
A Study of Human-Agent Collaboration for Multi-UAV Task Allocation in
Dynamic Environments∗

S . D. Ramchurn,1 Joel E. Fischer,2 Yuki Ikuno,1 Feng Wu,3 Jack Flann,1 Antony Waldock4

1Electronics and Computer Science, University of Southampton, UK
2Mixed Reality Lab, Dept. of Computer Science, University of Nottingham, UK

3School of Computer Science and Technology, USTC, China
4BAE Systems, UK

Abstract

We consider a setting where a team of humans
oversee the coordination of multiple Unmanned
Aerial Vehicles (UAVs) to perform a number of
search tasks in dynamic environments that may
cause the UAVs to drop out. Hence, we develop
a set of multi-UAV supervisory control interfaces
and a multi-agent coordination algorithm to sup-
port human decision making in this setting. To elu-
cidate the resulting interactional issues, we com-
pare manual and mixed-initiative task allocation in
both static and dynamic environments in lab studies
with 40 participants and observe that our mixed-
initiative system results in lower workloads and
better performance in re-planning tasks than one
which only involves manual task allocation. Our
analysis points to new insights into the way humans
appropriate flexible autonomy.

1 Introduction
Unmanned aerial vehicles (UAVs) provide a unique capabil-
ity to emergency responders in the aftermath of major dis-
asters to carry out situational awareness tasks. Thus, they
are able to fly quickly over large areas, provide live video
and thermal imagery, and collect valuable environmental data
(e.g., radiation or temperature) in order to identify casual-
ties, damaged infrastructure, or radiation sources. In order
to deploy as many of UAVs as possible over a large area, hu-
man supervisory control mechanisms have recently been de-
veloped to allow multiple UAVs to be deployed in m < n
operator-to-vehicle ratio (where m is the number of opera-
tors and n is the number of UAVs) [Cummings et al., 2010a].
However, such deployments come with a number of chal-
lenges. First, operators have to determine, in real-time, the
shortest paths and schedules for individual UAVs. Second,
they have to decide on the number of UAVs to send to each
area of importance to ensure they cover the most important ar-
eas as quickly as possible. Third, given that UAVs operate in
a dynamic and uncertain (possibly adversarial) environment,
they may suffer damage from environmental hazards, run out
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of fuel, and eventually drop out of the system. In such situa-
tions, the operators may need to quickly re-plan paths for the
remaining UAVs in order to achieve their mission objectives.

To address these challenges, agent-based decentralised co-
ordination algorithms have been developed for multi-UAV
coordination and task allocation [Delle Fave et al., 2012;
Ramchurn et al., 2010] while decision support systems have
been developed to structure the interactions between humans
and UAVs and help humans cope with high levels of work-
load in managing sets of UAVs that execute simple waypoint
following tasks [Cummings et al., 2007; de Greef et al., 2010;
Mekdeci and Cummings, 2009] (see Section 2 for more de-
tails). However, very few of these approaches have addressed
the interactional issues that arise when human operators are
supported by agents that autonomously coordinate (negotiate
and agree on a plan) to allocate tasks among themselves. An
exception to this is the work by [Cummings et al., 2010b;
de Greef et al., 2010] and [Goodrich et al., 2007] but they
focus on re-planning triggers and frequency and how differ-
ent levels of autonomy given to individual robots can affect
team performance respectively. Hence, they do not consider
how flight paths can be collaboratively constructed (by mul-
tiple humans and agents) nor how to deal with random UAV
dropouts that can severely impact the operators’ plans.

Against this background, we develop and study a set of
multi-UAV coordination interfaces that integrate the notion
of flexible autonomy, that is, where control may dynamically
shift between a team of humans and a team of agents. In
more detail, we develop a set of interfaces for UAV task allo-
cation in disaster response situations based on requirements
given by emergency responders1 and go on to develop novel
interaction mechanisms for team of humans to manage multi-
UAV task allocation. Specifically, we develop interfaces that
allow operators to influence plans computed by a state-of-
the art decentralised coordination algorithm, called max-sum
[Rogers et al., 2011; Delle Fave et al., 2012]. In particular,
we extend max-sum, to incorporate human input by trans-
forming human preferences for specific task allocations into
constraints that the algorithm needs to work against. Given
this, through a number of lab studies, we evaluate the per-
formance of human-agent teams with different levels of au-
tonomy (with and without max-sum) and dynamism (where

1Hampshire Fire&Rescue (http://www.hantsfire.gov.uk) and
RescueGlobal (http://www.rescueglobal.org).



UAVs may or may not drop out). Based on our analysis of
interaction logs, NASA TLX workload metrics, 30 hours of
videos, and interviews with 40 participants, we show that our
flexible autonomy interfaces have a positive impact on user
performance and workload in re-planning tasks when UAVs
may drop out.

The rest of this paper is structured as follows. Section 2
presents related work while Section 3 describes the human-
agent collaboration challenges faced when coordinating mul-
tiple UAVs. Section 4 then describes the system while Section
5 presents our experimental setup and results of our experi-
ments. Section 6 analyses the results and presents novel de-
sign guidelines for human-agent collaboration. Finally Sec-
tion 7 concludes.

2 Background
A number of decentralised coordination algorithms for task
allocation have been developed by the multi-agent systems
community recently [Amador et al., 2014; Delle Fave et al.,
2012; Macarthur et al., 2011]. However, to our knowledge,
none of these approaches have been studied with human op-
erators. Hence, to date, it is unclear how they can actually
be used in real-world settings, and specifically, in multi-UAV
task allocation settings. In this paper, we set out to demon-
strate how such coordination techniques can be embedded
within a supervisory control interface.

Supervisory control interfaces for autonomous systems has
instead been an active area of research in the Human Fac-
tors (HF), Human Robot Interaction (HRI), and Human-
Computer Interaction (HCI) domains. A key issue they try
to address is that plans computed by autonomous systems are
typically brittle as they strictly conform to initially set design
decisions and ignore the contextual decisions that humans
need to make (e.g., weather conditions that may lead to UAVs
dropping out, or the changing priorities of the mission) [Sil-
verman, 1992; Smith et al., 1997]. For example, [Miller and
Parasuraman, 2007] developed a ‘Playbook’ of tasks for au-
tomated agents to perform when faced with certain situations
(upon request from human controllers). Moreover, [Lewis et
al., 2009] developed interfaces to help an operator interact
with large numbers of UAVs (hundreds). Bertuccelli et al.
[Bertuccelli et al., 2010] instead, developed operator mod-
els for UAV control and, under simulations, study the per-
formance of their ‘human-in-the-loop’ algorithms whereby
operators are unreliable detectors and the algorithm may not
perform well in search tasks. While these approaches relate to
our context, they do not specifically study how decentralised
coordination algorithms can be embedded in such systems.

Closer to our work, Cummings et al. [Cummings et al.,
2010b] evaluate a mixed-initiative system with a single pi-
lot and with an auction-based task allocation scheme. How-
ever, they focus on how often an operator should be asked
to re-plan, and through a set of lab studies, show that oper-
ator performance drops with too many frequent re-planning
requests. In turn, our approach considers re-planning as a
human-driven exercise and lets the operator decide on the
level of autonomy given to agents, from waypoint specifica-
tion to task allocation.

In a similar vein [Goodrich et al., 2007] study how dif-
ferent levels of autonomy (as per [Sheridan and Verplank,

1978]) given to teams of agents can impact on performance
and workload. Specifically, they show that reliance on team
autonomy (i.e., a team allocates tasks amongst its members
independently of human control) results in neglect from the
operator though it reduces workload. Instead they suggest
there should be shifts between adjustable (where the auton-
omy of manually controlled), adaptive autonomy (where the
agent changes its behaviour by itself), and team autonomy. In
line with [Jennings et al., 2014], we capture these shifts in
autonomy levels in through the notion of flexible autonomy.
In particular, in the next section we describe how different
autonomy levels fit the different situations encountered when
multiple humans need to interact with multiple UAVs.

3 Managing Autonomy in Multi-UAV
Deployments

In typical disaster response settings (e.g., Haiti in 2010 or
Typhoon Haiyan in 2013) where buildings have collapsed
or roads are blocked by debris, UAVs are deployed by
emergency response teams to gather situational awareness
(through the use of video cameras, thermal imaging) about
the location of key emergencies (i.e., casualties, fires, re-
sources to be collected) so that the responders can prioritise
their tasks.2 Such deployments will typically fall under the
responsibility of tactical commanders (aka Silver) and oper-
ational (aka Bronze) teams. While Silver commanders (one
to monitor the camera feed and one to allocate tasks) decide
on and monitor a tactical allocation of UAVs to specific ar-
eas of the disaster struck region, Bronze operators monitor
the physical state of individual UAVs (in one-to-one or one-
to-many operator ratios) and sometimes take control of indi-
vidual UAVs. We elaborate on these interactions in the next
subsection and describe how they impact on UAV autonomy.
Building upon this, we elaborate on the human-agent collab-
oration challenges they induce.

3.1 UAV Autonomy
UAVs may be given different levels of autonomy to carry out
imagery collection tasks and or to support humans in allocat-
ing tasks [Goodrich et al., 2007]:

1. Teleoperation: a Bronze operator can tele-operate a
UAV in order to further investigate an area (from its
video feed) or bring the UAV back to base along a safe
route if it cannot complete its mission (e.g., due to lack
of fuel or damage). Here, UAVs are only given naviga-
tional autonomy (i.e., maintain altitude, speed).

2. Waypoints: geo-locations can be specified by human
operators to scan an area in potentially complex ways.
Here we assume that Silver commanders are responsible
for specifying waypoints. In this case, UAVs have more
advanced navigational autonomy (i.e., adjust speed and
altitude, obstacle avoidance).

3. Region scanning: an area is specified (by Silver) for
a set of UAVs to plan paths around and scan au-
tonomously. Here, we specialise the definition of re-
gion scanning to require multiple UAVs. The selection

2Our scenarios draw upon the experience of Rescue Global
(http://www.rescueglobal.org) and Hampshire Fire and Rescuel
(http://www.hantsfire.gov.uk).



of UAVs to scan an area can be automated through the
use of a multi-agent coordination algorithm (e.g., in Sec-
tion 4.1), and hence have path planning autonomy.

4. Flexible Coordination: given a set of tasks (way-
points or regions) specified by Silver commanders, the
UAVs run a decentralised coordination algorithm to al-
locate tasks among themselves [Delle Fave et al., 2012].
Tasks can be given different priorities if needed. UAVs
may also re-allocate tasks dynamically (i.e., on-the-fly)
should any of them fail or should tasks be changed by
Silver operators. This is the highest level of auton-
omy (or team autonomy as in [Goodrich et al., 2007;
Sheridan and Verplank, 1978]).

These different modes of delegation of tasks to UAVs result
in different levels of workload and collaboration challenges
for the operators. We discuss these next.

3.2 Human-Agent Collaboration Challenges
The goal of increased UAV autonomy is to reduce the work-
load of human operators [Goodrich and Schultz, 2007]. How-
ever, UAVs that autonomously coordinate and their supervi-
sory control by different actors (Bronze and Silver) is likely
to increase collaboration complexity if not carefully managed
[Cummings et al., 2007; Smith et al., 1997]. For example,
Silver commanders can request Bronze operators to teleoper-
ate a UAV once it has reached its target location to get better
imagery. In turn, however, the Bronze operator can decide, at
short notice, to bring back a UAV should weather conditions
deteriorate. In general, the fact that multiple humans can take
full or partial control of a UAV can significantly affect the tac-
tical objectives of Silver commanders and may require them
to revise their plans continually, wasting time and effort. In
addition to this, if UAVs are allowed to decide on flight paths
for region scanning or allocate tasks among themselves us-
ing complex coordination algorithms, it is unclear how Silver
commanders would interpret such behaviours. Moreover, if
Bronze operators can control of individual UAVs, the plans
recalculated on-the-fly by the UAVs may not fit the expec-
tation of Silver commanders. Hence, our aim is to try and
answer the following questions, with a focus on the task of
Silver commanders, in order to address some of these inter-
actional challenges. Specifically, (i) How do Silver operators
interpret and appropriate the decentralised coordination algo-
rithm used by the agents/UAVs? (ii) Does the use of a de-
centralised coordination algorithm help Silver commanders
perform better (in terms of tasks completed, time taken, tar-
gets found) after suffering drop-outs (i.e., loss of UAVs)? (iii)
Is collaboration within human teams affected by autonomy?

Thus, in what follows, we develop and evaluate a multi-
UAV mixed-initiative coordination system.3 In particular, we
focus on the work by Silver operators: (i) assigning tasks and
flight paths to UAVs, (ii) monitoring the video feeds from the
UAVs, and (iii) reacting to drop-outs. To this end, we develop
a novel multi-UAV coordination system and go on to evaluate
it through a number of lab studies.

3Based on requirements drawn from a number of workshops and
meetings with Silver operators and Bronze level pilots from Hamp-
shire Fire and Rescue and Rescue Global.

4 System Description
The system consists of a simulation engine that generates the
movement of UAVs,4 a set of user interfaces (UIs) for tacti-
cal UAV task allocation, and a flexible coordination module.
In more detail, the simulation engine stores positioning data
and simulates the behaviours (flying via waypoints, hovering,
dropped-out) of the UAVs based on the plans chosen by the
users through the interfaces and simulated events in the en-
vironment. The flexible coordination module allows agents,
representing the UAVs in the back-end, to exchange messages
as per the max-sum algorithm and receives input from users to
modify the plan computed by max-sum [Rogers et al., 2011].
A camera view and a planner view, allow two operators to al-
locate tasks to the simulated UAVs, using both manual control
and automatic optimisation, and monitor their performance.
We detail these components in the following subsections.

4.1 Flexible Coordination Module
The flexible coordination module continuously monitors the
state of the UAVs and tasks defined in the system and dy-
namically determines a task allocation plan so as to min-
imise the time that the UAVs take to complete their allo-
cated task(s). We employ the max-sum algorithm for de-
centralised coordination. As shown in [Rogers et al., 2011;
Delle Fave et al., 2012], max-sum provides good approxi-
mate solutions to challenging dynamic decentralised optimi-
sation.5 However, max-sum does not explicitly handle con-
straints imposed by human operators. For example, if af-
ter running max-sum, agent A is tasked to go to point X,
agent B to point Y, and agent C to point Z, there is no ex-
plicit method for human operators to partially modify the
plan such that agent A goes to point Y, and B and C auto-
matically re-allocate points Y and Z among themselves in
the best way possible. Hence, to cater for such situations,
in what follows we first provide a basic description of the
max-sum algorithm (see details in [Macarthur et al., 2011;
Delle Fave et al., 2012]) and then explain how it can be mod-
ified to take into account human input.

The max-sum Algorithm
The max-sum algorithm works by first constructing a fac-
tor graph representation of a set of tasks (each representing
a point or waypoints UAVs are meant to fly to) and the set
of agents (each representing a UAV) and then sets a protocol
for an exchange of messages between different nodes in the
factor-graph. The factor graph is a bi-partite graph where ver-
tices represent agents and tasks, and edges the dependencies
between them (see [Rogers et al., 2011] for details on how
this graph is constructed). Given this, max-sum defines two
types of messages that are exchanged between agent (vari-
able) nodes and task (factor) nodes:
• From agent i to task j:

∀xi∈Di qi→j(xi) = αi→j +
∑

k∈M(i)\j

rk→i(xi) (1)

4Our system simulates the movement of quadcopters that can
hover and follow waypoints such as A. R. Drones.

5Other decentralised coordination algorithms could also be used
here (e.g., ADOPT or BnB-ADOPT [Gutierrez et al., 2011]) as we
only adapt the graph over which they exchange messages to compute
a solution.



where xi is a task assignment of agent i,Di is a set of all
possible assignments of agent i, M(i) denotes the set of
indices of the task nodes connected to agent i, and αi→j

is a scalar chosen such that
∑

xi∈Di
qi→j(xi) = 0.

• From task j to agent i:

∀xi∈Di rj→i(xi) = max
xj\xi

Uj(xj) +
∑

k∈N(j)\i

qk→j(xk)

 (2)

where Uj ∈ < is the utility function of task j, N(j)
denotes the set of indices of the agent nodes con-
nected to task j, and xj is a vector of task assignments
〈xj1, · · · , xjk〉 for the agents that are relevant to task j.
As in [Delle Fave et al., 2012] the utility function in our
scenario includes the travel time to a task, the priority
level of the task, and the suitability of the agent(s) for
the task (e.g., different agents may have different affini-
ties for a task given its onboard sensors). Each task may
take more than one agent.

Notice that both qi→j(xi) and rj→i(xi) are scalar functions
of assignment xi ∈ Di. The largest calculation that any agent
performs, as shown in Eq. 2, is exponential only in the num-
ber of its neighbours, which is typically much less than the
total number of agents. Thus, the max-sum algorithm can
scale to relatively large problems with many agents depend-
ing on their interaction structures.

For an acyclic factor graph (which can be constructed using
techniques defined in [Rogers et al., 2011]), these messages
represent the maximum aggregated value for each assignment
xi ∈ Di of agent i over the respective components of the
graph formed by removing the dependency between task j
and agent i. Thus, the marginal function of each assignment
xi is calculated by:

zi(xi) =
∑

j∈M(i)

rj→i(xi) = max
x\xi

m∑
j=1

Uj(xj) (3)

after which the assignment of xi can be selected by:
x∗i = arg max

xi∈Di

zi(xi) (4)

In our system, Eq. 1 is computed by the UAV agents while
the more computational-intensive calculations (i.e., Eq. 2) are
processed by a base station (simulated in the system). This is
critical because the computational resources of the UAVs are
usually very limited. In each step, the base station submit
tasks to the UAVs so they know what are their possible as-
signments and who are their neighbours (i.e., the task nodes)
in the factor graph. Then, the UAVs and the base station ex-
change messages as detailed by Eqs. 1 and 2. Finally, the
best assignment is selected by each UAV using Eq. 4.

Integrating Human Input and Coping with Drop-Outs
Given a set of tasks and agents, max-sum computes shortest
paths for each UAV to the tasks as well as taking into account
the priorities set for each task and the type of UAV required.
However, this assignment may not be preferred by the human
operators as it may conflict with their priorities and expecta-
tions about flight paths. For example, a UAV may be allocated
by max-sum to fly from its position in the East to a task in the
West but the human operators may, instead, prefer a UAV to
fly from the South to the same task in order to provide im-
agery over the area covered by that path, which may be more

important than the lateral traversal from East to West. More-
over, if the priority levels are too coarse, max-sum will not
differentiate between tasks of very similar priority levels.

Hence, given a plan computed by max-sum, using our
planner interfaces (see Section 4.2), users can manually al-
locate UAVs. These manual allocations specify a task-agent
pair (i, j). Given this, for a given agent i, we then define
Di = {j}. This effectively results in the deletion of all edges
in the factor graph that connect the agent node i with other
task nodes apart from that of j. This, in turn, forces max-
sum to only allocate agent i to task j (as per Eq. (1) and (2))
messages, and if two (or more ) agents are required by task j,
another agent is chosen based on this restriction.

Now, a key property of max-sum is its ability to recover
from changes to the factor graph (nodes and edges). Cru-
cially, any addition (e.g., a new task is added) or removal
(e.g., a drop-out is suffered) of a node in the factor graph will
simply result in new messages being exchanged across the
graph until the nodes converge on a new solution. However,
such a solution may not always be acceptable to the human
commanders and hence, as we show next, we explicitly hand-
over control to humans to check, modify (if need be), and
enact the plan suggested by max-sum following a drop-out.
As we discuss later, such handing over of control is crucial to
ensuring humans can trust plans computed by max-sum.

4.2 User Interfaces
Our interfaces are designed to allow human operators, at any
point during a mission, to request plans from the max-sum
algorithm, visualise the plans, and modify these plans.6 As
in [Cummings et al., 2010b], we do not show the max-sum
messages exchanged between the agents. Rather, participants
were explained how it generally works and told that there may
be a discrepancy between their plans and those of the agent.7
We next elaborate on the two views (on two full HD screens)
where each one is operated by one Silver commander (i.e.,
two sitting next to each other).

Planner View
This is the main planning tool that provides both monitoring
and planning capabilities (see Figure 1), which we separated
as in [Cummings et al., 2010b]. These capabilities are ac-
cessible in two modes (accessible through the tabs on the top
right), namely ‘Task Edit’ and ‘Monitor’. We describe each
of these modes in turn.
Task Edit Mode
This mode provides the user with a number of planning op-
tions (see Figure 1):

1. add/delete tasks (region or point): Users can create two
types of tasks: (i) region tasks – this task requires two8

UAVs to carry out a sweep search of the area selected

6See system operation video with users here: http://bit.
ly/uavstudyvideo and a screen capture here: http://bit.
ly/uavscreen.

7Unless the operators understand the limitations of the algorithm,
they are likely to take up most agent suggestions even if wrong
[Smith et al., 1997].

8Pilot studies revealed users very rarely allocated more than two
UAVs to one region task.



by the user using mouse clicks (ii) point tasks – a point
selected in the map.

2. change/adapt the allocation of tasks to agents: In the
manual mode, the user has to click on the UAV and click
on a task. In the mixed-initiative setting, max-sum pro-
duces an allocation (on request or following a drop-out)
that can be changed by clicking on a UAV and allocating
it to another task. max-sum then adapts its allocation to
fit to the constraint set by the user (as per Sec. 4.1).

3. add way points to the paths taken by the UAVs: this ap-
plies to paths chosen to point tasks, whereby users can
adjust the path taken by a UAV.

Once an allocation of UAVs to tasks has been chosen, the user
can verify the completion time of the tasks using the side bar
widgets and then decide to execute the plan.
Monitor Mode
This mode shows the current status of the allocation (see Fig-
ure 1). Paths chosen by the max-sum algorithm are differenti-
ated from those manually specified by the users are shown in
orange. Once a region scanning task has been completed, the
region scanned turns green. A region task is deemed com-
pleted when UAVs have covered its area and a point task is
considered completed when the allocated UAV has reached
that task. Once a point task is completed, the task disappears
from the map.

Camera View
The camera view provides multiple live streams of the aerial
view from GoogleMaps aerial view (see Figure 1). The im-
ages displayed are taken at real GPS locations of the UAVs in
the disaster space (as defined by the scenario). The centre of
the display shows an expanded view of a chosen UAV (when
one side tile is clicked).

Targets, identified by specific blue icons are positioned at
specific points in the space considered and displayed on the
aerial view whenever the UAV flies over it. The user can then
click on the icon and annotate it with the matching descrip-
tion. Once a target has been identified (either correctly or
incorrectly), the colour of the icon changes to its detected
state both on the Camera view and the Planner view. The two
operators can also collaborate to identify targets by sharing
different parts of the screen.

5 Experimental design and Results
We designed a lab study in order to evaluate our multi-UAV
control interfaces in use. A particular challenge we are in-
terested in evaluating is how well our mixed-initiative task
allocation method supports operators in responding to unex-
pected UAV drop-outs, which are caused by technical fail-
ures or non-compliance by individual UAV supervising pilots
(which may be legitimate due to a more immediate under-
standing of the situation ‘on the ground’). Drop-outs require
Silver to adjust the current operation.
Participants and Conditions. 40 participants were recruited
from different University departments with 15 females and 25
males (26 Computer Science undergraduates and others from
non-CS subject areas). We randomly created teams of two
operators from this set (1 camera operator and 1 planner view

operator). We adopted a within-subjects (counterbalanced re-
peated measures) 2X2 factorial design to evaluate how our
interface designs fare in practice, i.e., how they affect perfor-
mance (number of targets discovered) and collaboration be-
tween operators (number of turns-at-talk). A within-subjects
design was used to reduce error variance (the effects of in-
dividual differences). We manipulate two independent vari-
ables, allocation method (manual vs. mixed-initiative) and
UAV drop-outs (none v.s. three at random). Users use two
versions of our planner view r that are identical apart from
the allocation method:

1. Manual Allocation (MA) – Users can manually assign
tasks to individual UAVs using region and point tasks.

2. Mixed-Initiative Task Allocation (MI) – Users use rec-
ommendations from max-sum to allocate tasks.

Further, we have manipulated the experimental design so that
we can evaluate the effects of UAV drop-outs, as follows:9

1. No drop outs (ND) – UAVs function as planned.

2. Drop-outs (DO)– three UAVs drop out one-by-one at un-
expected (pseudo-random) times (we divide the duration
of the experiment in three and drop out each UAV ran-
domly in one of these slots) during execution of a run.

Given this, counterbalancing was achieved with two groups:
Group A (10 pairs of operators) experienced MA-ND, MA-
DO, then MI-ND, MI-DO, Group B (10 pairs of operators)
experienced MI-ND, MI-DO, MA-ND, then MA-DO.
Hypotheses. We are particularly interested in how Silver
operators perform using our mixed-initiative allocation (i.e.,
with max-sum) method in comparison to a control method
(manual), in dealing with UAV drop outs. We postulate the
following set of testable hypotheses.

H1 When UAVs drop out, Silver operators perform tasks
significantly better, in terms targets found, efficiency, ef-
fort spent, and number of tasks completed, when pro-
vided with a mixed-initiative task allocation compared
to manual task allocation.

H2 If there are no UAV drop outs, the effort (defined by op-
erator clicks) will be lower for the mixed-initiative task
allocation compared to manual task allocation.

H3 When UAVs drop out, we expect significantly more col-
laboration (defined in terms of number of turns taken)
between the operators compared to when there are no
UAV drop outs.

H4 We expect that self-reported task workload is more cor-
related with MA than with MI task allocation.

Task design. The participants’ task is to search and find tar-
gets collaboratively, using the interfaces provided (see Sec-
tion 4). Given that in real-world conditions, UAVs are de-
ployed based on reports from people on the ground, the par-
ticipants are initially given hints as to where these targets
might be. For example, (i) A large number of casualties have
been reported around the North-East of the base (Centre of

9Counterbalancing for the order of ND/DO would require dou-
bling the number of participants to 80 with, potentially, minimal
impact on the results. Hence, we leave this as future work.



Figure 1: Camera view (left) for six UAVs, Planner View (right) in task edit mode and the monitor mode bar.

map) — to signify spread targets, (ii) There is a group of tar-
gets in the East of the map (i.e, far right) — to signify a clus-
ter of targets, (iii) There ‘may’ be a few targets in the South
of the base but we are not sure — to indicate low certainty
of targets present. In each scenario there are 20 targets dis-
tributed across the map. Targets are spread such that there are
two clusters of targets in different parts of the map, with a few
dispersed in other parts. At the start of each run, the targets
are ‘hidden’ (i.e., invisible) from the map and only unveiled
through discovery of these using the camera view. The oper-
ators can individually tag these targets using a predefined list
of tags. We also introduced a time-limited discussion phase
prior to the mission starting. This was found to be useful for
the users to collaboratively decide on where to place the tasks
across the map. Stationery was provided to them to write
down their thoughts.

Procedure. For each run of the experiment, two participants
(one for each of the two interfaces) collaborate to view and
control six UAVs at once to accomplish the given task. Prior
to the experiment, the participants are asked to fill a con-
sent form and a survey to capture demographic information
and relevant previous experience, e.g., in flying real UAVs,
and familiarity with strategy video games that exhibit simi-
lar properties to our scenario. They are then given a simple
learning task to perform (search for three targets in the envi-
ronment close to a point of interest), in order to induce some
familiarity with the controls provided by the system and with
the procedure.10

After each run, each participant filled out a NASA TLX
form to collect self-reported measures of workload. Each run
lasts a maximum of 10 minutes. We conduct pre and post
interviews and all runs are recorded using a video camera to
enable analysis of verbal collaboration between the two oper-
ators. Interactions with the system are logged and later trian-
gulated with the video feed and audio data.

10In the three pilot runs we performed, users found the interface
quite complex to understand initially.

5.1 Results
We report on our statistical analysis of study data in order
to test our hypotheses. We present measures of performance
(from system logs) and then turn to collaboration measures
(from 30 hours of video analysis). Unless otherwise stated,
we use repeated measures ANOVA (Analysis of Variance)
to test the effects of independent variables (IVs): allocation
method (IV1) (i.e., MA and MI) and drop-outs (IV2) (i.e., ND
and DO) on parametric dependent variables (α = 0.05).
Performance. Performance in the experiment was measured
in terms of:
• Number of targets found — higher is better.
• Efficiency: number of targets found per task created —

the more targets found per task created, the more effi-
cient the task allocation method is.
• Effort: number of mouse clicks by the operator — the

more mouse clicks (create waypoints, re-allocate UAVs,
create tasks), indicates more effort to create plans.
• Tasks completed: a further efficiency metric, to complete

a task the operators need to (i) create the task (ii) assign
a UAV to it, (iii) the UAV needs to reach the task.

With Drop-outs
In the following we outline the results from repeated-
measures ANOVA on the dependent variables (DVs).
No. of Targets Found. The allocation method (i.e., MI v/s
MA) had no significant effect on the number of targets found
(p = 0.642, F (1, 19) = 0.223) while drop-outs had a signif-
icant effect (p < 0.001, F (1, 19) = 16.6). The interaction
effect between allocation method and drop-outs was not sig-
nificant (p = 0.2, F (1, 19) = 1.7).
Efficiency. Neither the allocation method nor the number
of drop-outs had a significant effect on the efficiency of the
teams. For the allocation method, p = 0.321, F (1, 19) =
1.037, and for drop-out effect p = 0.113, F (1, 19) = 2.769.
There is also no significant interaction effect between the fac-
tors (p = 0.234, F (1, 19) = 1.153).
Effort. Allocation method had a significant effect on the
number of mouse clicks, with p < 0.01, F (1, 19) = 33.22.
Furthermore, a paired-samples t-test on MA-DO and MI-DO



confirms that the number of clicks in the MI conditions are
significantly lower than in the MA conditions (mean of 32
fewer clicks than MA, p < 0.01).
Tasks Completed. Drop-outs had a significant effect on tasks
completed (p = 0.03, F (1, 19) = 5.5), while neither alloca-
tion method nor the interaction of the two IVs were signifi-
cant. Further investigation showed that the trend for number
of tasks completed in the MI-DO condition was higher (M =
5.9, SD = 8.1) than in MA-DO (M = 2.6, SD = 1.8).
However, the difference was significant only for point tasks
(p = 0.041), but not for region tasks (p = 0.163) or both task
types combined (p = 0.052).
Without Drop-outs
There is no difference between MA and MI (p = 0.186 for
targets/task, p = 0.338 for targets, p = 0.915 for tasks com-
pleted) in terms of targets found, in line with our expecta-
tions. However, there was a significant difference in effort
(p = 0.001, t = 4.169).

Collaboration
We analysed 30 hours of video recordings of lab sessions
to evaluate the collaboration between the plan editor and the
camera view operator. We note the following results.
Collaborative Planning. We counted the turns taken by
participants when discussing task allocation plans (on the
planner view). Turns are defined according to Conversa-
tion Analysis as utterances in a sequentially organised con-
versation. We found that even if drop-out scenarios induced
more collaboration than no drop-out scenarios, this effect was
not significant (p = 0.087, F (1, 18) = 3.262). The al-
location method also did not have a significant effect (p =
0.17, F (1, 18) = 2.04) on the number of turns taken.11

Collaborative Annotation. We counted the number of times
the planner view operator helped the camera view operator
annotate targets (i.e., they shared the annotation task). In this
respect, we find that drop-outs have a significant effect on
the number of annotation turns taken p = 0.002, F (1, 18) =
13.49. We also noted a significant interaction effect be-
tween allocation method and drop-outs with p = 0.023,
F (1, 18) = 6.194.
Pre-Launch Planning. We counted the time taken by teams
to plan where to send UAVs prior to starting the mission. Here
we found that the allocation method had a significant effect
(p = 0.049, F (1, 19) = 4.434). Thus, MI was found to in-
duce less collaborative pre-launch planning.

Workload
Using NASA TLX workload metrics for the planner view
operator we found that neither the allocation method nor
the drop-outs individually had a significant effect but there
was a significant interaction effect between the two factors
(p = 0.024, F (1, 19) = 6.025). Thus, workload was found
to be on average lower for MA-ND compared to MI-ND (28.9
v.s. 35.2) while workload was found to be higher for MA-DO
than MI-DO (31.0 v.s. 29.9).

Summary and hypotheses
The analysis of performance metrics partially supports hy-
pothesis H1, and fully supports hypothesis H2. While allo-
cation method (IV1) and drop-outs (IV2) had no significant

11One data point was lost due to video recording issues.

effect on number of targets found and efficiency, when drop-
outs occurred we observed a significant effect on effort (more
effort in the MA condition) and tasks completed (more tasks
completed in the MI condition).

The analysis of collaboration between operators partially
supports hypothesis H3, and partially supports H4. While
no significant effects were observed on the number of turns
taken, drop-outs had a significant effect on collaborative an-
notations, leading to significantly more collaborative anno-
tating when drop-outs occurred; and allocation method had
a significant effect on pre-launch planning, leading to more
pre-launch planning in the manual condition, thus partially
supporting H3. The IVs had a significant interaction effect on
self-reported workload; participants reported lower workload
for MA than MI when no drop outs occurred, but when drop-
outs occurred, the workload for MA was reported as higher
than for MI; thus partially supporting (and qualifying) H4.

Validity
We conducted tests to check the validity of our experimental
design focusing on allocation method and order effects.
Manipulation check: task allocation. In order to test adop-
tion (use) of the max-sum (mixed-initiative) task allocations
we looked at manual task allocations in detail. To be deemed
successful, we expect significantly fewer manual allocations
for MI than for MA — absence of significance on the other
hand would show that participants effectively override the MI
task allocations, which would jeopardise the internal validity
of the study. Manual task allocations are defined as selections
of specific UAVs and assigning them to specific tasks indi-
vidually. Participants made use of the option to manually edit
task allocations in the mixed-initiative conditions occasion-
ally (MI-ND: µ=5.7, MI-DO:µ=4.9), but significantly less
often than in the manual conditions (MA-ND:µ=27.4, MA-
DO:µ=24.5). The fact that allocation method has a significant
effect (p < 0.01, F (1, 19) = 75.3) on manual allocation vali-
dates that participants adopted (i.e., accepted and used) MI to
control the UAVs. Drop-outs did not have a significant effect
on manual allocation.
Order effects. Finally, we tested for order effects between
groups A and B using order as a between-subjects factor. We
found significant interaction effects for order and allocation
method on number of targets found (p < 0.001, F (1, 18) =
18.8), as well as on effort (p = 0.16, F (1, 18) = 7.01).
There was a significant three-way interaction of order, alloca-
tion method, and drop-outs, again on both number of targets
found (p = 0.041, F (1, 18) = 4.6), and on effort (p = 0.011,
F (1, 18) = 8.1). The presence of order effects thus estab-
lished, an inspection of descriptive statistics shows decreas-
ing performance over time (hence the order effect). This sug-
gests a fatigue effect (in line with [Mekdeci and Cummings,
2009]), and corroborates our counterbalancing approach.

6 Discussion
Here we further discuss the results of the user study, contex-
tualising these with findings from the interview in order to
draw out the key lessons learnt.

6.1 Responding to Autonomous Planning
The results (in terms of performance, workload, and reliance
on max-sum plans) suggest that participants understood



and used the interaction mechanisms we provided them to
interact with task allocations computed by max-sum.

Managing drop-outs. A key objective of our design was
to study how operators manage drop outs. In particular, we
hypothesised that the mixed-initiative task allocation would
outperform manual allocation when drop outs occur (H1).
Although there was no effect on overall number of targets
found and efficiency, there were significant effects on effort
and tasks completed; thus the results (partially) support hy-
pothesis H1. Moreover, effort was significantly higher even
when there were no drop outs, thus supporting H2.

This suggests that participants experienced less effort and
completed more tasks when supported by mixed-initiative
planning (max-sum), which supports our overall design ratio-
nale. However, the interviews showed that some participants
questioned the usefulness of max-sum in drop-out settings. In
particular, as max-sum re-allocates UAVs automatically fol-
lowing a task completion or a drop-out, some participants
mentioned they did not always agree with the new alloca-
tions. One participant mentioned “I would watch the next
allocation from the corner of my eye, just to make sure...”.
Related to this, the findings on self-reported workload (par-
tially supporting H4) suggest a trade-off: while participants
experienced higher workload for MI when no drop-outs oc-
curred, when drop-outs occurred, the reported workload for
MI was lower than for MA.

In the interviews, participants also requested features to
communicate preferences and priorities to MI at a more
fine-grained level, one said “you should be able to tell it, if
this UAV drops out then do this..”. This suggests a desire
for more direct control at times, beyond monitoring UAVs,
including preference specification and modification of UAV
plans, as elaborated in the following.

Modifying plans. Aside from ‘keeping an eye on it’, par-
ticipants also actively intervened in the max-sum plans, as
was reflected in the (modest) number of changes to max-sum
plans (see section 5.1). Another participant stated that “it’s
right most of the time but it’s not perfect, you still have to go
and change it sometimes”.

Modifications of plans ‘at run-time’ were typically oc-
casioned by UAV drop-outs. We hypothesised that this
would affect operator workload and increase collaboration
particularly in the manual task allocation setting. In addition
to the aforementioned findings on workload; interestingly,
increased collaboration in the manual condition was man-
ifested in significant effects on collaborative annotations
and pre-launch planning (supporting H3). While the ma-
nipulation check also showed that operators modified plans
significantly less often in the MI condition, the modifications
in the MI condition were not negligible. Users employed the
whole range of modifications provided to them, validating
suggestions in the literature they should be given a range of
options when advised by an agent [Smith et al., 1997].

Intelligibility of max-sum. Interviews also revealed the par-
ticipants’ mental model of max-sum: “It chooses the shortest
path for each UAV to each task and it plans the next step”.
Also, they realised that “you can let it do the easy tasks and

focus on the hard ones”, suggesting delegation of control to
an autonomous system is effective for routine tasks in that
it frees up operator cycles to manage more difficult tasks.
Also, “it does not know what tasks we want to prioritise” and
that “It does not avoid areas we have already explored”, thus
identifying the shortcomings of autonomous (re)planning. In
particular, when users modified plans (e.g., manually replace
a UAV in an allocation with another UAV), they would some-
times disagree with the consequent re-allocation computed by
max-sum for the remaining UAVs and again reconfigure the
allocations manually.

These observations and the associated empirical results
suggest that, while users tend to rely on max-sum for routine
task allocations, there is a need for them to express tactical
priorities (in terms of areas to be searched, what should be
done after a drop-out) to max-sum. In fact, such needs may
not require new interface elements. For example, participants
worked out higher-order tactics to react to drop-outs. Thus,
they would sometimes send two UAVs to search an important
area, “just in case the other one dropped out”, as one
participant put it, such that max-sum would automatically
allocate the dropped UAV’s task to the other UAV. This, in
addition to the fact that participants used tasks as waypoints,
indicates that rather than trying to encode all the mission
priorities and conditional behaviours within max-sum, it
may be better left to the users to develop truly elaborate
mixed-initiative tactics that combine, potentially simple,
capabilities of the agents with an understanding of the most
likely contingencies at run-time (rather than design-time).

Impact of max-sum on human collaboration. To reiterate,
our analysis of human collaboration showed that the alloca-
tion method (i.e., MI v.s. MA) had no impact on collabora-
tive planning but that increased collaborative annotation was
observed in the MI conditions. Given that the camera and
planner views are on different screens, the planner view oper-
ator necessarily loses sight of the planner view while annotat-
ing collaboratively. This suggests autonomous agents may be
difficult to monitor effectively. This shortcoming, however,
was counterbalanced by a higher number of tasks completed
in MI conditions which suggests that operators exploited the
autonomous planning ability of the UAVs in order to spend
more time collaborating on finding targets in the maps. Par-
ticularly, this occurred when these targets were not easy to
spot within aerial imagery of buildings of different colours
and sizes. In fact, some participants explicitly decided on
sharing the camera view (given the multiple video feeds) dur-
ing the pre-launch mission planning session.

In contrast, the camera view operators often commented
that their task was boring. As one participant put it, “it would
be good if the interface flashed when a target was identified
by the UAV or if it completed its task”, showing an expecta-
tion that the UAVs had advanced vision capabilities (which
supports our earlier comments on expectations of autonomy).
Hence, we noted they would turn to helping the planner view
operator at the expense of finding targets in the video feeds.

6.2 Implications for Design
Here we summarise the implications for the design of
mixed-initiative supervisory control systems.



Interacting with Algorithms. Users found autonomous
planning useful for the mundane parts of task allocation.
They made use of the different types of tasks to exploit the
UAVs’ autonomy (in terms of waypoint following, region
scanning, and task allocation). Moreover, users found it
useful to modify plans computed by max-sum for the ‘hard’
parts of task allocation. This suggests the interaction mech-
anisms with max-sum were effective. This was achieved
with the intuitive specification of constraints (see Section
4.1) as click actions with immediate on-screen feedback
of re-allocations computed by max-sum. Thus, the users’
need to control the inner workings of the algorithm, and
their understanding how the algorithm reacts to user-driven
constraints, suggest that coordination algorithms need to
be designed with the user in mind. By this, we mean that
controls on the algorithm’s objective function, and feedback
about the effect of these controls should be carefully devel-
oped to ensure users understand and correctly anticipate the
impact of their inputs on multiple agents.

Mixed-Initiative Re-planning. It was clear that participants
wanted greater control of re-planning events. Max-sum plans
seemed to add to their workload and they did not always
trust it. Also, users came up with their own workarounds for
the way that max-sum was re-planning. However, they did
appreciate the fact that some parts of the plan were good.
Hence, instead of computing a plan and inviting the operator
to modify it (through manual allocations and waypoints –
adding more effort), we suggest that autonomous planning
tools should provide more control over the types of plans
suggested, without necessarily increasing effort. One way
of doing this would be to offer dynamic plan libraries that
are adapted to the context, in a similar vein to the ‘playbook’
approach [Miller and Parasuraman, 2007].

7 Conclusions
Our study of multi-UAV task allocation interfaces in lab stud-
ies with 40 participants reveals that they found max-sum use-
ful, requiring less effort and resulting in more task completed
and lower workload. However, max-sum plans are not always
trusted and this may result in higher workload for the opera-
tors than purely manual conditions. Our results point to the
need to design algorithms with the users’ needs for control
in mind. Future work will aim to improve the way max-sum
plans can be modified and evaluate the impact of inefficient
plans on operators’ trust in automation.
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