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Abstract 

Conventional indentation tests do not provide an accurate estimation of viscoplastic material 

properties. In this work, a combined Finite element (FE) analysis and optimization approach is 

developed for the determination of elastic-plastic and creep material properties using only a single 

indentation loading-unloading curve based on a two-layer viscoplasticity model. Utilising the 

indentation loading-unloading curve obtained from a FE-simulated experiment with a spherical and a 

conical indenter, a set of six key material properties (Young’s modulus, yield stress, work hardening 

exponent, and three creep parameters) can be determined. Nonlinear optimization algorithms are 

used with different sets of initial material properties, leading to good agreements with the 

numerically simulated target loading-unloading curves.  
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1. Introduction 

Instrumented indentations at micro or nano-scales have become established techniques for measuring 

the mechanical properties of a large variety of materials. The Oliver and Pharr approach [1] is the 

most well-known method for determining the hardness and elastic modulus of the test material. This 

method involves the determination of the mechanical properties of the surface of a given material 

from loading-unloading curves obtained from micro- or nano-indentation tests, based on the 

assumption that the material behaves in an elastic-plastic response during the loading phase and the 

unloading behaviour of the indenter is fully elastic with no plastic deformation [1]. Various 

approaches have been proposed using dimensionless analysis and numerical optimisation to extract 

material properties of power law materials with good estimations [2-9]. 

 

Indentation creep tests [10-15] have been used to obtain the creep properties of materials, despite the 

fact that uniaxial tensile creep tests are the standard techniques to obtain creep parameters. There are 

several advantages of indentation creep tests. For example, only a small amount of the material is 

needed and the test can be used for the characterization of the local deformation behaviour. In 

general, creep is usually used to describe a time-dependent material behaviour of metals at high 

temperature that is a result of visco-elastic deformation when stress or strain is applied. Elastic-

plastic behaviour usually refers to elastic and time-independent plastic deformation, whereas visco-

elastic and viscoplastic behaviours refer to time-dependent elastic and time-dependent plastic 

deformations respectively.  

Recent studies [16-20] have found that the determination of material properties from time-dependent 

material behaviour based on conventional indentation tests, based on the Oliver-Pharr method, does 

not provide an accurate estimation of material properties. The contact between an indenter and a 

material specimen is visco-elastic and not purely elastic, in which creep occurs during the 

instrumented indentation unloading which leads to an overestimation of Young’s modulus. 

Research efforts [16-20] have focused on extracting the time-dependent mechanical properties, 

which are limited to viscoelastic materials and do not consider the plastic deformations of the 

materials, but some researchers [21-22] have assumed that plastic-viscoelastic procedures occur 

separately in an indentation test. Tweedie and Van Vliet [20] stated that the plastic deformation can 

be negligible as the indentation is relatively shallow, hence a purely viscoelastic behaviour can be 

analysed for the time-dependent response. However, plastic deformation may not be negligible, since 
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time-dependent indentation tests may involve very high localised contact stresses resulting in plastic 

strains. 

The main objective of this study is to determine the elastic-plastic and creep material properties from 

indentation loading-unloading curves using a Finite Element (FE) approach combined with 

optimization algorithms for a combined two-layer viscoplasticity material model available in the 

ABAQUS FE code [23]. The authors’ previous optimization approach [9], which was focused on the 

evaluation of elastic-plastic material properties from instrumented indentation loading-unloading 

curves using sharp indenters, is extended in this study to elastic-plastic and creep material properties 

using a spherical indenter. The current investigation builds on previous studies evaluating elastic-

plastic material properties from indentation loading-unloading curves, using a novel two-layer 

viscoplasticity model and combined FE and optimization methods to arrive at the mechanical 

properties of elastic-plastic and creep material to within an error of less than 10%.  

2. Typical indentation loading-unloading curve 

The Oliver-Pharr method [1], which is the most well known method for the interpretation of 

indentation tests, is usually used to determine the hardness and elastic modulus of the test material. A 

typical loading-unloading curve is shown in Fig. 1, where  hm is the maximum depth, hf is the final 

depth after the indenter is fully unloaded, 
dP

dh
is the initial slope of the unloading curve and Pm is the 

maximum indentation load. In general, the main parameters, shown in Fig. 1 have been used to 

determine the hardness and elastic modulus of specimen from loading-unloading curves.  

 

 

 

 

 

 

 

Fig.  1. A typical loading and unloading curve from an indentation test [1], 
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3.  Two-layer viscoplasticity model 

The FE analysis of the bulk material indentation is based on an axisymmetric indenter that is 

modelled using the ABAQUS Standard FE code. The two-layer viscoplasticity model within 

ABAQUS [23,24] is chosen as an example to demonstrate both creep and elastic-plastic material 

behaviour occurring in the indentation test. A two-layer viscoplasticity model is developed for 

modelling materials in which both significant time-dependent and time-independent behaviour are 

observed, which for metals typically occurs at elevated temperatures. A one-dimensional idealization 

of the two-layer viscoplasticity model is presented in Fig. 2, which describes the combined effect of 

a rate-independent (elastic-viscous network) and a rate-dependent (elastic-plastic network) material 

behaviours. It is noted that the rate-independent behaviour exhibits permanent deformations after the 

load application, whereas the rate-dependent behaviour exhibits permanent deformation of the 

material under load over time. The model consists of an elastic-plastic network that is in parallel with 

an elastic-visco (Maxwell model) network, where 𝐾𝑝 is the elastic modulus of elastic-plastic network, 

𝐾𝑣 is the elastic modulus of elastic-viscous network, 𝜎𝑦 is the initial yield stress, 𝐻′ is the power law 

hardening with work hardening exponent, 𝑛1, and A and 𝑛2 are the Norton creep parameters (based 

on the Norton Law: creep strain rate = A 𝜎𝑛2).   

 

Fig. 2. One-dimensional idealization of the two-layer viscoplasticity model [23]. 

The elastic-plastic network predicts the time-independent behaviour of the material, whereas the 

elastic-viscous network predicts the time-dependent behaviour of the material. The two-layer 

viscoplasticity model is based on the von-Mises yield condition in the elastic-plastic network and the 

Norton power law (secondary creep) for the viscoplastic behaviour in the elastic-viscous network. 

The two mechanisms are assumed to be independent, and the total stress σ is the sum of the stress σv 

in the elastic-viscous network and the stress σp in the elastic-plastic network. In this study, the two-

layer viscoplasticiy model is combined with a power-law strain hardening for the time-independent 
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behaviour and the viscoplastic behaviour of the material is assumed to be governed by the Norton 

Law, also known as the Norton-Hoff law (secondary creep).   

The material behaviour in the two-layer viscoplasticity model in ABAQUS covers elastic, plastic, 

and viscous deformations. The elastic part of both networks in Fig 2 is defined by a linear isotropic 

elasticity model. A parameter 𝑓 is introduced define the ratio of the elastic modulus of the elastic 

viscous network (𝐾𝑣) to the total (instantaneous) modulus (𝐾𝑝 + 𝐾𝑣) as follows: 

𝑓 =
𝐾𝑣

(𝐾𝑝+𝐾𝑣)
        (1) 

For many engineering materials, the plastic behaviour can be closely approximated by a power law 

description, which is presented schematically in Fig 3.  

 

Fig.3. Power law elasto-plastic stress-strain behaviour [4] 

A simple elastic-plastic, true stress–true strain behaviour is assumed to be 

𝜎𝑝 = {
𝐾𝑝𝜀  𝑖𝑓 𝜎𝑝 ≤ 𝜎𝑦
 𝑅𝜀𝑛1  𝑖𝑓   𝜎𝑝 ≥ 𝜎𝑦 

}                (2) 

Where 𝜎𝑦 is the initial yield stress, 𝑛1 is the work hardening exponent and the coefficient R can be 

expressed as 

 𝑅𝜀𝑛1 =
𝜎𝑦

𝜀𝑦
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     (3)               

where 𝜀𝑦 is the strain at the initial yield stress 𝜎𝑦 and 𝜀𝑝 is the plastic strain. The viscous behaviour 

of the material is assumed to be governed by the Norton Law, also known as the Norton-Hoff law 
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(secondary creep). A time-hardening power law can be chosen for the viscous behaviour and setting 

m =0: 

𝜎𝑣 = 𝐴
−
1

𝑛2𝜀̇
1

𝑛2       (4) 

𝜀̇ = 𝐴𝜎𝑣
𝑛2𝑡𝑚      (5) 

where 𝜎𝑣 is the viscous stress in the viscoelastic network and A  and 𝑛2 are Norton constants. It is 

assumed that the mechanisms are independent and can be written as: 

𝜎 = 𝜎𝑝 + 𝜎𝑣       (6) 

Therefore, the elastic strain is defined as: 

𝜀𝑒𝑙 = 𝑓 𝜀𝑣
𝑒𝑙 + (1 − 𝑓)𝜀𝑝

𝑒𝑙          (7) 

The total strain comprising elastic, plastic and viscous strains can be expressed as follows: 

𝜀𝑡𝑜𝑡𝑎𝑙 = 𝜀
𝑒𝑙 + 𝑓𝜀𝑣 + (1 − 𝑓)𝜀

𝑝𝑙
    (8) 

where 𝜀𝑝𝑙 = 𝜀𝑝
𝑝𝑙

 is the elastic strain in the elastic-plastic network and 𝜀𝑣 = 𝜀𝑉
𝑣  is the elastic strain in 

the elastic-viscous network. In the ABAQUS input file, a discrete set of points is required to 

represent the inelastic stress-strain behaviour, which is calculated based on Eq. (3). The data lines 

used to define the two-layer viscoplastic material model within the ABAQUS input file are shown 

below. 

 *Elastic 

 (Values of Young’s modulus, Poisson’s ratio) 

 *Plastic 

 (Values of stress, plastic strain) 

 *Viscous, law=Time (time-hardening rule) 

 A, 𝑛2, m, f   

 

The flow chart of the two-layer viscoplasticity model is shown in Fig 4 
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Fig. 4. Flow chart of the two-layer viscoplasticity model used in this study 
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4. An Optimization Procedure for Determining Viscoplastic Material 

Properties 

4.1 Optimization Model 

A non-linear optimization technique is developed using the MATLAB optimization toolbox, which 

can provide an interface to FE codes such as ABAQUS, through various programming languages 

such as C and Python. The optimization technique is used to determine the mechanical properties for 

a given set of target indentation data using an iterative procedure based on a MATLAB nonlinear 

least-squares routine to produce the best fit between the given indentation data and the optimized 

indentation data, produced by FE analysis. This non-linear least-squares optimization function 

(called LSQNONLIN) is a subspace trust-region-reflective algorithm and is based on the interior-

reflective Newton model [25]. This optimization procedure minimizes the objective function, and 

iterations are performed until convergence is reached. The optimization model can be written as 

follows: 

F(𝑥) =
1

2
∑ [D(𝑥)i

pre
− Di

exp
]N

i=1

2
→ min    (9) 

𝑥 ∈  𝑅𝑛        (10) 

𝐿𝐵 ≤ 𝑥 ≤ 𝑈𝐵       (11) 

where F(𝒙) is the objective function, 𝒙 is the optimization variable set (a vector in the n-dimensional 

space, 𝑹𝒏), which for this specific case contains the full set of the material constants in the model, as 

follows: 

𝑥 = [𝐸, 𝜎𝑦, 𝑛1, 𝐴, 𝑛2, 𝑓]
𝑇
                 (12) 

LB and UB are the lower and upper boundaries of 𝒙 allowed during the optimization. For the basic 

case in the viscoplasticity model, e.g. by choosing the time-hardening power law for the viscous 

behaviour, there can be six material parameters.  

Scaling is very important in this optimization approach due to the fact that the objective function 

gradients are calculated using very small variations of the parameter values. Since the parameter 

values span a very large numerical range (e.g. E is of the order of 10
9 

Pa and the creep parameter A is 

of the order of 10
-14

), scaling factors have been used as shown in Eq. (13). The lower and upper 

boundaries of each parameter constraints in the optimization algorithm can be set to be of the same 

order as in Eq. (13a ) (e.g. E is 210) and then scaled to the values required in the FE simulation as in 
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Eq. (13b) (e.g. E is 210 × 𝟏𝟎𝟗). Some practical physical constraints have been imposed during the 

optimization analysis since Poisson’s ratio and the work-hardening exponent values for most 

engineering materials are between 0.0 and 0.5. The boundaries for E have been chosen to be between 

10 and 300 GPa and 𝜎𝑦 between 10 MPa and 2 GPa [26]. The lower and upper limits imposed on the 

material parameters are given below. 

{
 
 

 
 
0 < 𝐸 < 300;    
0 < 𝜎𝑦 < 2; 

 0 < 𝑛1 < 5;
0 < 𝐴 <  10; 
0 < 𝑛2 < 10;
0 < 𝑓 < 10;

𝑖𝑛 𝑜𝑝𝑡𝑖𝑚𝑖𝑠𝑎𝑡𝑖𝑜𝑛 (𝑎)

}
 
 

 
 

 × 

{
  
 

  
 

𝐸 × 106 ;                              

𝜎𝑦 × 10
3 ;                           

   𝑛1 × 10
−1 ;                              

𝐴 × 10−13 ;         𝑖𝑛 𝐴𝐵𝐴𝑄𝑈𝑆 (𝑏)
𝑛2;                          

𝑓 × 10−1;                            }
  
 

  
 

    (13) 

Since the indenter is load-controlled, D(𝑥)i
pre
 and Di

exp
 are the predicted total displacement and the 

(experimental) displacement from target data, respectively, at a specific position i, within the loops. 

N is the total number of points used to represent the experimental (measured) load-displacement 

curves. Arbitrary values of (𝐸, 𝜎𝑦, 𝑛1, 𝐴, 𝑛2, 𝑓) have been chosen as initial values and the proposed 

optimization algorithm has been used to find the optimised values of these parameters from which 

the best fit between the experimental and predicted load-displacement loops can be achieved. 

4.2. Optimization Procedure 

The general optimization algorithm used in this work is illustrated in Fig 5. Since the initial guess 

values for (𝐸, 𝜎𝑦, 𝑛1, 𝐴, 𝑛2, 𝑓) are provided, the optimization procedure is carried out in several steps 

using MATLAB, which controls the C language EXE file to automatically generate an ABAQUS 

input file, running ABAQUS and a Python script to extract the load history from the resulting 

ABAQUS output file. In terms of pre-processing the FE analysis, the material properties in the 

ABAQUS input file are replaced by new two-layer viscoplasticity material properties. In ABAQUS, 

these are Young’s modulus, Poisson’s ratio, and discrete points on the post yielding true stress-true 

strain curve.  

In the ABAQUS input file, a discrete set of points is required to represent the uniaxial stress-strain 

data, rather than specifying the work-hardening exponent 𝑛1 [8]. Therefore, a fixed set of plastic 

strain values of 0.005, 0.01, and 0.0115 are used in order to specify the plastic stress-strain data in 

ABAQUS. The coefficient R can be calculated by using Eq. (3) and the updated stress data related to 

these strains can be obtained by Eq. (2).  The viscous behaviour of the material is governed by the 

Norton power-law with creep parameters, A and 𝑛2 and the fraction, f, is defined in the viscous 
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section of ABAQUS input file. This procedure can be performed by a C language code or a similar 

computing language to replace the current material properties in the ABAQUS input file by the new 

calculated material properties. In terms of post-processing, the load history results, extracted by a 

Python script, are read by a MATLAB program and the objective function calculated.  All the 

procedures are processed automatically until convergence is reached.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Flow chart of the optimization algorithm to determine the mechanical properties from the 

load-displacement curves 
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5. Finite Element Indentation modelling  

The FE analysis of the bulk material indentation system is based on axisymmetric elements using 

ABAQUS. Contacts between three different types of rigid indenters and an isotropic two-layer 

viscoplasticity specimen are modelled. During each iteration, FE analysis is performed with the 

updated two-layer viscoplasticity properties determined from the optimization processes. The tip 

radius of the spherical indenter is 0.1 mm. For shallow indentation depths, the size effects in the real-

life experimental indentation tests can affect the accuracy of the simulations [27]. It should be noted 

that the FE simulations do not model the indentation size effects and are therefore limited to 

simulating macro indentations. The friction coefficients at the contact surfaces between the indenter 

and the top surface of the bulk material are assumed to be zero, since friction has a negligible effect 

on the indentation process [4]. It is assumed that there is no temperature variation of the bulk 

material during FE analysis.  In the case of a conical indenter, a perfectly sharp indenter tip is used. 

A “master-slave” contact scheme in the FE procedure is applied on the rigid indenter and the 

specimen surfaces. The depth of the bulk material is 2 mm and the maximum load on the indenter is 

4.62 N under load-control conditions. The entire processes have been performed by a PC running 

Window XP with Intel Core 2 Duo CPU E8300 processor. 

For convenience, the indented specimen is modelled as an axisymmetric geometry with four node 

bilinear axisymmetric quadrilateral continuum elements (CAX4 in ABAQUS). For the indenter, an 

axisymmetric analytical rigid shell/body is used. The region of interest is in the vicinity of the 

indenter surface and a high element density has been used there due to the expected high stress 

gradients immediately beneath the indenter tip, whereas a gradually coarser mesh further from the 

contact region is used, as shown in Fig. 6. All nodes at the base of the specimen are constrained to 

prevent them from moving in the x and y directions. The simulation is carried out in three distinct 

steps: loading, holding and unloading. In the first step, a total indentation load 4.62 N is applied. 

During the loading step, the rigid indenter moves downwards along the y-direction and penetrates the 

foundation up to the maximum specified force. In the second step, the indenter is held at the 

maximum specified force with a dwell time (3 s) to induce viscoelastic deformation. In the third step, 

the load is reduced to zero.  In the first unloading step, significant nonlinearity occurs which requires 

very small load/time increments. In the second and third steps, contact between the indenter and 

substrate is maintained and removed, respectively and larger load increments can be used.  
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Fig. 6. The FE meshes: Axisymmetric spherical indenter 

6. Optimization using a target curve obtained from a FE simulation 

The optimization scheme has been applied to determine the material properties of two-layer 

viscoplasticity model using a spherical indenter. Firstly, a set of material properties are chosen as the 

target values and FE analysis is performed to obtain a simulated target loading-unloading curve. A 

set of initial ‘guess’ material parameters are then selected and implemented in the MATLAB 

optimization algorithm which automatically performs a new ABAQUS run for each iteration.  The 

target material properties are shown in Table 1 for two materials, XN40F (a high nickel-chromium 

material) at 900°C and P91 steel at 600°C. The given material properties have been obtained by 

uniaxial tensile creep testing. Previous work, see. e.g. [28, 29], has shown that creep parameters 

obtained from impression creep agree well with those obtained from conventional uniaxial creep 

testing. 

In order to check the sensitivity of the optimization algorithms, each parameter is changed in turn, 

while all other parameters are fixed at their target values. Generally, the optimized results are 

obtained in about 8-10 iterations with a deviation of less than about 1% from the target values. 

Moreover, optimizations based on a combination of parameters involving two or four parameters are 

performed, as shown in Table 2.  The parameter ‘Errnorm’ is the sum of the squares of the 

differences between the target and optimised curves. The results show that all the variables converge 

from their initial guess parameters to their target values to within 1% and ‘Errnorm’ is nearly zero, 
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while it takes more iterations to reach the target values when more parameters are added, except in 

Test 4 in Table 2. It is noted that convergence is faster, and with improved accuracy, when the initial 

guess values are chosen closer to the target values. These results demonstrate that the proposed 

optimization algorithms are capable of obtaining the material properties accurately.  

Fig. 7 shows the convergence history of the material properties during the iteration process. It clearly 

demonstrates that convergence to the target values can be achieved despite a large variation in the 

initial guess values. As can be seen from Fig 7 (a), convergence starts after about 6 iterations for 

Young’s modulus and creep parameter n2, whereas the creep parameter A goes up and then steadily 

decreases until the target value is reached. The four parameters converge to their target values after 9 

iterations in Fig 7 (b), which is much faster than in Fig 7 (a).  
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Table  1 Material properties obtained from uniaxial tensile creep experimental tests used in this 

study.  

Material E(MPa) 𝜎𝑦(MPa) 𝒏𝟏 A 𝒏𝟐 f 

XN40F at 900°C  60.00E+03 209 0.3 9.14E-14 4.66 0.92 

P91 steel at 600°C  136.00E+03 230 0.22 6.31E-06 2.7 0.54 

 

Table 2 Parameter optimization for the XN40F material using a spherical indenter 

Test Parameter 
Target  

values 

Initial 

values 

Final 

Optimized 

values 

Percentagea  

error(%) 
Iterations ErrNorm𝑏  

1 A 9.14E-14 6.14E-14 9.139E-14 4.45E-03 7 2.011E-11 

2 
𝑛1 0.30 0.12 0.30 5.15E-01 25 

7.20E-10 
𝜎𝑦(MPa) 2.09E+02 6.00E+02 2.08E+02 9.44E-03  

3 

E(MPa)     

A               
𝑛2 

6.0E+04 

9.14E-14 

4.66 

4.00E+04 

7.18E-14 

3.66 

5.99E+4    

9.145E-14    

4.659 

3.0E-03     

5.75E-02         

2.71E-03 

45 1.60E-10 

4 

E(MPa) 

𝑛1 
𝜎𝑦(MPa)    

𝑛2 

6.00E+04 

0.3 

2.09E+02 

4.66 

7.00E+04 

4.5E-01 

4.00E+02 

3.5 

6.00E+04 

3.01E-01 

2.08E+02          

4.66 

3.01E-02 

2.42E-01 

4.65E-01                        

5.1E-04 

17 3.4E-10 

|(1 −
𝑜𝑝𝑡𝑖𝑚𝑖𝑠𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠−𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑎𝑙𝑢𝑒𝑠

𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑎𝑙𝑢𝑒𝑠
) × 100|

𝑎

 

𝐸𝑟𝑟𝑁𝑜𝑟𝑚 = 𝑠𝑢𝑚((𝑡𝑎𝑟𝑔𝑒𝑡 𝑐𝑢𝑟𝑣𝑒 − 𝑜𝑝𝑡𝑖𝑚𝑖𝑠𝑒𝑑 𝑐𝑢𝑟𝑣𝑒)2)𝑏  
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(a) Test 3 in Table 2 

 

(b) Test 4 in Table 2 

 

Fig. 7 Optimized parameter values versus iterations for a spherical indenter (a) Test 3 and (b) Test 4 

After checking the sensitivity of the optimization algorithms, the optimizations of the full 

combination of six parameters of the XN40F material are investigated. Table 3 shows the initial 

values and final optimised values for the XN40F material, where it is shown that, in general, good 

convergence is obtained with the different variations of the guess values. Although the percentage 

errors between the target and optimised values are much larger than when a set of only two or four 

parameters is used, all results have achieved convergence to within 10% error of the target solutions. 

In particular, the optimised values for Test 1 are much closer to the target values than the other test 

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 5 10 15 20 25 30 35 40 45

O
p

ti
m

is
ed

 /
 T

a
rg

et
 V

a
lu

es
 

Iterations 

Young's modulus

A

Creep parameter,N

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12 14 16

O
p

ti
m

is
ed

 /
 t

a
rg

et
 v

a
lu

es
 

Iterations 

Young's modulus

Yield stress

Work hardening exponent

Creep parameter,N
Work hardening exponent, 𝑛1 

Creep parameter, 𝑛2 

Creep parameter, 𝑛2 



16 

 

results, whereas the yield stress in Test 2 and creep parameter A are generally higher than the other 

parameters. Fig 8 shows the convergence trends for all three tests for XN40F. Although the initial 

guess values are different, it is interesting to see that the trends shown in Fig 8 (a), (b) and (c) for the 

six parameters are similar, and gradually reach their target values.  

Table 3 Six parameter optimization for the XN40F material using a spherical indenter 

Test Parameter 
Target 

values 

Initial 

values 

Final 

Optimized 

values 

Percentagea  

error(%) 
Iterations ErrNorm𝑏  

1 

E(MPa) 

𝜎𝑦(MPa) 

𝑛1 
A 

𝑛2 
       f 

60000 

209 

0.30 

9.14E-14 

4.66    

0.92 

80000 

350 

0.35 

8.5E-14 

3.9     

0.85 

60305 

208.325 

0.305 

9.03E-14 

4.66 

0.92 

0.50 

0.32 

1.71 

1.20 

0.130 

0.05 

22 3.53E-09 

2 

E(MPa) 

𝜎𝑦(MPa) 

𝑛1 
A 

𝑛2 
       f 

60000 

209 

0.30 

9.14E-14 

4.66    

0.92 

100000 

550 

0.4 

8.2E-14 

3.5 

0.75 

57760 

190.77 

0.286 

9.12E-14 

4.65 

0.91 

3.7 

8.72 

4.50 

0.13 

0.19 

0.93 

19 5.09E-08 

3 

E(MPa) 

𝜎𝑦(MPa) 

𝑛1 
A 

𝑛2  
f 

60000 

209 

0.30 

9.14E-14 

4.66    

0.92 

120000 

600 

0.45 

9.6E-14 

3.8 

0.76 

60800 

226.40 

0.270 

9.59E-14 

4.66 

0.921 

0.03 

7.68 

10 

0.1 

0.01 

0.01 

17 4.06E-09 
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Fig. 8.  Optimized parameter values versus iterations for a spherical indenter (a) Test 1, (b) Test 2 

and (C) Test 3 in Table 3 for XN40F material 

The combination sets of six parameters optimization for another material, P91 steel, are also 

investigated.  Table 4 shows the details of the initial values and final optimised values for the P91 

steel material. Most of the final optimised parameters in each case converge to within 10%, but 

higher errors occur in the creep parameter A. Fig 9 shows the convergence history of the material 

properties for each iteration which clearly illustrates that convergence to the target values can be 

achieved despite a large variation in the initial values. In Test 1, where the differences between the 

target and initial values are small, the convergence trend is similar for all material parameters, 

whereas the convergence trends are different in Tests 2 and 3.  It is interesting to note that the 

convergence trend of the work hardening exponent in Fig 9(c), goes down and then steadily 

increases until the target value is reached. As before, the convergence rate and accuracy depend on 

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20

O
p

ti
m

is
ed

 /
 t

a
rg

et
 v

a
lu

es
 

Iterations 

Young's modulus Yield stress
Work hardening exponent Creep parameter, A
Creep parameters, n f

(b) Test 2 

⬚2 

0

0.5

1

1.5

2

2.5

3

3.5

0 3 6 9 12 15

O
p

ti
m

is
ed

 /
 T

a
rg

et
 v

a
lu

es
 

Iterations 

Young's modulus Yield stress
Work hardening exponent Creep parameters A
Creep parameter n f

(c) Test 3 
𝑛1 

⬚2 

𝑛1 



18 

 

the initial guess values. Since this is a non-linear material behaviour, there is no guarantee that the 

optimization algorithm will always converge to the ‘target’ parameters (whether obtained by FE 

analysis or an experiment). The optimization approach produces impressive accuracy in Table 2, 

whereas less accurate optimised results with six parameters are shown in both Tables 3 and 4.  

Further studies should be undertaken to analyse the parameter correlation in terms of six parameters. 

It is clearly illustrated that the convergence accuracy of creep parameter A in Tests 2 and 3 in Table 

4 is not as good as the other parameters. Therefore, the sensitivity of the loading-unloading curves to 

changes in the creep parameter A is investigated further in Fig 10. Fig 10 (a) shows the loading-

unloading curves based on the optimised and target values of the creep parameter A, based on the 

results of Test 3 in Table 4. Figure 10 (b) shows the loading-unloading curves obtained based on 

two different values of the creep parameter A, 5.77× 10−6  and 6.85× 10−6  , while all other 

parameters are fixed at their optimised values in Test 3 in Table 4. It is interesting to note that 

changes of the creep parameter A of up to 9% have a very small influence on the loading-unloading 

curves.  
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Table 4. Six parameters optimization for the P91 material using a spherical indenter 

Test Parameter 
Target 

values 

Initial 

values 

Final 

Optimized 

values 

Percentagea  

error(%) 
Iterations ErrNorm𝑏  

1 

E(MPa) 

𝜎𝑦(MPa) 

𝑛1 
A 

𝑛2  
f 

136000 

230 

0.22 

6.31E-6 

2.7 

0.54 

140000 

250 

0.26 

6E-6 

2.9 

0.5 

144462 

224 

0.224 

6.39E-6 

2.71 

0.564 

6.22 

2.47 

1.90 

1.28 

0.44 

4.59 

24 9.45E-08 

2 

E(MPa) 

𝜎𝑦(MPa) 

𝑛1 
A 

𝑛2  
f 

136000 

230 

0.22 

6.31E-6 

2.7 

0.54 

80000 

500 

0.15 

5.0E-6 

4 

0.70 

137743 

232.27 

0.214 

5.7E-6 

2.73 

0.549 

1.28 

0.98 

2.34 

9.67 

1.08 

1.8 

80 1.234e-09 

3 

E(MPa) 

𝜎𝑦(MPa) 

𝑛1 
A 

𝑛2  
f 

136000 

230 

0.22 

6.31E-6 

2.7 

0.54 

250000 

150 

0.30 

5.7E-6 

3.5 

0.65 

142803 

236.4 

0.2048 

6.85E-6 

2.70 

0.567 

5% 

3% 

8% 

7% 

0.1% 

6% 

86 3.886E-09 
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(a) Test 1 in Table 4 

 

(b) Test 2 in Table 4 

 

(c) Test 3 in Table 4 

 

Fig. 9 Optimized parameter values versus iterations for the P91 material using a spherical indenter 

(a) Test 1, (b) Test 2 and (c) Test 3 in Table 4 
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(a) Comparison between target and optimised curves for creep parameter A 

 

(b) Comparison between two different creep parameters, A 

 

Fig. 10 (a) Comparison between target and optimised curves for creep parameter, A, for a spherical 

indenter  (b) Indentation curves obtained from two different creep parameters, A, for a spherical 

indenter. 
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7. Optimization approach using a conical indenter 

A previous study [8] has shown that Berkovich and Vickers indenters displace more volume and 

thereby produce greater local stresses due to fact that the contact areas between the indenters and the 

bulk materials are larger than in the case of conical indenters. Despite these differences, conical 

indenters have the advantage of possessing axial symmetry and equivalent projected areas of contact 

can be used between conical and pyramid-shaped indenters such as Berkovich and Vickers indenters. 

In order to check the feasibility and the sensitivity of the optimization approach, it is appropriate to 

consider a numerical experimental load-unloading curve from a conical indenter to determine the 

time-dependent material properties.  

Table 5 shows the optimised results for axisymmetric conical indenters for the P91 steel material. 

The differences between the target and optimised parameters with a conical indenter are within 10%.  

For comparison purposes, the same initial values are used for both spherical and conical indenters in 

Test 1 in both Tables 4 and 5 and the percentage errors are shown in Fig 11.   Despite using the 

same initial input data, it is interesting to obverse that the optimised results from both indenter 

geometries are different. Differences exist in the number of iterations and the final optimised 

parameters, especially Young’s modulus, creep parameter A and parameter f. The differences 

between spherical and conical indenters may be attributed to the different shapes of the simulated 

target loading-unloading curves. As can be seen in Fig 12, different types of indentation loading-

unloading curves are obtained despite using the same material properties. It is also observed that, for 

the same maximum indentation load, the displacement of a conical indenter is about two times larger 

than that of a spherical indenter due to the fact that there are more plastic deformations in the vicinity 

of a conical indenter. 
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Table 5. Six parameters optimization for the P91 material using an axisymmetric conical indenter 

for P91 steel material 

Test Parameter 
Target 

values 

Initial 

values 

Final 

Optimized 

values 

Percentagea  

error(%) 
Iterations ErrNorm𝑏  

1 

E(MPa) 

𝜎𝑦(MPa) 

𝑛1 
A 

𝑛2  
f 

136000 

230 

0.22 

6.31E-6 

2.7 

0.54 

140000 

250 

0.26 

6.0E-6 

2.9 

0.5 

135967 

226.06 

0.226 

5.78E-6 

2.71 

0.538 

0.02 

1.17 

2.97 

3.70 

0.67 

0.27 

56 2.27E-09 

2 

E(MPa) 

𝜎𝑦(MPa) 

𝑛1 
A 

𝑛2  
f 

136000 

230 

0.22 

6.31E-6 

2.7 

0.54 

200000 

300 

0.27 

6.0E-6 

3.5 

0.45 

145385 

236.84 

0.207 

6.28E-6 

2.72 

0.577 

6.90 

2.97 

7.91 

0.38 

0.63 

6.85 

11 2.36e-09 
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Fig 11. Comparison between errors in the optimised results from spherical and conical indenter 

 

Fig 12.  (a) Simulated target loading-unloading curve for a spherical and a conical indenter. 
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8. Conclusions 

In this study, a combined FE analysis based on a two-layer viscoplasticity model, and optimization 

approach is presented to determine six time-dependent material properties (𝐸, 𝜎𝑦, 𝑛, 𝐴, 𝑁 𝑎𝑛𝑑 𝑓) of 

unknown materials from a given loading-unloading indentation curve. Two different materials are 

investigated, XN40F at 900°C and P91 steel at 600
o
C. The optimization algorithm automatically 

provides input data for the material section in the ABAQUS FE input file and automatically runs FE 

simulations until the optimised loading-unloading curve reaches the given simulated target loading-

unloading curve.  

Previous studies have shown that the determination of material properties from time-dependent 

material behaviour based on conventional indentation test methods does not provide an accurate 

estimation of the material properties of the indented specimen. The proposed approach can be used to 

investigate the visco-elastic-plastic material behaviour based on the two-layer viscoplasticity model 

and determine the time-dependent material properties from the target simulated loading-unloading 

curve, to within 1-10% error, using results from a spherical indenter, despite using various initial 

guess values and using different materials. Moreover, there are good agreements between the target 

and optimised values based on using a conical indenter, although the convergence rate and accuracy 

depend on the initial input values. Additionally, the optimisation results with six parameters are less 

accurate compared with that with less parameter due to a non-linear material behaviour. Further 

research may be targeted at using experimental target loading-unloading indentation curves for a 

wider range of materials.  
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