelling techniques which
offer more stand-alone functionality, reduced user set-up and higher
efficiency are becoming increasingly sought after. As demonstrated
in this work, the robustness of adaptive SLI gives the necessary

strong foundation upon which a lens modelling pipeline can be
built.

The biases outlined in this paper, most noticeably those related to
data discretization, are just one example of the systematics which
can dramatically affect the results of lens modelling. There are
many more systematics which have not been fully investigated, not
limited to issues such as PSF accuracy, the use of oversimplified
parametric lens profiles, the impact of image quality and intrinsic
source morphology. As strong lensing inversion methods grow in
their maturity and begin to be used as standard across many differ-
ent astronomical disciplines, it is imperative that such effects are
thoroughly explored in the short-term future.
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APPENDIX A : DATA D ISCRETIZATION WI TH
FIXED INITIALIZATION

The use of random initialization in adaptive SLI ensures that data
discretization is different and unique with each lens model pa-
rameter set. Here, we further investigate this important feature. In
particular, we wish to test the consequences of fixing the initializa-
tion of h-cluster centres, since this should give rise to an overall
smoother variation of evidence with lens parameters and therefore
aid optimization.

Random initialization occurs because the initial centres from
which the clustering algorithm proceeds are calculated randomly
from the input spatial coordinates (the traced image pixels coordi-
nates; see Section 2.1 for more details). Initialization is then easily
fixed by ensuring these initial centres are always the same every time
the clustering algorithm starts. The adaptive pixelization still con-
tinues as normal, but this process behaves very deterministically.
Therefore, nearly identical lens models now give rise to nearly
identical pixelizations and the data discretization for similar lens
models are now related and dependent on the lens model, as with
other methods in the literature.

In terms of fixing the initialization, we define our fixed initial cen-
tres as those given by the final pixelization calculated by adaptive
SLI for each of images 1 and 2. We wish to investigate the result of
changing the initialization, therefore we also calculate a set of eight
other random initializations corresponding to slight perturbations in
the input lens model. In this way, we end up with nine different sets
of cluster centres which are then fixed for each of the nine corre-
sponding adaptive SLI runs. This set-up is analogous to the phasing
shifting of nine grids with square SLI. The inversion set-up param-
eters (e.g. source resolutions, image sub-gridding, regularization)
are the same as those used in the main paper.

We first ensure that a fixed initialization smooths non-linear
parameter space by repeating the demonstration given in Fig. 1,
whereby we fix every parameter to that of the input lens models
except σ , which we vary over the range 284.5–285.5 km s−1. The
results are given in Fig. A1 for three of the nine fixed initializations.
As expected, the variation of evidence with σ is much smoother than
adaptive SLI when initialization is randomized. The results of using
square and randomized adaptive SLI are also plotted on Fig. A1 for
comparison. This method acts to smooth parameter space on small
scales and will result in a full non-linear search using significantly
fewer iterations to find the optimal lens model. However, the figure
shows that a hint of the return of discreteness bias since all three
evidence curves follow different shapes and peak at different values
of σ .

We now perform a full non-linear search for every fixed initial-
ization for images 1 and 2, as we did when phase shifting with
square SLI. The PDFs are plotted in Fig. A2 in the same way as
those showing square SLI phase shifts in Fig. 10.

Surprisingly, for image 1 discreteness biases are present and in
fact more severe than those found when phase-shifting square SLI.
While square SLI gave mostly accurate and consistent lens mod-
els for image 1, in this case they span a wider range of α with
greater inconsistency, while image 2 remains inaccurate, however

Figure A1. Inversion of image 1 using the true lens model except the
velocity dispersion, σ , which is varied over ±0.5 km s−1 about the true
value. The figure is as Fig. 1 except here we show three adaptive inversions
with different but fixed initial source pixelizations. The figure shows that the
resulting variation of evidence with α is smoother when fixing the source
pixelization compared to allowing it to vary with each lens model iteration
(black line).

with slightly less variation among runs than found with square SLI.
Furthermore, individual PDFs appear more sharply peaked and nar-
rower than either the summed PDF or that found with adaptive SLI.
Therefore the underestimation of errors is present once again and
demonstrates that without full consideration of the data discretiza-
tion, biases in errors arise.

Interestingly, for both images the average α PDF summed over
the nine grids is accurate. This is expected, given that this averages
over discreteness biases in a similar fashion to how we present
adaptive SLI in the main body of this paper, demonstrating that the
removal of discretization biases can only be achieved by averaging
over multiple source plane discretizations. While the method shown
in this appendix benefits from a reduction in the number of iterations
required to find each best-fitting lens model, we feel this is negated
by the requirement to average over multiple differently initialized
grids. We therefore advocate the use of adaptive SLI as presented
in the main body of this paper.

These results make the incorrect summed phase shift value of
α = 2.0437 found using square SLI on image 2 worthy of further
consideration. The nine fixed adaptive SLI grids used in this ap-
pendix have no prescribed geometric form governing their source
plane pixelization and thus averaging over them explores the pos-
sible different forms of source plane discretization. On the other
hand phase-shifted square grids still adhere to the same overall
symmetric geometry. This biased value of α may then be the result
of square SLI not having enough freedom to fully sample different
discretizations, leading to a systematic bias in parameter estima-
tion. Alternatively it may be a result of the Npix bias described in
Section 3.3.3, however this would be surprising given any effect of
this bias is expected to be minimal when equation (5) is optimized
for every lens model, as was done.

We expect that data discretization biases are present in other in-
version methods within the literature, such as the adaptive square
grids of Dye & Warren (2005) and Tagore & Keeton (2014), rect-
angular grids of Collett & Auger (2014) and Suyu et al. (2013) and
adaptive Voronoi grid of Vegetti & Koopmans (2009); none use ran-
dom initialization like adaptive SLI and thus source pixelizations
are not unique nor unrelated between lens model iterations. The
offset value of α found phasing shifting square SLI on image 2 also
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Figure A2. Posterior distribution function (PDF) of α obtained by adaptive SLI with fixed initialization of source pixel cluster centres for image 1 (top) and
image 2 (bottom). The inversion was set up with 4 × 4 sub-gridding, an arbitrarily large source plane and 200 clusters. The range of α values show greater
inconsistency and lower accuracy than those in Fig. 10, showing that fixed initialization in adaptive SLI reintroduces discreteness biases and amplifies them
compared to square SLI. The thick black line shows the summed PDF of all fixed grids and the dashed line shows the accurate lens models calculated using
adaptive SLI.

suggests these methods may be subject to systematically biased and
offset results, even when averaged over multiple discretizations.
However the fact this is not repeated in image 1 serves to show
that the severity of any such effect depends on many factors and is
therefore hard to predict in specific cases.

We conclude that the random initialization of adaptive SLI is a
vital component to the method, ensuring it can fully explore all
systematics associated with data discretization to ultimately give
an unbiased and accurate lens model using just one non-linear
search.

A P P E N D I X B : FU RT H E R T E S T I N G O F
ADAPTI VE SEMI -LI NEAR INVERSI ON

The fixed set-up we used in the main body of this paper of 200
source pixels and 4 × 4 image sub-gridding was chosen as a com-
promise between ensuring sufficient resolution for accurate results
and keeping computational run-time and overheads minimal. This
does however raise the question of the sensitivity of our results to
the set-up used. In this appendix, we therefore repeat the fitting of
a SPLE to images 1 and 2 for a variety of different set-ups.
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Table B1. The values of α estimated using adaptive SLI with varying source resolutions and image
sub-gridding. All runs set the regularization coefficient for each lens model by maximizing equation (5)
to set λ. The second and third columns are results for images 1 and 2 with image sub-gridding 4 × 4 and
the fourth and fifth increase sub-gridding to 8 × 8, with all columns showing runs with 200, 300 and 400
adaptive source plane pixels.

Source plane Image 1: Image 2: Image 1: Image 2:
resolution sub-gridding 4 × 4 sub-gridding 4 × 4 sub-gridding 8 × 8 sub-gridding 8 × 8

200 1.9958+0.0258
−0.0354 2.0231+0.0278

−0.0242 1.9898+0.0313
−0.0335 2.0247+0.0191

−0.0428

300 2.0135+0.0196
−0.0317 2.0157+0.0121

−0.0180 1.9970+0.0260
−0.0294 2.0362+0.0301

−0.0146

400 1.9872+0.0195
−0.0328 2.0333+0.0167

−0.0224 1.9918+0.0248
−0.0304 2.0297+0.0225

−0.0443

Table B2. The values of α estimated using adaptive SLI with varying source resolutions. All runs set
the regularization coefficient by maximizing equation (5) pre-inversion once to set λ, then minimizing
the merit function G = χ2 + λGL. The fourth and fifth columns are results for images 1 and 2 with
image sub-gridding 4 × 4.

Source pixel/ Source plane Source plane Image 1: Image 2:
image pixel ratio resolution resolution sub-gridding 4 × 4 sub-gridding 4 × 4

(image 1) (image 2)

N/A 200 200 1.9909+0.0366
−0.0321 2.0225+0.0297

−0.0269

6 388 225 1.9774+0.0386
−0.0117 2.0234+0.0225

−0.0318

3 776 541 1.9851+0.0301
−0.0221 2.0375+0.0388

−0.0442

Table B3. The values of α estimated using adaptive SLI for remakes of images 1 and 2 which use a Sérsic bulge + exponential
light distribution. In the first row the regularization coefficient is set by maximizing equation (5) for every lens model, whereas
all rows below do this once pre-inversion with the merit function G = χ2 + λGL.

Source pixel/ Source plane Source plane Image 1: Image 2: Image 2:
image pixel ratio resolution resolution sub-gridding 4 × 4 sub-gridding 4 × 4 sub-gridding 8 × 8

(image 1) (image 2)

N/A 400 400 2.0043+0.0332
−0.0411 2.0794+0.0315

−0.0460 N/A

8 474 546 1.9877+0.0315
−0.0426 2.0821+0.0429

−0.0493 N/A

6 633 728 1.9878+0.0309
−0.0219 2.0615+0.0345

−0.0772 2.0433+0.0294
−0.0419

4 N/A 1274 N/A 2.0501+0.0309
−0.0665 2.0397+0.0340

−0.0447

We first repeat the modelling of Section 3.3.3 but with a different
number of adaptive pixels. In this section, λ was optimized for
every lens model by maximizing the evidence in equation (5). The
results, which were obtained for 200 adaptive pixels, are repeated
in Table B1 along with additional results for 300 and 400 adaptive
pixels for comparison.

The effect of changing source plane resolution is minimal; all
models are fully consistent with one another. This is perhaps not
surprising, since the increase in source plane resolution is compen-
sated for by an increase in regularization which correlates source
pixels thus decreasing the overall effective source plane resolution.
These results show that adaptive SLI retains accuracy while mod-
elling a degenerate lens profile like the SPLE, even with a relatively
high ratio of image pixels to source pixels (200 source pixels cor-
responds to a ratio 11.6 for image 1, 6.74 for image 2).

The fourth and fifth columns of Table B1 show the result of
increasing the image sub-gridding to 8 × 8. Again, all results remain
fully consistent with one another. There appears here to be little
benefit in increasing the image sub-gridding beyond a threshold
value, although its importance will be more significant for sources
which show more irregularity and structure than images 1 and 2.

We next repeat the modelling of Section 3.4, where we used the
merit function G = χ2 + λGL with λ fixed at an optimal value

calculated once prior to inversion to improve efficiency. As such,
here, we increase the source plane resolution to give an image:source
plane pixel number ratio of 6 (388 source pixels for image 1, 225
image 2) and 3 (776 source pixels for image 1, 451 image 2). All
runs use image sub-gridding of 4 × 4.

The results are given in Table B2. Once again, all results remain
fully consistent with one another, showing that our choice of source
plane resolution also has minimal impact on modelling results. This
further strengthens our argument that this faster, less expensive
modelling technique is accurate.

Finally we explore the effect of changing the intrinsic source
light distribution. The use of a Gaussian source gives a rela-
tively flat intrinsic light distribution. It is important to test our
regularization scheme on one which is both steeper and more
centrally peaked. This is an issue faced when modelling the ex-
tended host-galaxy around a strongly lensed, point source quasar,
for which current analysis methods simply mask out the bright-
est regions of the image to ensure the regularization is opti-
mized sensibly (Suyu 2012). To test this, we use the source con-
figuration used to create images 1 and 2 but with an n = 3.5
Sérsic profile surrounded by an extended exponential light pro-
file, representing a bulge-dominated spiral galaxy (Bamford, private
communication).
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The results of this analysis are given in Table B3. The exponential
light representing the disc leads to a thicker Einstein ring. We there-
fore extended the image masks for both images 1 and 2, resulting in
an increase in the number of image pixels used and thus resulting in
a higher source resolution for the same image:source pixel number
ratios. For the reanalysis of image 1, changing the source from a
Gaussian has little effect. However, the same is not true of image 2
which overestimates α for low source plane resolution set-ups.

For image 2, the source’s Sérsic bulge, where the light profile is
steepest, is located above the top-right cusp (see Fig. 2). Thus, the
steepest region of the light profile is only doubly imaged. A high
source plane resolution is therefore required to accurately recon-
struct this steep light profile and if this is insufficient regularization
will smooth over it, giving an inaccurate lens model.

The high-resolution modelling runs in Table B3 still show a ten-
dency to overestimate α for image 2, although the modelling errors
increase to account for this. As shown in the final column of B3,
increasing sub-gridding further reduces the values of α estimated.
The majority of spiral galaxies observed, even those with a bulge,
show much shallower light profiles than our test simulation here
(Bruce et al. 2012) and thus this is likely not a concern for the ma-
jority of observed strong lenses. However it is still an issue worthy
of future investigation, especially if one is primarily interested in
small-scale features in the reconstructed source (e.g. bulges, bars,
star-forming knots).
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