
Rotating black holes in a draining bathtub: Superradiant scattering
of gravity waves

Maurício Richartz,1,* Angus Prain,2,† Stefano Liberati,3,‡ and Silke Weinfurtner4,§
1Centro de Matemática, Computação e Cognição, Universidade Federal do ABC (UFABC),

09210-170 Santo André, São Paulo, Brazil
2Physics Department and STAR Research Cluster, Bishop’s University, 2600 College Street, Sherbrooke,

J1M 1Z7 Quebec, Canada
3SISSA - International School for Advanced Studies via Bonomea 265, 34136 Trieste,

Italy and INFN, Sezione di Trieste, Via Valerio 2, 34127 Trieste, Italy
4School of Mathematical Sciences, University of Nottingham, University Park,

NG7 2RD Nottingham, United Kingdom
(Received 16 December 2014; published 5 June 2015)

In a draining rotating fluid flow background, surface perturbations behave as a scalar field on a rotating
effective black hole spacetime. We propose a new model for the background flow which takes into account
the varying depth of the water. Numerical integration of the associated Klein-Gordon equation using
accessible experimental parameters shows that gravity waves in an appropriate frequency range are
amplified through the mechanism of superradiance. Our numerical results suggest that the observation of
this phenomenon in a common fluid mechanical system is within experimental reach. Unlike the case of
wave scattering around Kerr black holes, which depends only on one dimensionless background parameter
(the ratio a=M between the specific angular momentum and the mass of the black hole), our system
depends on two dimensionless background parameters, namely the normalized angular velocity and surface
gravity at the effective black hole horizon.
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I. INTRODUCTION AND MOTIVATION

Analogue models of gravity have, for some time now,
been an excellent arena within which to improve our
theoretical understanding of several crucial phenomena
at the boundary of gravity and quantum field theory.
The first model, proposed by Unruh in 1981, was based
on the fact that sound waves propagating on an inviscid and
irrotational fluid flow satisfy a Klein-Gordon (KG) equa-
tion in an effective curved background [1]. If the velocity of
the fluid exceeds the velocity of sound at some closed
surface, a dumb hole—the analogue of a black hole horizon
for sound waves—forms. Since Unruh’s seminal paper, the
propagation of perturbations in many other physical sys-
tems has been shown to be analogous to that of fields on a
curved spacetime (see [2] for a survey and review).
One particularly relevant phenomenon that can be simu-

lated in an analogue spacetime is the evaporation of black
holes by Hawking radiation. Indeed, one of the first
theoretical goals of analogue gravity was to investigate
the dependence of Hawking radiation on the arbitrarily high
frequencies used in its original derivation (the trans-
Planckian problem). Calculations with a modified dispersion
relation at high frequencies gave support to the reality of

the evaporation process [3–5] and simultaneously paved the
way for a possible experimental observation of the analogue
Hawking process in tabletop experiments.
Experimental research on analogue systems started only

very recently. The first analogues of an event horizon were
constructed in the laboratory using gravity waves on water
[6] and ultrashort pulses in optical fibers [7]. In 2010, the
classical analogue of the stimulated emission by a white
hole was detected in the laboratory for the first time [8,9].
Since a white hole is the time reversal of a black hole, this
result attests to the generality of the Hawking radiation
process. At the same time, some first hints of Hawking
radiation in optical systems were reported [10,11]. More
recently, claims to link an instability arising in critical
superfluid flows and Hawking radiation appeared [12,13].
Another potential target for analogue gravity is the

experimental observation of superradiance [14,15], a phe-
nomenon in which incident waves are amplified after
being reflected by a special kind of scattering potential.
Superradiance [16,17] was first studied by Zel’Dovich for
electromagnetic waves incident on a conductive rotating
cylinder [18], but also pertains to black holes [19,20] and
analogue black holes [14,15,21–24]. See Ref. [25] for a
recent review on the subject.
In a combination of theory and numerical simulations,

our primary scientific goal in this work is to show the
existence and estimate the magnitude of the superradiant
amplification in a realistic scattering scenario of gravity
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waves on a common draining water vortex (i.e. a realistic
axisymmetric draining fluid). Put simply, we wish to under-
stand whether the common draining “bathtub” vortex is a
suitable system for the onset of superradiant scattering and
whether any amplification is experimentally observable.
The paper is structured as follows. In the second section

we present in detail our description of the background flow
for a draining vortex, moving beyond the standard descrip-
tion found in the literature. Following this, in Sec. III we
describe free surface perturbations on the background
profile and show that they satisfy a KG equation of motion
for an auxiliary metric, the analogue metric for gravity
waves. The development is largely pedagogical up to this
point. With the basic machinery in place we then specify to
the black hole–like analogue geometries of draining rotat-
ing vortices (Sec. IV) and discuss the limits of our
approximations (Sec. V). The existence of superradiant
scattering is derived in Sec. VI. In Sec. VII, we show that,
by rescaling the parameters and variables, our problem can
be completely described by only two dimensionless back-
ground parameters and two dimensionless wave parame-
ters. This situation is then compared with the scattering
around a Kerr black hole. The results of our numerical
simulations are presented in Sec. VIII, where we obtain the
spectrum of reflection coefficients for several background
flows. In particular, we show that the observation of
superradiance in a common fluid mechanical system is
within experimental reach. Finally, Sec. IX is devoted to
our final remarks and conclusions.

II. BACKGROUND FLOW

The system considered in this work is the propagation of
shallow water gravity waves on the air-water interface of
an open channel flow over a flat bottom. In general, an
open-channel incompressible perfect fluid configuration is
described by a free-surface function hðt;xÞ and a flow
velocity vector field vðt;xÞ. These variables must satisfy
the standard continuity and Euler equations,

∇ · v ¼ 0; ð1Þ

∂v
∂t þ ðv ·∇Þv ¼ −

∇P
ρ

− gẑ; ð2Þ

where ẑ is the direction of action of the restoring gravi-
tational force, g is the gravitational acceleration, P is the
pressure and ρ the density function. We will be primarily
concerned with the behavior of the fluid at the free surface
(since this is where gravity waves propagate). Therefore, let
us introduce a system of coordinates adapted to this free
surface, x ¼ ðz;x∥Þ, where z is the coordinate measuring
vertical displacements (defined with respect to the direction
of action of the gravitational force) and x∥ are coordinates
orthogonal to z.

The hydrodynamic equations above are subject to a set of
boundary conditions appropriate to the physical system in
question, namely, the following:
(A) The normal flow velocity must vanish at the bottom

of the channel, i.e. vzjz¼0 ¼ 0;
(B) the rate of change in the height of the fluid must

be equal to the vertical velocity of the fluid at the
surface

vzjz¼h ¼
dh
dt

����
z¼h

¼ ∂h
∂t þ ðv∥jz¼h · ∇∥Þh; ð3Þ

(C) the pressure must be continuous at the air-water
interface.

It is our goal in this preliminary section to determine
the equations for the free surface h and the velocity field
v in a draining bathtub vortex configuration. First, let us
assume that the flow is irrotational, i.e. ∇ × v ¼ 0. This
assumption reduces the vector field v to one scalar
degree of freedom ψ , the so-called velocity potential
defined by vðt;xÞ ¼ ∇ψðt;xÞ. In terms of this potential,
the continuity equation (1) reduces to Laplace’s equa-
tion ∇2ψ ¼ 0.
The analogy with gravity arises in the regime of

shallow water perturbations [26,27]. Therefore, it is
sensible to expand the field ψ in powers of the vertical
displacement z. Such a series expansion is very common
in hydrodynamics and was first introduced by Lagrange
[28]. Indeed, using Laplace’s equation together with the
boundary condition (A), one can write the velocity
potential at any point as [29]

ψðt;x∥; zÞ ¼
X∞
n¼0

ð−1Þnz2n
ð2nÞ! ∇2n

∥ ψ0ðt;x∥Þ; ð4Þ

where ψ0ðt;x∥Þ ¼ ψðt;x∥; zÞjz¼0
is the velocity potential

at the flat bottom.
Finally, assuming a stationary and axisymmetric flow, it

is convenient to adopt cylindrical coordinates x ¼ ðz; r;ϕÞ.
In such a setup, the free surface function h depends only on
r and the irrotational flow condition∇ × v ¼ 0 implies that
vϕ ¼ B=r, where B is a constant. Then the scalar function
ψ0 takes the form ψ0ðr;ϕÞ ¼ ξðrÞ þ Bϕ, where ξðrÞ is an
unknown function of r.
Additionally, the continuity and Euler equations com-

bine with the boundary conditions to give

1

h

Z
h

0

vrðr; zÞdz≡
X∞
n¼0

ð−1Þnh2n
ð2nþ 1Þ!

∂
∂rD

2nξðrÞ ¼ −
C
rh

;

ð5Þ

and
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vrðr; zÞjz¼hðrÞ ≡
X∞
n¼0

ð−1Þnh2n
ð2nÞ!

∂
∂rD

2nξðrÞ

¼ −1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h02

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gðh∞ − hÞ − B2

r2

r
; ð6Þ

where vrðr; zÞ ¼ ∂rψ is the radial flow velocity, C is a
constant of integration and prime denotes differentiation
with respect to r. The differential operator D2 is the radial
part of the Laplacian, i.e.

D2 ¼ 1

r
∂
∂r r

∂
∂r : ð7Þ

In summary the background configuration is described
completely by the two univariate functions hðrÞ and ξðrÞ,
and the constants B and C (which are subject to the
equation of motion and boundary conditions discussed
above). Physically, we expect that in the limit of large
radius the flow velocities all vanish (v → 0) and that the
free surface approaches a constant (h → h∞). Note that
the only approximations used so far are those related to the
assumption of a perfect incompressible fluid in an axisym-
metric and irrotational flow.

III. GRAVITY WAVES AND THEIR
EFFECTIVE GEOMETRY

When the free surface of an open channel flow is
perturbed, gravity acts as a restoring force, creating
oscillations around the background flow. The mathematical
description of these oscillations, called gravity waves, is
given in terms of linear perturbations δψ0 ≪ ψ0 and
δh ≪ h of the background quantities ψ0 and h.1 Indeed,
by linearizing both Euler’s equation (2) (evaluated at the
free surface and written in terms of ψ0) and the boundary
condition B, one obtains the following pair of coupled
equations:

∂δh
∂t þ∇∥ · ðv∥jz¼hδhÞ þ∇∥ ·

�X∞
n¼0

ð−1Þnh2nþ1

ð2nþ 1Þ! ∇2nþ1
∥ δψ0

�

¼ ∂δh
∂t þ∇∥ · ðv∥jz¼hδhÞ þ∇∥ · ðh∇∥δψ0Þ ¼ 0; ð8Þ

and

� ∂
∂tþ v∥jz¼h ·∇∥

��X∞
n¼0

ð−1Þnh2n
ð2nÞ! ∇2n

∥ δψ0

�

¼
� ∂
∂tþ v∥jz¼h ·∇∥

�
δψ0 ¼ −~gδh; ð9Þ

where v∥ ¼ ∇∥ψ and ~g is given by

~g ¼ gþ
� ∂
∂tþ v∥jz¼h ·∇∥

�
2

h: ð10Þ

Note that, in order to obtain the first equality in
Eqs. (8)–(9), we have assumed that the height of the fluid
h is much smaller than the wavelength λ of the perturba-
tions. When acting on such long wavelengths, one has
∇2

∥ ¼ Oð1=λ2Þ and h=λ ≪ 1 [26,27], so that we need to
keep only the lowest order terms in the sums above (we
return to this assumption in Sec. V).
Eliminating δh, we obtain a single second order differ-

ential equation for δψ0 which can be written as a KG
equation for a scalar field in a curved Lorenzian spacetime,

1ffiffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffiffi
−g

p
gμν∂νδψÞ ¼ 0; ð11Þ

where gμν is an effective metric given by

gμν ¼
�
h
~g

� −~ghþ v2∥jz¼h
−v∥jz¼h

−v∥jz¼h I2×2

!
; ð12Þ

and g ¼ detðgμνÞ.
The above expression for the analogue geometry implies

that the velocity of gravity waves is given by

cgwðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
~ghðrÞ

p
; ð13Þ

generalizing the standard result [26,27] through the
modified (and nonconstant) gravitational acceleration ~g.
Depending on the relation between the wave speed
and the flow velocity, this metric can describe the ana-
logues of both an event horizon and an ergoregion
experienced by gravity waves in this system, as we discuss
below.

IV. ANALOGUE BLACK HOLE DESCRIPTION

One important advantage of working in the analogue
gravity framework is that quantities which require very
subtle and technical definitions in general relativity acquire
simple and intuitive definitions in terms of the fluid
parameters of the analogue system. For example, assuming
again stationarity and axisymmetry, we can say that the
analogue of an ergoregion is the region where the surface
fluid velocity exceeds the propagation speed for gravity
waves, i.e.

v2∥jz¼h
¼ v2ϕjz¼h

þ v2r jz¼h > c2gw ðergoregionÞ; ð14Þ

and that the event horizon is the surface on which the radial
velocity alone is equal to the propagation speed, i.e.

1Another possibility would be to perturb the background
flow around ψðt; x∥; zÞjz¼hðrÞ instead of perturbing around
ψðt;x∥; zÞjz¼0

¼ ψ0 as we have done.
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v2r jz¼h ¼ c2gw ðevent horizonÞ: ð15Þ

One important characterizing quantity associated with
horizons is the surface gravity κ, which fixes a scale for
processes that occur at or near the horizon. In general
relativity this is an excruciatingly subtle parameter to define
[30] whereas for our analogue fluid horizon it is simply
expressed [31] as

κH ¼ 1

2

d
dr

ðc2gw − v2rÞjhorizon: ð16Þ

In principle, by imposing suitable boundary conditions,
one can exactly solve Eqs. (5)–(6) to determine the free
surface hðrÞ and the function ξðrÞ, which can then be used
to determine the other relevant background quantities.
The problem, however, is that Eqs. (5)–(6), being infinite
order differential equations, are very difficult to solve.
Instead, we make the vastly simplifying assumption of
slowly varying vrðr; zÞ as a function of z (that there is no
separation of flow), implying

1

h

Z
h

0

vrðr; zÞdz ≈ vrðr; zÞjz¼hðrÞ: ð17Þ

In conjunction with (5) this leads to

vrðr; zÞjz¼hðrÞ ¼ −
Ah∞
rh

; ð18Þ

where A is a constant obtained by redefining the constant
C.2 With the expression above, Eq. (6) becomes a first order
differential equation for hðrÞ,

A2h2∞
r2h2

ð1þ h02Þ ¼ 2gðh∞ − hÞ − B2

r2
; ð19Þ

while the expression (10) for ~g becomes

~g ¼ gþ A2h2∞
r2h2

�
h00 −

h0

r
−
h02

h

�
: ð20Þ

Finally, we make the assumption that h0ðrÞ2 ≪ 1, reduc-
ing (19) to the cubic polynomial

h3 þ h2
�
B2

2gr2
− h∞

�
þ A2h2∞

2gr2
¼ 0; ð21Þ

which admits the physical solution

hðrÞ ¼ 1

3

�
h∞ −

B2

2gr2

��
1þ 2 cos

�
θ

3

��
; ð22Þ

with

θ ¼ cos−1
�
1 −

33

g

�
Ah∞
2r

�
2
�
h∞ −

B2

2gr2

�−3�
: ð23Þ

Substituting (18) and (20) into (15) gives

A2h2∞
r2h2

¼ ghþ A2h2∞
r2h

�
h00 −

h0

r
−
h02

h

�
ð24Þ

which [after substituting the explicit form (22) of hðrÞ
derived above] can be solved for r in order to locate the
event horizon of the system.

V. LIMITS OF OUR APPROXIMATIONS

We have employed two main approximations for the
background flow profile in order to render the problem
more tractable. First, we assume a slowly varying vrðr; zÞ
as a function of z to obtain relation (18) for the radial flow
profile. Secondly, we assume h02 ≪ 1 resulting in a closed
form expression for the free surface. We expect both of
these approximations to break down near the central core of
the vortex where vorticity and viscosity begin to play a role.
In experimental work [32,33] on the structure of the bathtub
vortex it has been shown that the flow is not irrotational
near the core of such vortices and that the flow velocities
are regulated there (avoiding the unphysical 1=r flow
profile singularities in vr and vϕ which we use here).
We point out however that the free-surface solution of (21)
for draining fluids has been considered before in a different
context by Refs. [34,35], where it has shown remarkable
agreement with experimental data.
On the other hand, we employ a single approximation in

the description of the gravity waves themselves by neglect-
ing higher order terms in the sums of (8)–(9). This is the
shallow water approximation which results in linearly
dispersive gravity waves. This kind of “linear dispersion”
approximation is ubiquitous in analogue gravity since,
beyond the realm of linear dispersion, the description of
linear perturbations in terms of a single effective metric is
lacking. In fact, assuming h ¼ h∞ ¼ constant and keeping
all terms in the sums (8)–(9) leads exactly to the usual
gravity wave dispersion relation

ω2 ¼ gk tanhðkh∞Þ; ð25Þ
where k and ω are, respectively, the wave number and the
frequency of the wave. In such a case, the shallow water
approximation is characterized by the condition kh∞ ≪ 1,
under which (25) becomes the linear dispersion relation

2Note that expression (18) is insensitive to the precise
dependence of vr on z, the same result following from the
assumption of any monomial dependence vr ∝ zp or, more
generally, any polynomial in z, vr ¼

P
N
p apzp, with coefficients

ap such that ap ∝ hN−p, lending credibility to the general validity
of expression (18). Such polynomial expressions are justified by
the fact that, in realistic flows, we expect that vrðr; zÞjz¼0 ¼ 0 due
to the no-slip boundary condition at the bottom.
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ω2 ¼ gh∞k2: ð26Þ

Notice that the condition kh∞ ≪ 1, in view of the linear
dispersion above, becomes ω ≪

ffiffiffiffiffiffiffiffiffiffiffi
g=h∞

p
. For the sake of

concreteness, let us define linear waves as those satisfying

ω < ωdisp ¼ σ

ffiffiffiffiffiffi
g
h∞

r
; ð27Þ

where σ is a constant and ωdisp sets the dispersive scale.3

It is important to keep in mind that, crucially, the
phenomena themselves which are of experimental interest
in the analogue gravity community (in our case super-
radiance [24] but also in the case of the Hawking process
[3–5,36–39]) are relatively robust to modifications to the
linear dispersion relation and do not require per se a
universal metric structure (effective or not). This suggests
that these phenomena are generic, to which the spacetime
relativistic or analogue linear-dispersive versions are spe-
cial cases.

VI. SUPERRADIANCE

We have already shown that the propagation of gravity
waves obeys a KG equation in an analogue spacetime [see
Eq. (11)]. This analogue spacetime is determined by the
background open channel flow described in Sec. II.
Furthermore, because of the axisymmetry of the system,
the KG equation (11) is separable. The ansatz δψ0ðt;r;ϕÞ¼
RðrÞeimϕe−iωt, where m is the azimuthal number of the
wave, transforms Eq. (11) into

d2R
dr2

þ PðrÞ dR
dr

þQðrÞR ¼ 0; ð28Þ

where the coefficients PðrÞ and QðrÞ are given by

PðrÞ ¼ d
dr

log

�
r
~g
ð~gh − v2r jz¼hÞ

�

þ 2i
vrjz¼h

~gh − v2r jz¼h

�
ω −m

B
r2

�
; ð29Þ

QðrÞ ¼ 1

~gh − v2r jz¼h

��
ω −m

B
r2

�
2

−m2
~gh
r2

�

þ i
r

~g
~gh − v2r jz¼h

d
dr

�
r
~g
vrjz¼h

�
ω −m

B
r2

��
: ð30Þ

As explained above, the background radial flow velocity
vrjz¼h is determined by (18), ~g is calculated from (20),
and the flow depth hðrÞ is given by (22). Similarly to the

procedure used when studying real black hole perturba-
tions, in order to analyze the asymptotic behavior of these
hydrodynamic perturbations, it is useful to define a tortoise-
like coordinate r� according to

dr�
dr

¼ ΔðrÞ ¼ ~ghð~gh − v2r jz¼hÞ−1: ð31Þ

While the original radial coordinate ranges from r ¼ rH at
the horizon to r ¼ ∞ at spatial infinity, this tortoise
coordinate ranges from −∞ to ∞. The precise relation
between these coordinates, in the asymptotic limits, is
given by

r� →
� c2H

2κH
logðr − rHÞ; r → rH;

r; r → ∞;
ð32Þ

where κH is the analogue of the surface gravity [see (16)]
and cH ¼ cgwðrHÞ is the propagation speed of the waves at
the horizon.
Defining a new radial function HðrÞ by

HðrÞ ¼ Δ1=2 exp

�
1

2

Z
r
PðuÞdu

�
RðrÞ; ð33Þ

we eliminate the first order term in Eq. (28), obtaining

d2H
dr�2

þ V½rðr�Þ�H ¼ 0; ð34Þ

where the potential V is given in terms of r ¼ rðr�Þ by the
expression

VðrÞ ¼ 1

~gh

�
ω −

mB
r2

�
2

−
m2

Δr2
þ 1

2

�ðhrÞ0
hr

�
Δ0

Δ3

−
1

Δ2

�
1

4

�ðhrÞ0
hr

�
2

þ 1

2

�ðhrÞ0
hr

�0�
: ð35Þ

Although complicated to look at, (35) possesses the simple
r� independent asymptotics

VðrÞ⟶r→rH 1

c2H

�
ω −

mB
r2H

�
2

and VðrÞ ⟶r→þ∞ ω2

gh∞
; ð36Þ

allowing us to write the solution of the wave equation
corresponding to the scattering of an incoming wave from
r ¼ þ∞ as

Hðr�Þ ¼
(
αine

−i ω
c∞

r� þ αoute
þi ω

c∞
r� ; r� → þ∞ðr → ∞Þ;

αtre
− i
cH
ðω−mB

r2
H
Þr�
; r� → −∞ðr → rHÞ;

ð37Þ

where c∞ ¼ ffiffiffiffiffiffiffiffiffi
gh∞

p
is the wave speed far away from the

black hole and αin, αout and αtr are constants. In obtaining

3The factor σ is based on a subjective measure of where the
dispersion curve is visibly linear in character. In our numerical
work we have chosen to use the conservative value σ ¼ 0.3.
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the expression above, we have used the boundary condition
that no signal can escape from inside the analogue event
horizon.
The constants αin, αout and αtr are not all independent.

Using the fact that the Wronskian between two solutions of
Eq. (34) is independent of r� and that the complex
conjugate of (37) is also a solution of the wave equation,
we conclude that

ω

c∞

�
1 −

���� αoutαin

����2
�

¼ 1

cH

�
ω −

mB
r2H

����� αtrαin

����2; ð38Þ

from which the following reflection R and transmission T
coefficients, satisfying Rþ T ¼ 1, can be defined:

R ¼
���� αoutαin

����2; T ¼ c∞
ωcH

�
ω −

mB
r2H

����� αtrαin

����2: ð39Þ

Superradiance occurs when the norm of the reflected wave
is greater than the norm of the incident wave, that is, when
the reflection coefficient is greater than 1 (equivalently,
when the transmission coefficient is negative). We con-
clude, therefore, that superradiance occurs whenever

0 < ω <
mB
r2H

: ð40Þ

This derivation of superradiance is similar, but not
identical, to the usual derivation for internal pressure waves
[14]. Typical internal pressure waves are characterized by a
constant density ρ, a constant wave speed c, and a radial
flow velocity with simple radial dependence vr ¼ −A=r.
Gravity waves in our paper, on the other hand, are
characterized by a variable fluid depth hðrÞ, a variable
wave speed cðrÞ ¼ ffiffiffiffiffi

~gh
p

and a radial flow velocity vr given
by Eq. (18). If hðrÞ was constant (~g would reduce to g in
such a case), then vr and c would reduce to the simple
expressions valid for pressure waves, and the two systems
would be basically the same. This is exactly what is studied
in Ref. [21]. Note that, in order to have a constant hðrÞ in an
open channel flow, Refs. [21,26] assume a nonflat bottom
(together with some restrictions on the slope of such a
bottom). In our analysis, however, we have a flat bottom
and a nonconstant hðrÞ. Therefore, one cannot simply use
the expressions for internal waves derived in Ref. [14], like
the authors of Ref. [21] were able to do. We have shown
that, no matter what the radial dependence of hðrÞ is, the
phenomenon of superradiance will always occur.

VII. RESCALING AND COMPARISON WITH
KERR BLACK HOLES

So far we have worked in terms of dimensionful param-
eters and dimensionful variables. In this section, we show
that the variable background parameters A;B, h∞ together
with g can be combined into exactly two independent

variable dimensionless parameters which, together with
the parameters m and ω associated with the wave, are
sufficient to completely describe the scattering problem.
We start by rescaling the cylindrical coordinates r and z

of our system using the length scale h∞ according to
r̄ ¼ r=h∞ and z̄ ¼ z=h∞. This naturally defines a dimen-
sionless free-surface function h̄ ¼ h=h∞. In terms of
these dimensionless variables, the cubic polynomial (21),
whose solution is the free-surface function hðrÞ, can be
written as

h̄3 þ h̄2
�
B̄2

r̄2
− 1

�
þ Ā2

r̄2
¼ 0; ð41Þ

where Ā and B̄ are dimensionless and given by

Ā ¼ A
h∞

ffiffiffiffiffiffiffiffiffiffiffi
2gh∞

p ; ð42Þ

B̄ ¼ B
h∞

ffiffiffiffiffiffiffiffiffiffiffi
2gh∞

p : ð43Þ

As we can see, the scaled free-surface function h̄ is
completely characterized by the two parameters Ā and
B̄. Similarly, in terms of the dimensionless quantities,
expression (20) for ~g can be written as

~g ¼ g

�
1þ 2Ā2

r̄2h̄2

�
h̄;r̄ r̄ −

h̄;r̄
r̄
−
h̄2;r̄
h̄

��
; ð44Þ

so that ḡ ¼ ~g=g is also dimensionless. Equation (24)
defining the location of event horizon, on the other hand,
can be written as

h̄þ 2Ā2

r̄2h̄

�
h̄;r̄ r̄ −

h̄;r̄
r̄
−
h̄2;r̄
h̄

−
1

h̄

�
¼ 0: ð45Þ

Therefore, since h̄ depends only on Ā and B̄, both ḡ and the
dimensionless location of the event horizon r̄H ¼ rH=h∞
will also be completely determined by Ā and B̄.
Finally, the wave equation (34) around our analogue

black hole can be rescaled as

�
d2

dr̄2�
þ V̄ðr̄�Þ

�
Hðr̄�Þ ¼ 0; ð46Þ

where r̄� ¼ r�=h∞ is the dimensionless tortoise coordinate,

V̄ ¼ 2

ḡ h̄

�
σω̄ffiffiffi
2

p −
mB̄
r̄2

�
2

þ 1

2

�ðh̄ r̄Þ;r̄
h̄ r̄

�
Δ;r̄
Δ3

−
m
Δr̄2

−
1

Δ2

�
1

4

�ðh̄ r̄Þ;r̄
h̄ r̄

�
2

þ 1

2

�ðh̄ r̄Þ;r̄
h̄ r̄

�
;r̄

�
ð47Þ
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is the dimensionless equivalent to V and

ω̄ ¼ ω

ωdisp
¼ ω

σ

ffiffiffiffiffiffi
h∞
g

s
ð48Þ

is the dimensionless frequency defined by scaling ω with
(27). Note also that the dimensionless function Δ can be
written in terms of the dimensionless quantities as

Δ ¼ ~ghð~gh − v2r jz¼hÞ−1 ¼
h̄

h̄ − Ā
r̄2h̄2

: ð49Þ

Therefore the scattering of waves governed by (46)
depends exclusively on the parameters Ā, B̄ of the back-
ground flow and on the parameters ω̄ and m which
characterize the waves. Contrast this result with the super-
radiant scattering of scalar waves around a Kerr black hole,
which is described by two dimensionful background param-
eters a andM (respectively, the specific angular momentum
and the mass of the black hole) and three wave parameters:
l, m and ω (respectively, the azimuthal number, the orbital
number and the frequency of the wave). After rescaling, the
background will be described by a single dimensionless
parameter a=M (in units ofG ¼ c ¼ 1). The largest possible
amplification occurs when the black hole approaches
extremality, i.e. a=M → 1. Indeed, it has been shown that
the maximum possible amplification is 0.3% for scalar
waves [40], 4.4% for electromagnetic waves and 138%
for gravitational waves [41].
Note that a=M ¼ 2Ωrþ, where Ω is the angular velocity

of the Kerr black hole and rþ is the location of its event

horizon. This result naturally generalizes to analogue black
holes and suggests that the quantity ΩrH ¼ vϕjr¼rH ¼
B=rH might be important. Remarkably, similarly to the
extremality condition for real black holes, there is also a
limit for the quantity B=rH in analogue black holes. From
Bernoulli’s equation, it is straightforward to show that
vϕjr¼rH ¼ B=rH <

ffiffiffiffiffiffiffiffiffiffiffi
2gh∞

p
. Physically this is nothing more

than conservation of energy: a fluid packet far from the
vortex has energy given by the gravitational potential alone
E=ρ ¼ gh∞; at the horizon, the maximum possible rota-
tional flow velocity is achieved when all this energy is
converted to rotational kinetic energy, or gh∞ ¼ v2ϕ=2, from
whence the bound follows.
It is important to point out that, from a mathematical

point of view, any two (independent) dimensionless com-
binations of A;B; h∞ and g are sufficient to describe the
background flow and no special role is played by Ā and B̄.
In view of this, we work with two distinct dimensionless
parameters which allow for a natural and immediate
comparison with the Kerr black hole scattering, namely
the normalized rotational flow velocity evaluated at the
event horizon v̄ϕðrHÞ and the scaled surface gravity
κ̄ðrHÞ ¼ κH=g:

v̄ϕðrHÞ ¼
vϕffiffiffiffiffiffiffiffiffiffiffi
2gh∞

p
����
rH

¼ B̄
r̄H

; ð50Þ

κ̄ðrHÞ ¼
1

2

d
dr̄

�
h̄þ 2Ā2

r̄2h̄

�
h̄;r̄ r̄ −

h̄;r̄
r̄
−
h̄2;r̄
h̄

−
1

h̄

������
r̄H

; ð51Þ

FIG. 1 (color online). Lines of constant v̄ϕðrHÞ (dashed blue lines) and κ̄ðrHÞ (solid red lines) are plotted over the cartesian Ā; B̄ plane
for Ā ¼ ½0; 8� and B̄ ¼ ½0; 22�. The grey scale represents the value of h0ðr̄HÞ for the background configuration at each point in parameter
space (we have artificially cut off the grey scale at 1 to improve visualization). The intersections of the v̄ϕðrHÞ and κ̄ðrHÞ contour lines
(indicated by small black dots) are used in our numerical simulations of superradiant scattering.
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where the definition (16), together with vϕ ¼ B=r, has
been used.
As we can see, both κ̄ðrHÞ and v̄ϕðrHÞ are functions

determined uniquely by the two parameters Ā and B̄. One
can therefore write all the equations in this section in terms
of v̄ϕðrHÞ and κ̄ðrHÞ, instead of Ā and B̄. However, since the
definitions of κ̄ðrHÞ and v̄ϕðrHÞ involve the event horizon
coordinate rH which is the solution to a difficult nonlinear
equation, the transformation between (κ̄ðrHÞ, v̄ϕðrHÞ) and
(Ā, B̄) is nontrivial and needs to be done numerically. In
Fig. 1 we show this transformation explicitly by performing
a parameter search in the ðĀ; B̄Þ space to find lines of
constant v̄ϕðrHÞ and κ̄ðrHÞ. We have also indicated a grey
scale for the value of h0ðrHÞ at each point of the parameter
space, which represents a measure of the validity of the
approximation h0ðrÞ2 ≪ 1 used in our model of the back-
ground flow.

VIII. NUMERICAL RESULTS

A. Methodology

Let us first explain how the reflection and transmission
coefficients R and T are obtained numerically. We have
already shown how the background flow and the free-
surface profile are completely determined by the three
dimensionful parameters A, B and h∞. For a given choice
of these parameters one can in principle solve Eq. (34) with
the boundary conditions given in (37). For numerical
reasons we found it easier to solve Eq. (28) directly instead
of (34). By doing so, we avoid having to invert the equation
relating the usual r coordinate and the tortoise coordinate
r�. The asymptotic form of the fields, given by (37), written
in terms of the function RðrÞ becomes

RðrÞ ¼
(
βinr

−1
2
þiAω

c2∞e−i
ω
c∞

r þ βoutr
−1
2
þiAω

c2∞eþi ω
c∞

r; r → þ∞;

βtr½1þ K1ðr − rHÞ�; r → rH;

ð52Þ

where

K1 ¼−
ðω−m B

r2H
Þ2 −m2c2H

r2H
þ i c2H

rHhH
d
drðrvrjz¼h

~g ðω−m B
r2H
ÞÞj

r¼rH

2κHð1− i chκH ðω−m B
r2H
ÞÞ :

ð53Þ

The asymptotic behavior near the analogue black hole
horizon naturally translates into the following boundary
condition for Eq. (28) at the point rmin ¼ rH þ ϵ (where
ϵ ≪ 1): RðrminÞ ¼ βtr ¼ 1 and R0ðrminÞ ¼ βtrK1 ¼ K1.
After solving Eq. (28) numerically for a given frequency
ω, we are able to obtain RðrmaxÞ and R0ðrmaxÞ, where the
point rmax ≫ rmin is located sufficiently far away from the
event horizon. With the help of the asymptotic expansions

above, we are then able to use RðrmaxÞ and R0ðrmaxÞ to
determine βin and βout.
The reflection and transmission coefficients, given by

Eq. (39), when written in terms of βs instead of αs, become
(recall that βtr ¼ 1)

R ¼
���� βoutβin

����2; T ¼ 4c∞hHrH
ωcHh∞rmax

�
ω −

mB
r2H

����� 1αin
����2

ð54Þ

where hH is the depth of the water at the horizon. Using the
numerically determined values for βin and βout, we are able
to obtain R and T for a given pair of the parameters ω
and m.
In our simulations, we have used h∞ ¼ 4 cm, A ¼

½0; 3000� cm2=s and B ¼ ½0; 8000� cm2=s, so that the
whole Ā; B̄ parameter space shown in Fig. 1 is covered.
This way we can easily convert the used parameters to the
corresponding parameters κ̄ðrHÞ and v̄ϕðrHÞ. Furthermore,
we have used ϵ ¼ 10−8 cm and rmax ¼ 10000 cm. For a
given value of the parameter m, we repeat the procedure
described above for several frequencies in the range
0 < ω < mB=r2H, thus obtaining the spectrum of reflection
coefficients in the superradiant regime. Finally, by locating
the maximum of each curve, we are able to determine the
maximum possible amplificationRmax of the spectrum and
the corresponding frequency ωpeak.

B. Results and discussion

In this section we present the numerical results. As
explained above, the dimensionless free surface of the fluid
can be completely determined by the parameters v̄ϕðrHÞ
and κ̄ðrHÞ. With the help of Fig. 1 and Eq. (22) we plot h̄ðr̄Þ
in Fig. 2 for different values of these background param-
eters. For each curve, the location of the event horizon,
found using (45), is indicated by an asterisk. Note that h̄ðr̄Þ
is always a strictly increasing function of r̄, so that the slope
of the water surface h̄0ðr̄Þ is always a decreasing function.
Consequently, in the region of interest for the scattering
process itself, which ranges from the effective event
horizon to infinity, the point which has the largest possible
slope is exactly the event horizon. Therefore, we can use
the value of h̄0ðr̄HÞ as a measure of the validity of the
assumption h02 ≪ 1 used in our model. In this sense, Fig. 1
shows that lower surface gravity profiles are better approxi-
mated by our model, below a value of about κ̄ðrHÞ≃ 3.
The approximation seems to be rather insensitive to the
value of v̄ϕðrHÞ, although more critical flows [v̄ϕðrHÞ
approaching 1] have slight larger values of h̄0ðr̄HÞ when
compared to less critical flows.
The scattering problem, on the other hand, is charac-

terized not only by the background parameters v̄ϕðrHÞ
and κ̄ðrHÞ, but also by the wave parameters m and ω̄.
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When m ¼ 0 we conclude from (40) that superradiance is
not possible. For nonzerom, we have verified that the effect
is maximized when m ¼ 1, similarly to what happens for a
Kerr black hole. Consequently, we focus our analysis on the
case m ¼ 1. Following the procedure described in the last
section, we solve Eq. (28) with the appropriate boundary
conditions and plot the spectrum of reflection coefficients
for several parameters v̄ϕðrHÞ and κ̄ðrHÞ. The results are
shown in Fig. 3. For each curve in the spectrum, corre-
sponding to a pair of parameters κ̄ðrHÞ and v̄ϕðrHÞ, we
locate the maximum possible reflection coefficient Rmax
and the corresponding frequency, in units of ωdisp, at which
this maximum occurs. The results are plotted in Fig. 4.
The analysis of Figs. 3 and 4 is straightforward and

provides important information about the possibility of
observing superradiant scattering in analogue black hole
experiments. First of all we note that, if κ̄ðrHÞ is increased,
while v̄ϕðrHÞ is kept constant, the whole spectrum becomes
broader and higher, as seen in Fig. 3(b) for v̄ϕðrHÞ ¼ 0.4.
Consequently, as a result of increasing v̄ϕðrHÞ, we also
increase both the maximum possible amplification Rmax
and the frequency at which this maximum occurs, as one
can observe in Fig. 4. Since there is no natural upper bound
for κ̄ðrHÞ in our model as there is for v̄ϕðrHÞ, we expect this
monotonic behavior to continue indefinitely.
The dependence of the spectrum on variations of the

normalized angular velocity at the horizon looks similar: as
v̄ϕðrHÞ is increased, one can observe both the broadening
and the growth in height of the spectrum [see Fig. 3(a)].

However, there seems to be a limit to such behavior,
which occurs near the critical value v̄ϕðrHÞ ¼ 1. More
precisely, as one can observe in Fig. 4(a), the maximum
possible amplification appears to ‘saturate” at the subcritical
value v̄ϕðrHÞ ≈ 0.8, above which Rmax starts decreasing
again.
Given the analysis above, it is natural to expect that

regimes of high κ̄ðrHÞ, near the critical angular velocity
v̄ϕðrHÞ, provide the best setups for detecting and measuring
the superradiant scattering in the laboratory. While it is true
that this region of the parameter space provides the largest
possible amplification, much of it also falls out of the range
of validity of our approximations. First of all, as one can see
in Fig. 1, large values of the surface gravity κ̄ðrHÞ imply
that the slope of the free surface is not sufficiently small in
this region, so that the condition h0ðrÞ2 ≪ 1 breaks down
there. Another important approximation used in our simu-
lations is the shallow water (linear dispersion) approximation
ω≲ ωdisp, which we would like to be satisfied by the peak
frequency ω̄peak. However, as Fig. 4(b) shows, for the highest
possible amplifications, the peak frequencies sit well outside
the linear dispersion regime (ω̄ < 1).
Nonetheless, even though we cannot trust our model in

the regimes where the largest possible amplifications lie,
there is still an interesting region of the parameter space
which seems to produce detectable amplifications in the
laboratory. Indeed, the left top corner of both plots in
Fig. 4, corresponding approximately to 1≲ κ̄ðrHÞ≲ 2
and 0.7≲ v̄ϕðrHÞ ≲ 0.9, indicates a regime for which the
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FIG. 2 (color online). The water profiles (solid lines) and the corresponding location of the event horizon (asterisks), as computed in
Eqs. (41) and (45), for several values of the (a) normalized angular velocity at the horizon (with κ̄ðrHÞ ¼ 1.2 fixed) and the
(b) normalized surface gravity at the horizon (with v̄ϕðrHÞ ¼ 0.4 fixed).
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maximum amplification can be as large as Rmax ≈ 1.4,
while the peak frequency satisfies ω̄peak ≲ 1. This regime
corresponds to the top left corner of Fig. 1, where the slope
condition h0ðrÞ2 ≪ 1 is satisfied.

We also compare our findings with the results of
Refs. [14,15] for pressure waves. In particular, an analytical
expression for the reflection coefficient, valid in the
small frequency regime, is obtained in Ref. [15] through

FIG. 4 (color online). (a) The maximum possible amplificationRmax as a function of v̄ϕðrHÞ and κ̄ðrHÞ. (b) The corresponding scaled
frequency ω̄peak at which the maximum is attained.

FIG. 3 (color online). The spectra of reflection coefficients in the superradiant regime for several values of the (a) normalized angular
velocity at the horizon (with κ̄ðrHÞ ¼ 1.2 fixed) and the (b) normalized surface gravity at the horizon (with v̄ϕðrHÞ ¼ 0.4 fixed).
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a Starobinski-like technique [19]. First of all, it is not clear
that an analogous calculation for small frequencies will
hold in our system since, in our case, the velocities cgw and
vrjz¼h are complicated functions of r and, consequently, the
location of the horizon can only be determined numerically.
Therefore, an analytical comparison in the small frequency
regime seems impossible. For a numerical comparison, on
the other hand, we have to resort to Ref. [21], which
provides a numerical implementation of exactly the same
equations found in Refs. [14,15]. This implementation, like
ours, covers not only the small frequency regime, but the
entire superradiant range. It shows that larger amplification
factors occur for larger angular velocity parameters B. Our
results are similar, although there seems to be a saturation
of this effect near the critical velocity, as explained before.
Another important difference is that our maximum ampli-
fication, for fixed m, depends on two parameters, while
in the case of Refs. [14,15,21], like for Kerr black holes, it
depends on only one, namely B̂ ¼ B=A. Finally, it is not
completely clear in Ref. [21] which values of the free
parameter are realistic, but for B̂ ¼ 1 (analogous to our
critical condition), they obtain Rmax ≈ 1.212. In our
analysis, for angular velocities near the critical value, we
can attain amplifications of order Rmax ≈ 1.4 if we require
the surface gravity to be in a region where our approx-
imations hold, as explained before.
Regarding the experimental feasibility of such setups, to

the best of our knowledge there has never been an
experimental realization of analogue black holes based
on the propagation of sound waves in water. Some
difficulties associated with sound wave black holes are
the possibility of shock waves for fluid velocities approach-
ing the sound speed and the fact that the sound speed
(≈ 1480 m=s) is typically much larger than the velocity of
gravity waves (≈

ffiffiffiffiffi
gh

p
). On the other hand, analogue black

hole experiments based on gravity waves are relatively
common in the literature; see e.g. [6,8,9,42,43]. Our
simulations are the first to attempt a realistic prediction
of superradiant amplification in a realistic setup.

IX. FINAL REMARKS

In this work we have studied superradiant scattering of
shallow water gravity waves impinging on a stationary
draining water vortex as a rotating black hole analogue. By
using a combination of theory and numerical simulations,
we have calculated the reflection coefficients for incident
waves and have shown that there exists a window of
physical parameter space where our approximations are
satisfied and superradiant amplification is predicted. It is
important to note that this effect is different from the
hydrodynamic analogue of the Aharonov-Bohm effect,
which is characterized by dislocation and discontinuity
in the incident wavefronts [44–47].

The reduction of the dimension of the parameter space,
described in Sec. VII, is crucial for understanding our
numerical results and comparing our system with the
superradiant amplification by Kerr black holes. In the
general relativistic case, the only background parameter
relevant for the scattering process is a=M, while in our
analogue black hole system there are two important back-
ground parameters, v̄ϕðrHÞ and κ̄ðrHÞ. From a purely
mathematical point of view there is nothing special in these
two parameters. One could have used instead the pair (Ā, B̄),
or any other combination of them, in order to analyze the
problem. From a physical point of view, however, the choice
of v̄ϕðrHÞ and κ̄ðrHÞ is natural. First of all, the parameter
v̄ϕðrHÞ is the equivalent ofa=M forKerr blackholes andboth
have an upper limit of 1. For Kerr black holes, the maximum
possible amplification is attained for almost exactly extremal
configurations a=M ≈ 1. For our analogue system, on the
other hand, the maximum is attained at a subcritical value
v̄ϕðrHÞ ≈ 0.8. The choice of v̄ϕðrHÞ therefore provides a
natural way to compare our analogue system with Kerr
black holes.
The scattering in our analogue black hole, being depen-

dent on two parameters instead of one, is more complex
than the Kerr black hole scattering. In our analysis, besides
v̄ϕðrHÞ, we chose to use the normalized surface gravity
κ̄ðrHÞ since it is an important quantity for both real and
analogue black holes and plays an important role in other
phenomena, for example Hawking radiation. Our simula-
tions show that the maximum amplification increases
monotonically as a function of κ̄ðrHÞ, suggesting that this
parameter is indeed an important controlling parameter for
the superradiant amplification.
In summary, we believe that our analysis uncovers

convincing evidence that a draining water vortex flow is
sufficiently complex and rich to reproduce and generalize
many interesting features of Kerr black hole superradiance.
Given our numerical analysis we also conclude that
experimental observation of this phenomenon is within
reach of forthcoming experiments.

ACKNOWLEDGMENTS

WethankAndrewJasonPennerforhishelpduringtheinitial
stages of this project. We also thank Thomas Sotiriou for
enlighteningdiscussions onastrophysical rotatingblackholes
within the framework of general relativity and beyond, and
Carlos Herdeiro and Vitor Cardoso for enlightening discus-
sions about the maximum amplification for Kerr black holes.
M. R. acknowledges financial support from the São Paulo
Research Foundation (FAPESP), Grants No. 2013/09357-9
and No. 2013/15748-0. S.W. was funded by a Royal Society
University Research Fellowship (URF), a Nottingham
Research Fellowship (NRF), and a Royal Society Project
Grant. S. L. acknowledges financial support from the John
Templeton Foundation (JTF), Grant No. 51876.

ROTATING BLACK HOLES IN A DRAINING BATHTUB: … PHYSICAL REVIEW D 91, 124018 (2015)

124018-11



[1] W. G. Unruh, Phys. Rev. Lett. 46, 1351 (1981).
[2] C. Barceló, S. Liberati, and M. Visser, Living Rev.

Relativity 14, 3 (2011).
[3] T. Jacobson, Phys. Rev. D 44, 1731 (1991).
[4] W. G. Unruh, Phys. Rev. D 51, 2827 (1995).
[5] R. Brout, S. Massar, R. Parentani, and P. Spindel, Phys. Rev.

D 52, 4559 (1995).
[6] W. Unruh, Phil. Trans. R. Soc. A 366, 2905 (2008).
[7] T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. König,

and U. Leonhardt, Science 319, 1367 (2008).
[8] S. Weinfurtner, E. W. Tedford, M. C. Penrice, W. G. Unruh,

and G. A. Lawrence, Phys. Rev. Lett. 106, 021302 (2011).
[9] S. Weinfurtner, E. Tedford, M. Penrice, W. Unruh, and

G. Lawrence, in Analogue Gravity Phenomenology, edited
by D. Faccio, F. Belgiorno, S. Cacciatori, V. Gorini, S.
Liberati, and U. Moschella, Lecture Notes in Physics
Vol. 870 (Springer, New York, 2013), p. 167.

[10] F. Belgiorno, S. L. Cacciatori, M. Clerici, V. Gorini, G.
Ortenzi, L. Rizzi, E. Rubino, V. G. Sala, and D. Faccio,
Phys. Rev. Lett. 105, 203901 (2010).

[11] E. Rubino, J. McLenaghan, S. C. Kehr, F. Belgiorno, D.
Townsend, S. Rohr, C. E. Kuklewicz, U. Leonhardt, F.
König, and D. Faccio, Phys. Rev. Lett. 108, 253901 (2012).

[12] J. Steinhauer, Nat. Phys. 10, 864 (2014).
[13] H. S. Nguyen, D. Gerace, I. Carusotto, D. Sanvitto, E.

Galopin, A. Lemaître, I. Sagnes, J. Bloch, and A. Amo,
Phys. Rev. Lett. 114, 036402 (2015).

[14] S. Basak and P. Majumdar, Classical Quantum Gravity 20,
3907 (2003).

[15] S. Basak and P. Majumdar, Classical Quantum Gravity 20,
2929 (2003).

[16] J. D. Bekenstein and M. Schiffer, Phys. Rev. D 58, 064014
(1998).

[17] M. Richartz, S. Weinfurtner, A. J. Penner, and W. G. Unruh,
Phys. Rev. D 80, 124016 (2009).

[18] Y. B. Zel’Dovich, JETP Lett. 35, 1085 (1972).
[19] A. A. Starobinsky, JETP Lett. 37, 28 (1973).
[20] A. A. Starobinsky and S. M. Churilov, JETP Lett. 38, 1

(1974).
[21] E. Berti, V. Cardoso, and J. P. S. Lemos, Phys. Rev. D 70,

124006 (2004).
[22] S. Lepe and J. Saavedra, Phys. Lett. B 617, 174 (2005).
[23] E. S. Oliveira, S. R. Dolan, and L. C. B. Crispino, Phys. Rev.

D 81, 124013 (2010).

[24] M. Richartz, A. Prain, S. Weinfurtner, and S. Liberati,
Classical Quantum Gravity 30, 085009 (2013).

[25] R. Brito, V. Cardoso, and P. Pani, arXiv:1501.06570.
[26] R. Schutzhold and W. G. Unruh, Phys. Rev. D 66, 044019

(2002).
[27] G. Rousseaux, in Analogue Gravity Phenomenology, edited

by D. Faccio, F. Belgiorno, S. Cacciatori, V. Gorini, S.
Liberati, and U. Moschella, Lecture Notes in Physics
Vol. 870 (Springer, New York, 2013), p. 81.

[28] O. Darrigol, Arch. Hist. Exact Sci. 58, 21 (2003).
[29] P. Madsen and H. Schäffer, Phil. Trans. R. Soc. A 356, 3123

(1998).
[30] B. Cropp, S. Liberati, and M. Visser, Classical Quantum

Gravity 30, 125001 (2013).
[31] M. Visser, Classical Quantum Gravity 15, 1767 (1998).
[32] A. Andersen, T. Bohr, B. Stenum, J. J. Rasmussen, and

B. Lautrup, Phys. Rev. Lett. 91, 104502 (2003).
[33] A. Andersen, T. Bohr, B. Stenum, J. J. Rasmussen, and

B. Lautrup, J. Fluid Mech. 556, 121 (2006).
[34] J. A. Whitehead and D. L. Porter, Dynamics of Atmospheres

and Oceans 2, 1 (1977).
[35] J. Mang, M. Ungarish, and U. Schaflinger, Int. J. Multiphase

Flow 27, 197 (2001).
[36] T. Jacobson, Phys. Rev. D 48, 728 (1993).
[37] S. Corley and T. Jacobson, Phys. Rev. D 54, 1568

(1996).
[38] S. Corley, Phys. Rev. D 57, 6280 (1998).
[39] A. Coutant, R. Parentani, and S. Finazzi, Phys. Rev. D 85,

024021 (2012).
[40] W. H. Press and S. A. Teukolsky, Nature (London) 238, 211

(1972).
[41] S. A. Teukolsky and W. H. Press, Astrophys. J. 193, 443

(1974).
[42] G. Rousseaux, C. Mathis, P. Maïssa, T. G. Philbin, and

U. Leonhardt, New J. Phys. 10, 053015 (2008).
[43] G. Jannes, R. Piquet, P. Maïssa, C. Mathis, and

G. Rousseaux, Phys. Rev. E 83, 056312 (2011).
[44] M. V. Berry, R. G. Chambers, M. D. Large, C. Upstill, and

J. C. Walmsley, Eur. J. Phys. 1, 154 (1980).
[45] C. Coste, F. Lund, and M. Umeki, Phys. Rev. E 60, 4908

(1999).
[46] F. Vivanco and F. Melo, Phys. Rev. E 69, 026307 (2004).
[47] S. R. Dolan, E. S. Oliveira, and L. C. Crispino, Phys. Lett. B

701, 485 (2011).

RICHARTZ et al. PHYSICAL REVIEW D 91, 124018 (2015)

124018-12

http://dx.doi.org/10.1103/PhysRevLett.46.1351
http://dx.doi.org/10.12942/lrr-2011-3
http://dx.doi.org/10.12942/lrr-2011-3
http://dx.doi.org/10.1103/PhysRevD.44.1731
http://dx.doi.org/10.1103/PhysRevD.51.2827
http://dx.doi.org/10.1103/PhysRevD.52.4559
http://dx.doi.org/10.1103/PhysRevD.52.4559
http://dx.doi.org/10.1098/rsta.2008.0062
http://dx.doi.org/10.1126/science.1153625
http://dx.doi.org/10.1103/PhysRevLett.106.021302
http://dx.doi.org/10.1103/PhysRevLett.105.203901
http://dx.doi.org/10.1103/PhysRevLett.108.253901
http://dx.doi.org/10.1038/nphys3104
http://dx.doi.org/10.1103/PhysRevLett.114.036402
http://dx.doi.org/10.1088/0264-9381/20/18/304
http://dx.doi.org/10.1088/0264-9381/20/18/304
http://dx.doi.org/10.1088/0264-9381/20/13/335
http://dx.doi.org/10.1088/0264-9381/20/13/335
http://dx.doi.org/10.1103/PhysRevD.58.064014
http://dx.doi.org/10.1103/PhysRevD.58.064014
http://dx.doi.org/10.1103/PhysRevD.80.124016
http://dx.doi.org/10.1103/PhysRevD.70.124006
http://dx.doi.org/10.1103/PhysRevD.70.124006
http://dx.doi.org/10.1016/j.physletb.2005.05.021
http://dx.doi.org/10.1103/PhysRevD.81.124013
http://dx.doi.org/10.1103/PhysRevD.81.124013
http://dx.doi.org/10.1088/0264-9381/30/8/085009
http://arXiv.org/abs/1501.06570
http://dx.doi.org/10.1103/PhysRevD.66.044019
http://dx.doi.org/10.1103/PhysRevD.66.044019
http://dx.doi.org/10.1007/s00407-003-0070-5
http://dx.doi.org/10.1098/rsta.1998.0309
http://dx.doi.org/10.1098/rsta.1998.0309
http://dx.doi.org/10.1088/0264-9381/30/12/125001
http://dx.doi.org/10.1088/0264-9381/30/12/125001
http://dx.doi.org/10.1088/0264-9381/15/6/024
http://dx.doi.org/10.1103/PhysRevLett.91.104502
http://dx.doi.org/10.1017/S0022112006009463
http://dx.doi.org/10.1016/0377-0265(77)90012-4
http://dx.doi.org/10.1016/0377-0265(77)90012-4
http://dx.doi.org/10.1016/S0301-9322(00)00024-0
http://dx.doi.org/10.1016/S0301-9322(00)00024-0
http://dx.doi.org/10.1103/PhysRevD.48.728
http://dx.doi.org/10.1103/PhysRevD.54.1568
http://dx.doi.org/10.1103/PhysRevD.54.1568
http://dx.doi.org/10.1103/PhysRevD.57.6280
http://dx.doi.org/10.1103/PhysRevD.85.024021
http://dx.doi.org/10.1103/PhysRevD.85.024021
http://dx.doi.org/10.1038/238211a0
http://dx.doi.org/10.1038/238211a0
http://dx.doi.org/10.1086/153180
http://dx.doi.org/10.1086/153180
http://dx.doi.org/10.1088/1367-2630/10/5/053015
http://dx.doi.org/10.1103/PhysRevE.83.056312
http://dx.doi.org/10.1088/0143-0807/1/3/008
http://dx.doi.org/10.1103/PhysRevE.60.4908
http://dx.doi.org/10.1103/PhysRevE.60.4908
http://dx.doi.org/10.1103/PhysRevE.69.026307
http://dx.doi.org/10.1016/j.physletb.2011.06.013
http://dx.doi.org/10.1016/j.physletb.2011.06.013

