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Abstract Secondary cone-type crushing machines are an important part of
the aggregate production process. These devices process roughly crushed ma-
terial into aggregate of greater consistency and homogeneity. We apply a con-
tinuum model for granular materials (‘A Constitutive Law For Dense Granular
Flows’, Nature 441, p727-730, 2006) to flows of granular material in represen-
tative two-dimensional channels, applying a cyclic applied crushing stress in
lieu of a moving boundary. Using finite element methods we solve a sequence
of quasi-steady fluid problems within the framework of a pressure dependent
particle size problem in time. Upon approximating output quantity and parti-
cle size we adjust the frequency and strength of the crushing stroke to assess
their impact on the output.

Keywords granular materials · crushing · continuum approximation · finite
elements · 76A05: Non-Newtonian fluids · 76T25: Granular Flows · 74E20:
Granularity · 76D99: Incompressible viscous fluids

Oliver Bain
Aberystwyth University
E-mail: oliver bain@hotmail.com

John Billingham
University Of Nottingham
E-mail: john.billingham@nottingham.ac.uk

Paul Houston
University Of Nottingham
E-mail: paul.houston@nottingham.ac.uk

Ian Lowdes
University of Nottingham
E-mail: ian.lowndes@nottingham.ac.uk



2 Oliver Bain et al.

Fig. 1: A Terex Pegson MaxTrak1000 cone crusher.

Fig. 2: An idealised cone crusher cross-section.

Fig. 3: The critical physical parameters of the crusher.

1 Introduction

In this article we will model flows of granular material in cone-type rock crush-
ers, as depicted in figure 1. A crusher chamber typically consists of an inner
‘mantle’ that is driven by an eccentric shaft within an outer static ‘concave’,
as idealised in figure 2. We will utilise the viscoplastic continuum relation
for granular materials devised by Jop, Forterre and Pouliquen in [1], and ap-
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Fig. 4: Illustration of the position of the inner mantle’s base at three time
points, during its rotation about the concave’s axis of symmetry.

proximate two dimensional flows of pressure-crushable granular media within
channel cross-sections similar to that shown in figure 3. Material to be crushed
falls between the two surfaces, compacting locally where the inner mantle has
greatest proximity to the concave. The mantle is fixed at its summit, while
its base rotates on a circular path about the concave’s axis of symmetry, as
in figure 4. We will consider the channel to have length L and height h at
the inlet. The outlet height hout at a given point on the circumference of the
crusher will oscillate between minimum and maximum sizes at between four
to ten cycles per second.

Within the literature the most prominent existing model for material flow
and crushing within crushers was developed by Evertsson in his doctoral work
[2,3] from the earlier population model [4]. That approach was to establish a
mass balance in combination with a flow and crushing model. The flow model
is based on computing the path of each single particle through the crushing
chamber, whether they be in freefall, sliding or crushing. The system is con-
trolled by a ‘volumetric filling ratio’, ηv < 1, that allows for the incomplete
filling in the inlet zone seen in real crushers. This model was then followed
up by Evertsson and Lindqvist in collaboration with others [5–11] with the
main intentions of improving the flow model and integrating lining wear into
simulations. They optimized the geometry such that material experienced no
sliding at the basal surface in its transit through the cross-section. In an in-
dependent succeeding study [12–15], Evertsson’s results were refined further
and successfully applied to an operational crusher and are now being incorpo-
rated into new crusher design. The Evertsson model is interesting due to its
discrete approach to the system, but the ultimate integral equation is a far
less tractable model than our continuum fluid flow approximation, as we aim
to examine the overall behaviour of the material and the quality of the output
rather than to simulate the explicit grain trajectories and crushing.

The modelling of granular media has become increasingly popular in recent
years as researchers attempt to understand the three main modes of behaviour
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- which equate roughly to gaseous, liquid and solid regimes - and generate the
tractable, unifying models that still seem to be beyond our grasp. Much time
has been put into modelling the gaseous phase using ‘granular temperatures’
[16], and the solid phase via solid mechanics [17], but the dense liquid flow has
defied easy modelling. The dynamics/mechanics involved are complex, given
the irregularly shaped particles which arise within any natural granular mate-
rial, and random assemblies of these particles can lock together into temporary
structures we refer to as force chains or networks [18–21]; which structures are
sometimes also referred to as force eddies or clusters [22].

Instead of a discrete model, we choose to adopt a contiuum model that is
minimal in nature and is based empirically on the study of the pseudo-liquid
regime of flows of dense granular media, on an assumption of rock particles
being small enough for a continuum approximation. The complexity and lack
of consensus on modelling granular materials in the literature also make such
an approximation credible in the context of our problem. Our chosen model
is in essence composed of a pressure-dependent yield stress and an effective
viscosity depending on the pressure p, grain diameter λ and shear rate |γ̇|. In
common with what we assume to occur inside the crushing cavity this material
is pressure-thickening, which is analogous to the slowing and cessation of the
fragments in the crusher as the crushing stroke occurs. Employing techniques
used in computations involving Bingham viscoplastics [23] we choose to regu-
larise the dimensional constitutive using the Bercovier-Engelman method. We
can then apply the formerly piecewise and now universal constitutive relation
over the whole channel Ω. The choice of regularisation is arbitrary in the sense
that we could choose the Papanastasiou [24,25] method equally well in the con-
text of this work. With the prerequisite analysis we might invoke variational
inequalities [26,27] in place of regularisation, prompting a radically different
formulation. We choose to invoke grain size dependence in this instance purely
by its directly stated relation to the inertial number I,

I = |γ̇|λ
(
ρs
p

)1/2

,

where deviatoric stress τ is given by

τ = µ(I)γ̇,

and total stress σ by

σ = −pI + τ ,

for close packed material density ρs, rate of strain tensor γ̇, effective viscosity

function µ(I), and identity tensor I.

In reality, many of the parameters, such as the coefficients ζs, ζ2, inertial
constant I0, packing fraction κ and Young’s Modulus Ec might also depend on
λ. For the purposes of this computation and simplicity, we restrain dependence
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as stated, and neglect the influence of polydispersity in grain shape. Further
λ-dependence could be investigated in future work.

In the main body of this paper we will apply slip boundary conditions at
both the physical boundaries. In the preliminary unidirectional work in section
2 we prescribe no-slip at the basal surface for a unique solution in the case of a
parallel-sided channel. We prescribe basal slip in the ensuing two-dimensional
work due to the assertions in [3], wherein it is stated clearly that there are
three modes of movement for material within cone crushing machines: free fall
from upper surface, ascendancy on the basal surface with the crushing concave
and sliding on the basal surface. Evertsson states slip is common [3] but then
optimises his model to avoid slippage. Within [28] it is again stated that slip
is common within the first few layers of grains at the base.

We proceed by presenting a preliminary set of unidirectional solutions in
section 2 which demonstrate our slip boundary condition and regularisation
before moving on to the two-dimensional work. The variational formulation for
the problem is given in section 3, the procedure for performing the calculations
in section 4, some illustrative results are given in section 5 and a discussion is
contained in section 6.

2 Preliminaries

For ease of reference we list typical dimensional values for quantities involved
in table 1. To begin, we examine the steady, non-inertial, gravity-driven and

Symbol Minimum Maximum Source
ζs tan(20.90◦) Defined in model, now modified
ζ2 tan(32.76◦) Defined in model, now modified
ζw 0.3 0.5 From literature [2]
I0 0.279 Defined in model, now modified
L 0.6m 1.0m Estimated from literature [2]
h(0) 10mm 50mm From literature [29]

H = h(L) 250mm From literature [29]
ρs 2660 kg/m3 From literature [29]
R 4 s−1 10 s−1 From literature [2]
λ 5mm 250mm From literature [8,9]

ph(L) 6 MPa 8 MPa From literature [8]
Tr 7 strokes 10 strokes From literature [2]

Tc = Tr
R

1s 2.5s Estimated from literature [2]
θ 50◦ 70◦ Estimated from literature
m 250mm 500mm Estimated from literature
M 55.5 kg/s From literature [9]
Q 0.02 m3/s M/ρs
U 0.4157 m/s Estimated from literature [9]
λout 5mm 32mm From literature [29,2]
Ee 10 GPa 100 GPa From literature [30]

Table 1: Typical quantities and parameter values
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Quantity Minimum Maximum Quantity Minimum Maximum

L̂ 2 4 ĥ(0) 0.04 0.2

ĥ(L̂) 1 R̂ 0.64 1.6

λ̂ 0.02 1 p̂h 0.92 1.23

T̂c 6.26 15 Q̂ 0.204

Û 0.266 λ̂out 0.02 0.128

Êe 105 106

Table 2: Typical non-dimensional parameter values. See table 1 for dimensional
version.

Fig. 5: The dimensional parallel-sided channel, inclined at angle θ to the hor-
izontal.

incompressible flow of granular material in parallel-sided channels inclined at
an angle θ to the horizontal, as shown in figure 5.

From our table 2 of typical non-dimensional parameter values we can de-
duce an approximate Froude number Fn of the form

Fn =
U2

gh
=

0.41572

9.8× 0.25
≈ 0.07,

which number can stand in as an estimate for the Reynolds number in this
case due to the pressure-dependence of the viscous stresses. Since Fn ≈ 10−1,
we can consider the flow to be broadly non-inertial.

Unidirectionality dictates that

u = (u(y), 0),

τ =

[
0 τxy(y)

τyx(y) 0

]
,
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and p simplify to functions only of y, the distance from the channel base. We
non-dimensionalise the system using the scalings

√
gh for velocity u, ρgh for

stress-like quantities τ , p, Ee, h for coordinates x = (x, y) and grain diameter λ,√
h/g for times t and Tc, and

√
gh5 for volumetric flux Q. ρ denotes material

density and g denotes gravitational acceleration. Typical non-dimensional val-
ues are shown in table 2. In line with this, the effective viscosity µ [1] simplifies
to the following regularised

µreg

(∣∣∣∣dudy
∣∣∣∣ , p, λ) =

ζsp√
|dudy |2 + ε2

+
pλ
√
κ(ζ2 − ζs)√

pI0 + |dudy |λ
√
κ
, (2)

and unregularised forms

µun

(∣∣∣∣dudy
∣∣∣∣ , p, λ) =

ζsp

|dudy |
+

pλ
√
κ(ζ2 − ζs)√

pI0 + |dudy |λ
√
κ
, (3)

where ε is a small non-negative regularising parameter applied in the Bercovier-
Engelman fashion [23], and the deviatoric stress is then defined by

τ = µ

(∣∣∣∣dudy
∣∣∣∣ , p, λ) γ̇.

Our aim in preliminary studies is to find solutions of the unregularised and
regularised JFP materials which may then be used to illustrate and validate
our choices of slip condition and regularisation. These solutions may also be
used as initial conditions for the two-dimensional calculations if necessary.

As in most fluid problems we will solve the system of equations formed
by the equations of conservation of mass and momentum. Under our unidirec-
tional assumption conservation of mass is described by

∇ · u =
∂u

∂x
+
∂v

∂y
,

and is automatically satisfied while conservation of momentum simplifies to

0 = Fx −
∂p

∂x
+
∂τxx
∂x

+
∂τyx
∂y

= Fx +
dτyx
dy

, (4a)

0 = Fy −
∂p

∂y
+
∂τxy
∂x

+
∂τyy
∂y

= Fy −
dp

dy
, (4b)

where F = (Fx.Fy) is the vector of gravity forces. We prescribe the boundary
conditions

u = 0 on y = 0,
τyx = τslip on y = 1,
p = ph on y = 1,
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and employ the specific slip relation from [31], wherein tangential deviatoric
stress τnt and velocity ut vectors are defined at the wall by

ut = u− (u · n)n,

τnt = τ · n− τnnn,

τnn = (τ · n) · n,

and n and t denote normal and tangential vectors to the boundary, respectively.
We prescribe the boundary stresses as both velocity- and pressure-dependent
via

τnt = τ slip(ut, p) =
τω
uω
ut −

ζwp√
u2ω + |ut|2

ut. (5)

The quantity ζw is the material friction coefficient. ζs, ζw, and ζ2 can be
alternatively understood via their relations to friction angles φs, φw, φ2,

ζs = tanφs, ζ2 = tanφ2, ζ2 = tanφ2.

The quantities τω and uω are our boundary condition smoothing constants
and represent small non-negative stresses and speeds, respectively, such that
the approximation collapses down to the piecewise slip condition

(τ · n) · t =

{
ζwp if |u| > 0,

numerical solution otherwise

as

uω → 0,
τω
uω
→ 0.

We in effect prescribe that for a material to slip at the boundary it must reach
a threshold shear stress τslip ∝ p, hence making slip less likely for higher ap-
plied crushing pressure ph. The term τω

uω
ut exists as a guarantee of a bijective

relation between slip stress and slip speed. Within the preliminary work it is
simply implemented, while in the two-dimensional finite element calculations
it is prescribed as a natural boundary condition, which requires the addition
of complementary zero-flux terms in the variational formulation. For other ex-
amples of slip boundary conditions and discussion see [28,31,32], while for a
variational inequality possibility as applied to the Signorini boundary condi-
tion problem see [33]. In this instance we choose regularisation in line with our
previous choice in the effective viscosity function µ(I). Under unidirectionality,
our prescribed slip stress τslip (5), simplifies to the scalar

τslip = − τω
uω
uh −

ζwp√
u2ω + u2h

uh,
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Fig. 6: Convergence plots for uh for various configurations of (uω, τω). In this
case θ = 55◦, φs = 14◦, φw = 60◦, φ2 = 75◦, and for ph ∈ [0.01, 1.5].
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Fig. 7: Convergence plots for τh for various configurations of (uω, τω). In this
case θ = 55◦, φs = 14◦, φw = 60◦, φ2 = 75◦, and for ph ∈ [0.01, 1.5].
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Fig. 8: Expected unidirectional flow in the parallel-sided channel, non-
dimensional.

which in the piecewise case would dictate

τ(1) = −Fx(1− y0)

= ζwph,

y0 = 1 +
ζwph
Fx

,

where uh = u(h) is the slip speed. As a verification of our smoothed boundary
condition we have run a sequence of calculations, and display the results in
figures 6 and 7. We do indeed see that the smoothed boundary condition
converges to the piecewise condition with decreasing uω and τω

uω
in both the

speed and stress fields.
We will solve the unregularised JFP system analytically with the exception

of one key parameter y0 which must be found numerically in the event of non-
slippage, while the regularised JFP system will be solved numerically using
finite difference techniques.

2.1 The unregularised JFP system

Given the unregularised viscosity relation (3), the expression for the only non-
zero deviatoric stress τyx = τxy under unidirectionality simplifies to

τyx = µun

(∣∣∣∣dudy
∣∣∣∣ , p, λ) du

dy
= s

(
ζsp+

∣∣∣∣dudy
∣∣∣∣ pλ

√
κ(ζ2 − ζs)√

pI0 + |dudy |λ
√
κ

)
, (6)

where s = sign(dudy ). Since the material is unregularised we expect the velocity
profile will have a rigid plug bounded by y1, y2 and consist of at most three
distinct regions as shown in figure 8. The constant y0 determines the zero point
in the linear stress function, and is used to indirectly prescribe the boundary
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condition on the stress at the surface y = 1. The number of regions present
is not constant and depends primarily on the applied normal stress ph. For
the special case of a free surface situation when ph = 0, we anticipate that
the material flow will consist of a single shear layer, but for all ph > 0 an
unyielded region should exist. Generally, we expect the following three modes
of behaviour to occur as we vary ph:

– Free surface flow for zero ph, one shear layer,
– Slip for intermediate ph, a plugged region and one or two shear layers,
– No-slip for large ph, a plugged region and two shear layers.

Following from (4a) and (4b) we see

p = ph + Fy(y − h), (7a)

τyx = −Fx(y − y0). (7b)

Combining (7b) and (6) gives

τyx(y) = −Fx(y − y0) = ps

(
ζs +

λ
√
κ|dudy |(ζ2 − ζs)

I0
√
p+ λ

√
κ|dudy |

)
,

and rearranging yields

du

dy
= −

sI0
√
p

λ
√
κ

(
τ − sζsp
τ − sζ2p

)
, (8)

where

s = sgn

(
du

dy

)
.

We solve equation (8) with the boundary conditions

u(0) = 0,

u(y2) = u(y1).

To integrate we use the substitution

t(y)2 = p(y) = ph + Fy(y − 1), (9a)

dy =
2t

Fy
dt, (9b)

where, under this substitution,

τ(y) = −Fx

Fy

(
t(y)2 − t(y0)2

)
,

du

dy
= −

sI0
√
p

λ
√
κ

(
Fx + sζsFy

Fx + sζ2Fy

)
t(y)

(
t(y)2 −As

t(y)2 −A2

)
,

u(y) = − 2I0s

Fyλ
√
κ

(
Fx + sζsFy

Fx + sζ2Fy

)∫
t(y)2

(
t(y)2 −As

t(y)2 −A2

)
dt.
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The equation for u(y) may be simplified as follows

u(y) = − 2sI0
Fyλ
√
κ

(
Fx + sζsFy

Fx + sζ2Fy

)∫
t(y)2 + (A2 −As) +

A2(A2 −As)

t(y)2 −A2
dt,

where

As =
Fxt(y0)2

Fx + sζsFy
,

A2 =
Fxt(y0)2

Fx + sζ2Fy
.

We then integrate for the general solution

u(y) = − 2sI0
Fyλ
√
κ

(
Fx + sζsFy

Fx + sζ2Fy

)[
t(y)3

3
+ (A2 −As)t(y)

−
√
A2(A2 −As) tanh−1

(
t(y)√
A2

)]
+ constant,

and apply our boundary conditions to find a piecewise solution. For 0 ≤ y ≤ y1,
we have

u(y) =
2I0

Fyλ
√
κ

(
Fx − ζsFy

Fx − ζ2Fy

){
1

3
(p(y)3/2 − p(0)3/2)

+(A2 −As)(p(y)− p(y2))

−
√
A2(A2 −As)

[
tanh−1

(√
p(y)√
A2

)
− tanh−1

(√
p(0)√
A2

)]}
,

while for y1 < y < y2 we find

u(y) = u(y1),

and finally for yy ≤ y ≤ 1 we have

u(y) = u(y1)− 2I0
Fyλ
√
κ

(
Fx + ζsFy

Fx + ζ2Fy

){
1

3
(p(y)3/2 − p(y2)3/2)

+(A2 −As)(p(y)− p(y2))

−
√
A2(A2 −As)

[
tanh−1

(√
p(y)√
A2

)
− tanh−1

(√
p(y2)√
A2

)]}
.

It should be noted that the values of As, A2 are dependent on s, and so have
distinct values in the two possible shear layers.
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To determine the plugged region boundaries y1, y2, as shown in figure 8,
we solve du

dy = 0, from equation (8):

0 =
du

dy
= τ − sζsp,

y =
Fxy0 − sζs(ph − Fy)

Fx + sζsFy
,

y1 =
Fxy0 + ζs(ph − Fy)

Fx − ζsFy
, (15a)

y2 =
Fxy0 − ζs(ph − Fy)

Fx + ζsFy
. (15b)

The boundary conditions on u(y) ensure continuity of the solution at y1, y2.
The shear stress at the surface τh is determined indirectly by the chosen value
of y0. To find a solution consistent with the stress boundary condition we must
numerically find a root in y0 of the function

b(uh(y0)) = shph

[
ζs +

|duh

dy |(ζ2 − ζs)

p
1/2
h + |duh

dy |

]

−

[
−τω
uω
uh −

ζwph√
u2ω + u2h

uh

]
.

The surface velocity uh is determined by modifying the normal applied stress
ph or the friction coefficient ζw, but this may not be done arbitrarily as there
are bounds on these two quantities which we shall now derive. Under uni-
directionality the stress-strain relation for an unregularised JFP material, as
detailed in [1], is given by

τ(y) = µ(I)p(y)s,

for

µ(I) = ζs +
I(ζ2 − ζs)
I0 + I

, (16a)

I =

∣∣∣∣dudy
∣∣∣∣λ( κP )1/2 ,

and therefore
µ(I) = s

τ

p
.

Since, by the formulation of the constitutive relation in [1], we must have

ζs ≤ µ(I) ≤ ζ2,

it follows that at the base

−ζs(ph − Fy)

Fx
≤ y0 ≤ −

ζ2(ph − Fy)

Fx
,
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and then at the upper surface

1 +
ζ2ph
Fx
≤ y0 ≤ 1 +

ζsph
Fx

.

We combine the two inequalities on the assumption that there is an overlap
in the regions for y0, and hence

−ζs(ph − Fy)

Fx
< 1 +

ζsph
Fx

,

−ζ2(ph − Fy)

Fx
> 1 +

ζ2ph
Fx

,

and gain the final requirement for ph:

1

2ζ2
(ζ2Fy − Fx) < ph <

1

2ζs
(ζsFy − Fx) . (18)

The bound on ph can be physically understood as the limiting pressure for
material flow. Above this limit the material is locked into a static arrangement
due to its interlocking grains. The left hand side of (18) is uniformly negative
for θ ∈ (φs, φ2) and so practically we have

max

(
0,

1

2ζ2
(ζ2Fy − Fx)

)
< ph <

1

2ζs
(ζsFy − Fx) , (19)

since non-negative (pulling) applied normal stresses are non-physical in this
case.

Further conditions on parameter ranges can now be determined based on
the physical situations we wish to model and practicalities. For free surface
flows we will need ph = 0 and therefore a negative lower bound

1

2ζ2
(ζ2Fy − Fx) < 0,

ζ2 >
Fx

Fy
= tan θ.

In the more general case of flows where ph > 0 we look for other constraints;
we require a positive upper bound on ph,

1

2ζs
(ζsFy − Fx) > 0,

tan θ =
Fx

Fy
> ζs.

Steady flow is therefore considered realistic for the JFP model under a bounded
applied normal stress ph if

ζs < tan θ < ζ2, (20)
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Fig. 9: Example plots of u(y) for various ph, plotted against y. In this case
θ = 55◦, ζs = tan 14◦, ζw = tan 60◦, ζ2 = tan 75◦.

while no flow is possible for tan(θ) < ζs for whatever ph, and there speculatively
could be unsteady flow for tan(θ) > ζ2 for some values of ph. In light of these
bounds on applied stress ph (19), and channel inclination θ (20), we modify
the original values of ζs, ζ2. For sufficiently large ph we require small ζs, and
for large θ we require large ζ2.

Limits for the the slip coefficient ζw are also built into the model. Since
the edges of the unyielded ‘plug’ region are given by equations 15a, 15b we
can deduce that for existence of a second shear layer and hence ‘controlled
slippage’ we require

y2 < 1,

ζw > ζs.

The ratio ζw/ζs is, in addition to ph, vital for the onset of slippage as ζw/ζs >>
1. We may also speculate a similar change in behaviour with the ratio ζw/ζ2
where slip decreases as ζw/ζ2 → 1 for given ph.

Given all of the above we can plot solutions such as those shown in figures 9
and 10. It is apparent that our slip condition is operating effectively as slippage
increases with decreasing applied stress ph. The slip velocity uh approaches but
does not cross zero with increasing ph. We interpret positive uh as unphysical
in this case.
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Fig. 10: Example plots of τ(y) for various ph, plotted against velocity gradient
du
dy . In this case θ = 55◦, ζs = tan 14◦, ζw = tan 60◦, ζ2 = tan 75◦.

Fig. 11: Discretisation of non-dimensional u, τ over y ∈ [0, 1].

2.2 The regularised JFP system

We regularise the JFP constitutive relation and introduce a parameter ε > 0
such that the effective viscosity is given by (2). With the inclusion of ε we no
longer have a tractable analytical problem and resort to numerical solution
via finite difference techniques. We discretize u, τ and p over y as in figure 11,
and approximate the governing equations

0 = Fx +
dτyx
dy

,

du

dy
= − sI0

λ
√
κ

√
p

(
τ − sζsp
τ − sζ2p

)
when |τyx| > ζsp,

and boundary conditions

u(0) = 0,

τyx(1) = τslip = − τω
uω
uh −

ζwp√
u2ω + u2h

uh,
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log10(ǫ) =−1
log10(ǫ) =0

Fig. 12: Example plots of u(y) for various ε, plotted against velocity gradient
du
dy . Here we have θ = 55◦, ζs = tan 14◦, ζw = tan 60◦, ζ2 = tan 75◦, and
ph = 0.25.

by the following system of 2n− 1 equations

0 = Fx +
τi − τi−1
∆y

for i = 2, . . . , n− 1,

ui − ui−1
dy

= −si−1I0
λ
√
κ
pi−1

τi−1 − sζspi−1
τi−1 − si−1ζ2pi−1

for i = 2, . . . , n,

u0 = 0,

τn−1 = − τω
uω
un −

ζwpn−1√
u2ω + u2n

un.

This is then solved using Newton’s method. We demonstrate convergence of
the regularised solution to the unregularised with decreasing ε in figures 12
and 13. The regularisation effect is to increasingly eliminate the plugged re-
gion in the velocity profile that we see in the unregularised profiles in figure 9.
The regularisation is especially apparent in the stress profile where the discon-
tinuity is clearly smeared, illustrating how over-regularisation fundamentally
distorts the nature of the solutions computed. The regularisation parameter ε
may be characterised as a function of the Jump number [34], a quantitative
measure of the difference between the yielded and unyielded behaviour.
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Fig. 13: Example plots of τ(y) for various ε, plotted against velocity gradient
du
dy . Here we have θ = 55◦, ζs = tan 14◦, ζw = tan 60◦, ζ2 = tan 75◦, and
ph = 0.25.

3 Formulation

3.1 System

We now move on to examining flows of two-dimensional granular materials
within non-parallel-sided channels, such as that shown in figure 14. The ge-

Fig. 14: The channel Ω, with the upper surface y = h(x), as defined in (22),
and basal service y = 0. Applied stress ph is prescribed at y = h(x).
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ometry function h(x) is given by

h(x) = hout + x tan(α) + x2
(

3(h− hout)
L2

− (2 tan(α) + tan(β))

L

)
+ x3

(
2(hout − h)

L3
+

tan(α) + tan(β)

L2

)
, (22)

which has been designed to satisfy conditions

h(0) = hout, h(L) = 1, h′(0) = tan(α), h′(L) = tan(β).

We retain our previous scalings and our non-inertial and incompressible flow
assumptions. The whole time-dependent problem is modelled as a sequence of
quasi-steady fluid problems. Since this viscoplastic constitutive relation was
designed for generic granular materials, we modify some of the model param-
eters for quantitative similarity to our real life crusher.

The crusher cross-section is approximated as a two-dimensional channel
of fixed geometry. The fixed geometry is chosen since the moving boundary
problem would be problematic in combination with our assumption of incom-
pressibility, while the crushing stroke is simulated by a prescribed applied
stress ph(t) at the inlet. This idealised cross-section is a minimal model that
represents approximately the effective crushing portion of the cross-section.
The pressure drop from inlet to outlet is a necessary compromise to drive the
fluid continuum approximation to the granular material, in addition to the
gravity forces which will cause flow under sufficiently small applied normal
stress.

We will solve a sequence of quasistatic problems in velocity u(x; t) and
pressure p(x; t) for fixed λ in space, linked by a constitutive problem in time
and space for λ and fixed u, p. Assuming small enough time steps we can
assemble the solutions to these two problems into a larger composite solution
for (u, p, λ).

Following, the two dimensional viscoplastic fluid problem in velocity u =
(u, v) and isotropic pressure p is composed of the equations of conservation of
mass and momentum as follows

0 = ∇ · u, (23a)

0 = F +∇ · σ, (23b)

which are equivalent to the following in terms of u = (u, v) and p,

0 = ∇ · u,

0 = F −∇p+∇ · {φγ̇},

where we have the regularised non-dimensional constitutive relation defining
the effective viscosity φ as non-linearly dependent on γ̇, p and particle size λ

by

φ(|γ̇|, p) =

(
ζs

(ε2 + |γ̇|2)1/2
+

λκ1/2(ζ2 − ζs)
I0p1/2 + λκ1/2|γ̇|

)
p.



20 Oliver Bain et al.

The volume fraction κ is assumed constant in line with our assumption of
incompressibility. This system is accompanied by the following boundary con-
ditions

u · n = 0 at y = h(x) and y = 0,
(τ · n) · t = τslip(u) at y = h(x) and y = 0,

p = pin(y) at the inlet (x = L),
p = pout(y) at the outlet (x = 0),
v = 0 at the outlet and inlet,

σ · n = pin(y)n at the inlet,

σ · n = pout(y)n at the outlet,

where the pressure p has been carefully prescribed at the inlet and outlet due to
the pressure-dependence in the constitutive relation. The pressure conditions
at the inlet and outlet are completed by

pin(y) = ph(t) + Fy(y − 1), (25a)

pout(y) = ph(t)− pstep + Fy(y − 1)hout, (25b)

ph(t) = ph,low + (ph,high − ph,low)
[
1 + sin

(
2πRt− π

2

)]
, (25c)

which describe oscillatory applied stresses at those boundaries with a finite
pressure drop pstep from inlet to outlet, bounds at the inlet for the applied
stress of ph,low and ph,high, and crushing stroke frequency R.

The partial differential equation for the particle size λ is given by

Dλ

Dt
= − λδ

4Tc
(1 + tanh(Υ (p− pcrush)))(1− tanh(ψ(x− xcrush))), (26)

where
λ = hout at t = 0,
λ = hout at x = L.

This represents an approximation to a simple crushing switch such that rock
fragments reduce in size given pressure larger than the threshold pcrush, which
is given below, and a lack of proximity to the inlet, where xcrush defines the
transition from the inlet zone to the crushing zone. Here, δ is our control
parameter to adjust the rate of crushing, Tc is a represenative travel time
through the crusher, and we take results from [35–38] in our derivation of the
λ-dependent pcrush given by

pcrush = c
Ee

π

(
sc
λ
2

)3/2

= c
Ee

π

(
2sc
λ

)3/2

. (27)

We have assumed rough symmetry in the grains in defining pcrush, and little
plasticity for the contact displacement sc and point out that the constant c is
the modifier found in [37], to be commonly in the range

0.2 < c < 0.3.

As a result of the above equations we have a system which features pressure-
dependence via these principal features:
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– A pressure-thickening material,
– Effective pressure-roughening at the boundaries,
– Pressure-dependent crushing.

3.2 Variational form

We now derive variational forms for use in the finite element approximation of
the underlying system of partial differential equations. We define ü, v̈, p̈, λ̈ as
test functions associated with our unknowns. Concentrating first on our fluid
problem we multiply equation (23a) by p̈ and (23b) by (ü, v̈), integrate over
the channel Ω, and then apply integration by parts to obtain

0 =

∫
Ω

p̈∇ · u dx, (28a)

0 =

∫
Ω

ü · F −
(
σ · ∇

)
· ü dx+

∫
∂Ω

(
n · σ

)
· ü ds. (28b)

We use the surface integrals to prescribe our natural boundary conditions on τ

and p, but must enforce zero flux across the physical boundaries via additional
terms [39] in the variational formulation:

+

∫
∂Ωslip

p̈n · u ds,

−
∫
∂Ωslip

ξ(u · n)(ü · n) ds,

where ξ is given by

ξ ≈ 10q2

he
.

The new quantity q is the polynomial degree of ü and v̈, while he is a piecewise
constant function defined over Ω, which indicates the diameter of each element
in the mesh. We choose approximating functions of the form

u, v piecewise bilinears plus cubic bubbles,
p, λ piecewise bilinears,

and select q = 2 as a compromise between the linear and cubic portions of our
approximating functions and as a value in line with the ideal but computa-
tionally expensive biquadratic functions normally used to satisfy the stability
condition. The variational forms for the fluid problem upon rewriting in terms
of τ and p are therefore

0 =

∫
Ω

p̈∇ · u dx−
∫
∂Ωslip

p̈n · u ds,
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0 =

∫
Ω

ü · F − (σ · ∇) · ü dx+

∫
∂Ωin

−(n · ü)pin + Λ(τ · n) · ü ds

+

∫
∂Ωslip

(n · ü)(−p+ [τ · n] · n) + (t · ü)τslip(t · u, p) ds

−
∫
∂Ωslip

ξ(u · n)(ü · n) ds+

∫
∂Ωout

−(n · ü)pout + Λ(τ · n) · ü ds,

where Λ ∈ [0, 1] is a continuation parameter which we reduce during the
calculation to achieve our normal stress boundary conditions at the inlet and
outlet.

Moving on to the particle size problem, we discretize equation (26) in time,
by effectively approximating

∂λ

∂t
≈ λt − λold

∆t
,

for small time step ∆t. We therefore obtain

Dλ

Dt
≈ λ− λold

∆t
+ (u · ∇)λ

= − δλ

4Tc
(1 + tanh(Υ (p− pcrush))) · (1− tanh(ψ(x− xcrush))), (31)

Particle size λ is paired with its test function λ̈ from a piecewise bilinear finite
element space and the system integrated over the channel Ω, to arrive at

T (λ, λ̈) =

∫
Ω

λ̈

(
λ− λold
∆t

+ (u · ∇)λ

)
+
δλ̈λ

4Tc
(1 + tanh(Υ (p− pcrush))) · (1− tanh(ψ(x− xcrush))) dx

= 0. (32)

We retain the initial and boundary conditions already stated.

4 Procedure

We compute our numerical solutions using Newton’s method, and explicit
time-stepping for the λ-problem. We employ sufficiently small time steps, de-
duced from typical values in table 2, such that we will not have problems
with the Courant Friedrichs Lewy (CFL) condition. Specifically we make an
estimate such that material should not travel more than an average element
diameter h̄e in distance over a time step ∆t.

We adopt the procedure illustrated in figure 15, noting that the initial
continuation from the parallel-sided to non-parallel sided channel problem
includes continuation on five parameters simultaneously in a vector G:

G = (α, β, hout, pstep, Λ), (33)
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Fig. 15: General procedure for solving the time-dependent sequence of prob-
lems.

and represents not only continuation on geometry but also in pressure drop
down the channel and on normal stress at the inlet and outlet. We prescribe
an initial zero pressure drop along the channel and Λ = 1, and continue to
finite pressure drop pstep ≥ 0 as well as Λ = 0.
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5 Results

We define the following functionals

M(χ) =

∫
A
χ dx

AA
,

ς(χ) =

(∫
A

(χ−M(χ))2 dx

)1/2

,

M2(χ) =
1

t2 − t1

∫ t2

t1

χ dt,

where M represents a spatial mean, ς is the ‘consistency’ and is equivalent
to a standard deviation, and M2 is a temporal mean. ‘Improved’ consistency
refers to a smaller value for ς.

In solving our system of equations we have prescribed a fixed time step
∆t and set the model constants (I0, ζs, ζ2, c, δ) such that the results are of
the correct order of magnitude upon settling to their regular patterns. Those
reference constants are shown in table 3, and our solution exhibits

M(|u|) = 0.327, M(λout) = 0.011,

which is satisfactorily similar to the typical reference nondimensionalised val-
ues shown in table 2. We establish a set of reference points down the channel,

θ = 65◦ φs = 8◦ φw = 25◦

φ2 = 75◦ ph,low = 0.7 ph,high = 1.2
log10(ε) = 0 I0 = 10 pstep = 0.4

log10(τω) = −4 log10(uω) = −1 κ = 0.7
sc = 0.0001 c = 0.0278 Ee = 100000
δ = 4.5 R = 1 Tc = 7

log10(Υ ) = 1 log10(ψ) = −0.2

Table 3: Parameter set for the reference problem, with associated figures 17-22.

Fig. 16: Reference points along mid-line of channel. xi =
(
iL
6 ,

1
2h
(
iL
6

))
, for

i = 0, 1, 2, 3, 4, 5, 6.
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Fig. 17: λ at the reference points shown in figure 16.
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Fig. 18: ph, Q and M(|u|).

as illustrated in figure 16. Some plots from our reference solution are shown
in figures 17-22, illustrating the steady pattern of that solution, which we be-
lieve to be numerically stable and representative of the physical expectations
of our system. We see staggered crushing down the channel from the λ traces
at the reference marks shown in figure 16 and the expected reduction in Q for
increasing pressure and the same behaviour in the velocity field. The pressure
conditions at the inlet and outlet are maintained at the level of the steady so-
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Fig. 19: M(|u|) and ς(|u|).
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Fig. 20: p at the reference points shown in figure 16.

lution and flux across the slip boundary is appropriately minimised. Slippage
at the basal and upper surfaces is seen to be successfully in antiphase with the
applied stress. Viewing the pressure reference traces there is a pressure hump
mid-channel which is somewhat counter-intuitive, but could be explained as a
necessary part of the solution to allow the required effective viscosities in the
converging channel geometry.
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Fig. 21: pin, pout and flux measures.
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Fig. 22: Slip measures at y = 0 and y = h(x).

We now assess the impact of modifying the frequency and strength of the
crushing stroke on the output of the crusher.
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Fig. 23: Plots of M2(M(λout)), M2(ς(λout)), M2(M(|u|)), M2(ς|u|) for R =
0.25, 0.5, 1.0, 2.0, 4.0, where we have computed M2 averages over t ∈ [59, 75].

5.1 Varying stroke frequency

In our reference solution we have a typical non-dimensionalised crushing stroke
frequency R = 1. We follow the tuning procedure with a set of calculations
for R = [0.25, 0.50, 1.00, 2.00, 4.00] over time t ∈ [50, 75], where we employ
continuation on R at t = 50. We then calculate our measures M2(M(λout)),
M2(ς(λout)), |M2(M(|u|))|, M2(ς|u|) over t ∈ [59, 75] and plot in figure 23.
In three of the four measures we see no discernible variation over R, while a
slight deteriation in output consistency can be seen with increasing R. This
is worthy of further consideration, and would be of great interest in the full
three dimensional model.

5.2 Varying stroke strength

We now investigate the effect of altered crushing stroke strength on the output
quality and quantity. We employ continuation at t = 50 and calculate solutions
for ph,high = 1.0, 1.1, 1.2, 1.3, 1.4. The bottom line results are plotted in figure
24 and seem to illustrate that increasing the crushing strength both reduces
the average grain size of the output but also the average speed of the material.
The consistency measures both reduce with increasing ph,high, reflecting more
homogeneous output material and less variance in the velocity field from its
mean value over the time span.
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Fig. 24: Plots of M2(M(λout)), M2(ς(λout)), M2(M(|u|)), M2(ς|u|) for
ph,high = 1.0, 1.1, 1.2, 1.3, 1.4, where we have computed M2 averages over
t ∈ [59, 75].

6 Discussion

In this article we have formulated a two-dimensional system and its varia-
tional equivalent, which approximates the flow of granular material in a two-
dimensional fixed geometry cone crusher cross-section. By manipulating the
model parameters as set out for the viscoplastic constitutive law and adding
a simple crushing rule we can approximate the flow of granular material and
crushing under compressive crushing pressure in the channel. The crushing
stroke in the fixed two-dimensional geometry is simulated by an oscillatory
applied normal stress at the inlet and outlet, which can be modified in both
frequency and size to assess the influence of those factors on the output size
and consistency.

From our initial investigations it seems that adjusting the frequency of the
crushing stroke has very little effect on the quality or quantity of the output.
There is a somewhat surprising result of improved consistency of output for
small frequencies which should be investigated further, which is potentially
linked to the fact that for such small frequencies the stroke period approaches
that of the transit time of the material in the crusher. Predictably increasing
the crushing strength does reduce the mean output size and improve the con-
sistency of the output. This greater degree of crushing is offset by a reduced
throughput of material.

In assessing the model, there are several outstanding issues. We have pre-
scribed a pressure drop down the channel in order to force a sufficiently large
throughput of material through the machine. For a realistic gravity-driven ap-
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proximation to the real-life crusher situation we need to investigate methods
for facilitating such flows of granular media without the pressure difference.
Increasing the inertial reference I0 can suffice to a certain extent but saturates
quickly. Reductions in the friction coefficient ζw can also boost throughput
but very small ζw and ph can cause computational problems due to infinite
slippage and a model that requires non-negative pressure. The pressure ‘hump’
that exists mid-channel will also retard flow via the slip boundary conditions
at the top and base as well as thickening the medium. The pressure satisfac-
tion tests show errors on the order of 10−6 at the inlet and outlet, which are
to be considered satisfactory. A further simplification has been in the minimal
choice of particle size dependence via the Inertial Number I, which should be
re-evaluated in future research. Overall, this work provides a promising foun-
dation for future work while being a ground-breaking first attempt to model
the flow in a rock crusher using a rational, continuum approach.

Future work will be devoted to the three-dimensional generalisation of this
problem, beginning with the fixed geometry problem and moving on to the
moving boundary version.
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