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The unknown temperature of a sample can be estimated with minimal disturbance by putting it in thermal
contact with an individual quantum probe. If the interaction time is sufficiently long so that the probe thermal-
izes, the temperature can be read out directly from its steady state. Here we prove that the optimal quantum
probe, acting as a thermometer with maximal thermal sensitivity, is an effective two-level atom with a maxi-
mally degenerate excited state. When the total interaction time is insufficient to produce full thermalization,
we optimize the estimation protocol by breaking it down into sequential stages of probe preparation, thermal
contact and measurement. We observe that frequently interrogated probes initialized in the ground state achieve
the best performance. For both fully and partly thermalized thermometers, the sensitivity grows significantly

with the number of levels, though optimization over their energy spectrum remains always crucial.

PACS numbers: 06.20.-f, 03.65.-w, 03.65.Yz

INTRODUCTION

With the advent of quantum technologies, the study of the
thermodynamics of quantum devices has attracted consider-
able attention [, 2. In particular, there is a growing interest
in obtaining accurate temperature readings with nanometric
spatial resolution [3H5]], which would pave the way towards
many ground-breaking applications in medicine, biology or
material science. This motivates the development of precise
quantum thermometric techniques.

Recent progress in the manipulation of individual quan-
tum systems has made it possible to use them as tempera-
ture probes, thus minimizing the undesired disturbance on the
sample. Fluorescent thermometry may be implemented, for
instance, on a single quantum dot to accurately estimate the
temperature of fermionic [6l [7] and bosonic [8l 9] reservoirs.
Similarly, the ground state of colour centres in nano-diamonds
has already been used as a fluorescent thermometer [3H5],
achieving precisions down to the millikelvin scale, and a spa-
tial resolution of few hundreds of nanometers. Thermometry
applied to micro-mechanical resonators [10-H12]], and nuclear
spins [13] has also been subject of investigation. Other studies
have focused on more fundamental questions such as the scal-
ing of the precision of temperature estimation with the number
of quantum probes [14], and the potential role played by co-
herence and entanglement in simple thermometric tasks [15].

In this Letter, we investigate the fundamental limitations
on temperature estimation with individual quantum probes.
Two complementary scenarios are considered. In the first one,
we assume that the thermometer reaches thermal equilibrium
with the sample. We then determine which are the optimal
probes that maximize the attainable precision in the estima-
tion of the temperature. Alternatively, we also consider the
situation in which the probe does not thermalize completely
due to some constraint on the total estimation time (e.g. the
sample may be unstable). In this second scenario, we analyze
the dissipative time evolution of the probe in order to optimize

the thermometric protocol. We model it as sequence of steps
of preparation, thermal contact and readout.

Our main results are the following. First, we show that a
N-dimensional equilibrium probe with maximum heat capac-
ity is optimal for thermometry. This is an effective two-level
probe with (N — 1)-degeneracy in the excited state, and some
optimal gap. The maximum achievable precision grows with
the dimension of the probe, yet the range of temperatures for
which it operates efficiently as a thermometer becomes nar-
rower. In contrast, a less sensitive probe with equispaced en-
ergy spectrum, such as a quantum harmonic oscillator, fea-
tures wider operation ranges. On the other hand, when the
estimation time is limited, we find that a frequently measured
probe initialized in its ground state achieves the largest ther-
mal sensitivity. In this case, the overall precision still scales
with the dimension of the probe, even though the temperature
range for efficient operation is dimension-independent.

Our results contribute not only to the theoretical advance of
temperature estimation in the quantum regime, but also have
potential technological impact for the development of high
precision thermometry at the nanoscale.

FULLY THERMALIZED THERMOMETERS

In standard thermometry, a (sufficiently small) thermometer
is simply allowed to equilibrate with the sample to be probed,
so that the temperature of the latter is inferred from the state
of the probe. In a quantum scenario, the same procedure can
be applied. A first approximation to the sample temperature
can be obtained by performing a suitable measurement on the
steady state of the thermalized probe. If a large number v of
such independent experiments is carried out, one can refine
the estimate T of the sample temperature. Its corresponding
uncertainty AT is bounded from below by a geometric quan-
tity F (07), known as quantum Fisher information (QFI) [16]],



via the quantum Cramér-Rao inequality [17, [18]]
AT > vF @I Q)

In the present context of temperature estimation, the QFI can
be interpreted as the infinitesimal distance, according to the
Bures metric, between a thermal state at temperature 7, and a
thermal state at temperature 7 + ¢ [[18]]. Intuitively, the more
such a distance, the more the initial probe state is sensitive to
a small variation of temperature. Formally,

F(or) = =21im °F(or, 01+5)/67, @)
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where F(01,0;) = (tr w/ \/E 02 \/@_1 ) is the Uhlmann fidelity
between states 0; and 9,, which defines their respective Bures
distance via dpyes(01,02) = 2(1 — +/F(01,02)) [18]]. Further
to the intuitive meaning of the QFI, we note that there exists
an optimal estimator (i.e., an optimal measurement procedure
on the final thermalized state) for which the bound in eq. (I
becomes tight for an asymptotically large number of measure-
ments (v > 1), and can be indeed saturated by means of adap-
tive metrological schemes [16]]. Therefore, the inverse of the
QFI equivalently defines the minimum achievable variance in
the estimation of 7. We will then refer to ¥ (or) as ‘thermal
sensitivity’, and take its maximization as synonym of optimal-
ity in the following analysis [8H11} 14} 19].

We write the Hamiltonian of our probe as H =
Yn€nlen) (€. A thermalization process leads to stationary
states of the form or = >, px |€:) {(€,|, where the populations
are p, = Z'e"#/%sT and the partition function is given by
Z = tre” /&7 n what follows we setfi = kg = 1.

In the energy eigenbasis, eq. (2) rewrites as [20]

|<€m|6T@T|€n> |2 _ AI:IZ
(Pm + pn)2 T4

F@r)=4), pn 3)
were AH? = (H?) — (H)?. In this last step, we have used
the identity (H) = T?d7 InZ. Interestingly, in the single shot
scenario of v = 1, one can combine eqs. (I) and (3) to get the
thermodynamic uncertainty relation AT—{AFAI > 1. Also, note
that AH?/T? = d(H)/dT = C(T) which, in the present case,
may be referred to as the ‘heat capacity’ of the probe. It thus
follows that the signal-to-noise ratio 7/AT is upper-bounded
as (T/AT)*> < C(T) [21]. Note as well that, since dr is a
thermal state, the most informative measurement saturating
eq. (I)) is just a projection onto the energy eigenbasis.

In the light of eq. (3)), the maximization of the thermal sen-
sitivity of a probe translates into finding the energy spectrum
with the largest possible energy variance at thermal equilib-
rium, or equivalently, the N-dimensional probe with largest
heat capacity. Note that the heat capacity of the sample must
be anyway much larger than that of the probe so as to mini-
mize any disturbance arising from the estimation procedure.

For a general N-level probe, the energy variance writes as
AR? = 27V 3N &eslT — (27! 3N ge/T)?, where the parti-
tion function is Z = Y, e~%/T. The variance is bounded. In
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FIG. 1: QFI versus sample temperature for optimized N-dimensional
probes (orange) with N = {2, 4, 6, 8, 10}. The dashed blue line repre-
sents the QFI of a harmonic probe and the shaded blue area is the do-
main reachable by finite-dimensional probes with equispaced spec-
trum. In the inset, the normalized sensitivities of two probes with
N = 2 (dashed green) and N = 10 (solid orange) are compared. The
arrows indicate the width of the specified temperature range. Tem-
perature and QFI are both expressed in arbitrary units and Q = 1.

order to identify its maximum, we impose J AH? = 0, which
results in a set of N transcendental equations. Subtracting the
J-th equation from the i-th one (9, AH* — 0, AH? = 0), we ar-
rive at the condition (€ — €;)(&+¢€;—2~2(H)/T) = 0 (see [22]
for details). That is, any two energy eigenvalues ¢ and €; must
be either equal, or sum up to the same value at the stationary
points of AH?. This may only happen if the energy spectrum
is that of an effective two-level atom with energies {e_, €, },
and Ny and N — N times degenerate ground and excited state,
respectively. Without loss of generality, we may always shift
the energy spectrum so that e. = 0 and the optimal gap be-
comes x1*v,N0 = QT = (e, +€)/T = 2(1 + (ﬂ)/T) > 2,
since now (H) > 0. This critical gap may be conveniently
N=Np vy *2

Mo Tymy 2 Observing that the differ-

ence AH*(x}y 13 N, No— D= A (xy s N, No) = § (X1~
x;‘\%NO) is always positive, one can conclude that the excited-
state degeneracy must be the largest possible (i.e. Nyp = 1) so
as to maximize the energy variance.

Finally, to ensure that AH> reaches a maximum at Xy Ny We
must check that the Hessian matrix (H;; = 0>AH?/0€0¢;) is
negative definite in that configuration. After a tedious but oth-
erwise straightforward calculation, we can see that it has N -2

rewritten as eV =

. . . _ 1 X;’\,‘l—z

identical elgenvaltles A =—535T plus two non-degenerate
X —4 .

ones: A, = —3—~+ and A3 = 0. Since x},, > 2, both 4

and A, are negative. The single vanishing eigenvalue A3 sim-
ply reflects the obvious symmetry of AH> with respect to a
global shift of all energy levels. Hence, one may rigorously
conclude that the effective two-level configuration described
above indeed maximizes the energy variance. Note that this is
in agreement with [23]].

Here is the final expression for the corresponding QFI
x*e* N-1

T = ,
YT (Vo1

“4)

which is obviously also maximal at x = x . In fig. |I} we



plot eq. (@) for different values of N. The precision in tem-
perature estimation improves significantly by increasing the
dimensionality N of the probe, albeit at the expense of reduc-
ing the specified temperature range for efficient operation of
the probe as a thermometer (see inset of fig. [I)).

So far, we have seen that the best thermometers are effective
two-level atoms with a highly degenerate excited state and a
specific, temperature-dependent gap. However, these may be
very hard to prepare in practice, especially due to the fact that
the sample temperature must be known precisely. For this rea-
son we now consider more versatile sub-optimal probes with a
richer spectrum, such as a single thermalized harmonic oscil-
lator. In this case, the corresponding QFI can be easily com-
puted from the 2 X 2 steady-state covariance matrix [24} 25]
of a thermal state oy = coth % 1, as in eq. (2). Using the fact
that the Uhlmann fidelity between two single-mode Gaussian
states o7 and o, is given by F(oy, 0) = 2( VA + A — VA)™
[26]], where A = det(o; + 0,) and A = det(o; — 1)det(o, — 1
one arrives at Fpo, = % cschz%. This is represented in ﬁg.
with a dashed blue line. For ease of comparison we take the
oscillator frequency Q to be €, — e_. As we can see, a har-
monic probe features a thermal sensitivity similar to that of a
two-level probe. Even if harmonic thermometers are outper-
formed by most optimized N-level probes, they are endowed
with a much broader specified temperature range for efficient
operation, making them a choice of practical interest. This
can be understood by observing that the thermal sensitivity of
a probe with a single energy gap may only peak at one charac-
teristic frequency, while with an equispaced, unbounded spec-
trum there will always be some transition close to resonance.

PARTLY THERMALIZED THERMOMETERS

All the previous analysis holds regardless of the probe-
sample interactions or the spectral properties of the sample,
as long as thermalization takes place. In practice, however,
one may have to read out the temperature before attaining full
thermalization. This would be the case, for instance, if the
sample was unstable and existed only for times comparable
to the dissipation time scale. In this alternative scenario, we
ask ourselves about the optimal breakup of the total running
time of the estimation procedure (f;) into sequential stages
of probe-preparation, thermal contact (during time Af), and
measurement, so as to optimize the achievable precision in
eq. (T). Note that the number of interrogations is now limited
to v = t4/At, so that the figure of merit to be maximized is the
ratio F (Ar)/ At 277, 28]].

Since we must monitor the time evolution of the probe, it
is necessary now to specify the sample and its coupling with
the thermometer. We shall model the sample as a bosonic
heat bath, linearly coupled to an arbitrary probe. The to-
tal Hamiltonian writes as Ho = H + Y, w, bib, + X ®
2 gﬂ(lAJﬂ + l;;), where IA)# is the annihilation operator of mode
w,, in the sample. We choose the probe-sample coupling con-
stants to be g, = (yw,)'?, implying flat spectral density

2
J(w) ~ ¥, Z—“ 0(w — w,) = vy [29]. This sets the time-scale

Tp ~ y~' over which §(f) varies appreciably. Tracing out
the sample from the overall unitary dynamics and assuming a
thermal state 7 for it, leads to an effective equation of motion
of the Lindblad-Gorini-Kossakovski-Sudashan type (LGKS)
[30. 311, that follows from § = trg L{e~ ' 5(0) ® g7 e},
after sequentially performing the Born, Markov and rotating-
wave approximations (see [32]] for a detailed derivation). Note
that the Born approximation implies that no correlations are
ever created between probe and sample, so the latter remains
undisturbed throughout the estimation procedure. Note also
that, for consistency with the Markov approximation, the tem-
perature of the sample may be not arbitrarily low, as the ther-
mal fluctuations must remain fast compared with 7p.

In the interaction picture, the master equation can be cast as

6 =Tar(Aeoh_a - 5{A_aAa.0).)
+ e_Q/TrQ,T (AA_Q@AAQ — %{AAQAA—Q, @}+) s (5)

where A.q stands for the relaxation/excitation operator as-
sociated with the decay channel at frequency Q. These fol-
low from the decomposition of X = Y A,, as sum of eigen-
operators of the probe Hamiltonian (i.e. such that (A, AAQ]A =
—QAqg). Itis easy to show that the thermal state = Z~'e~#/T
is a fixed point of eq. (5) and, choosing a suitable coupling op-
erator X, the open dynamics may also be ergodic, thus even-
tually bringing any initial state to thermal equilibrium [32].

For a two-level thermometer with Hamiltonian H = %&z,
we can take, for instance, X = 0, from which AQ =
|-Q/2)(Q/2], while A_q = A,. Here, |£Q/2) are the cor-
responding energy eigenstates. Generalizing to the case of
an N-level probe with eigenstates {|;)}, a coupling term like
X = i1 l€1) (&l + |€:) (€] would also thermalize any prepara-
tion, where we have labelled the ground state by |e;). The re-
sulting relaxation operators are Afi_el = |e1) {g]|. In particular,
to account for our effective two-level systems with excited-
state degeneracy we can take the limit ¢ — % fori # 1
and set ¢, = —% to get the desired thermalization process.
Let us finally comment on the decay rates I'q 7, which follow
from the power spectrum of the bath auto-correlation function
S®S)r = tr{S®S(0)pr), where § = ¥, g,(b, + b)). In
the specific case of a quantum probe coupled through dipole
interaction to the quantized electromagnetic field in three di-
mensions, one obtains g7 = yQ3(1 — e™¥T)~! [32].

The problem now goes down to solving eq. (3, transform-
ing the time-evolved state o(¢) back into the Schrodinger pic-
ture (i.e. 0 — e H'pef!"), and computing the QFI according
to eq. ) [27, [33H36]. Note that besides comparing the per-
formance of different types of probe, we must now optimize
over their initial state too. We start by considering the simplest
case of two-level thermometers. Extensive numerical analysis
over different initial states shows that ground-state prepara-
tions display maximal thermal sensitivity. This indicates that
the presence of initial quantum coherence does not provide
any significant advantage for thermometry in this setting.
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FIG. 2: Log-log plot of F /At as a function of At for different prepara-
tions and probe dimensionalities. The continuous orange lines stand
for Fy for probes with N = {2,4, 10} initialized in the ground state.
The dashed and dotted orange curves stand for a two-level probe ini-
tialized in a thermal state at temperature 0.8 and 0.9, respectively.
The dot-dashed blue curve corresponds to a two-level probe prepared
in the maximally coherent state 5(0) = |+) (+| (/T = %, y = 1073,
and T = 1, in arbitrary units).

Thus, by choosing 6(0) = |-Q/2) (—Q/2| we can combine
eqgs. (3) and (3)) to compute F>(Ar) as a function of the inter-
rogation time At, starting from a ground state preparation:

x2 (ex (eA’/T - 1) +(1+e") fesch %)2

Fa(At) =
280 (1 + e%)? (eA/T — 1) (1 + exel/T) T2

(6)

where 77! = yQ’coth 3. Eq. (6) shows that the details of
the thermal fluctuations of the sample, encoded in I'q 7, only
enter in the dynamics through the scaling factor 7. Hence,
even if our choice of a flat spectral density might seem pretty
restrictive at first, changing the probe-sample coupling would
just amount to a suitable rescaling of time.

In fig.2]we plot #>(Ar)/ At for different preparations. As we
can see, the sensitivity of a cold thermal probe peaks at some
optimal readout time, after which it must be quickly cooled
down to start over another relaxation stage in the estimation
protocol. In the limiting case of a ground-state preparation,
the overall maximum sensitivity is approached as At — 0.

Eq. (6) can be generalized to any of our highly degenerate
effective two-level probes prepared in the ground state. As
before, their maximum precision follows from the limit

lim Fn(A)  yT(N — 1)x’e**
A0 At (e =17

(7

We now search for the optimal frequency-to-temperature ra-
tio X that sets an ultimate upper bound on the thermal sen-
sitivity in eq. (7). This can be expressed implicitly as e* =
(5 +2%)/(5 — X), which is independent of N. Interestingly, the
specified temperature range for efficient operation does not
scale with N, at variance with the fully thermalized case.

For completeness, we examine again here the performance
of harmonic probes. Going back to eq. (3), we will set
H = Qa'aand X = a + a', whose corresponding relaxation
and excitation operators are trivially Aq = a and A_q = a.
The total Hamiltonian is thus quadratic in positions and mo-
menta and therefore, any Gaussian preparation will preserve

its Gaussianity in time [24]. Provided that the initial state also
has vanishing first order moments ({(X) = (p) = 0), its covari-
ance matrix o (f) alone will be enough for a full description.
In this case, the dynamics may be obtained by explicitly
solving the quantum master equation in phase space, to yield
o(t) = eTerg(0) + (1 — e Ter")op [24,37]. Computing the
transient QFI is thus straightforward by resorting to eq. (2). In
what follows, we shall consider general (undisplaced) single-
mode Gaussian states as initial preparations; these can be writ-
ten as rotated, squeezed thermal states [24] [25]. As it could
be expected, ground-state initialization (9(0) = |0)(0|) pro-
vides once again the largest thermal sensitivity. One can ig-
nore the temperature dependence of I'qr in the solution to
the master equation and still get a good approximation to
lima,—0 Fno(Af)/At.  Surprisingly, we recover eq. (7) with
N = 2. Indeed, this equivalence of two-level probes and
harmonic thermometers extends generally beyond the limits
At — 0 and 9(0) = |0)(0|. Therefore, at variance with the
fully-thermalized scenario, the specified temperature range of
both oscillators and N-level probes in an effective two-level
configuration is virtually the same, regardless of N.

CONCLUSIONS

We have analyzed the performance and ultimate limitations
of individual quantum probes for precise thermometry on a
sample. Our study is based on techniques of parameter esti-
mation [16} 18], and makes use of the quantum Fisher infor-
mation as indicator of optimal thermal sensitivity.

First, we have considered a general N-dimensional quan-
tum probe that fully thermalizes with the sample. We have
linked the quantum Fisher information with the heat capacity
of the probe, and proven that the best quantum thermometer is
an effective two-level atom with a maximally degenerate ex-
cited state at a specific energy gap, depending non-trivially
on the sample temperature. There exists a complementary
trade-off between the maximum achievable estimation preci-
sion, which grows with N, and the specified temperature range
in which the estimation is efficient, which shrinks with N.

We have also considered the scenario in which, e.g. due to
short lifetime of the sample, full thermalization may not take
place. Frequently interrogated probes prepared in their ground
state then provide the largest thermal sensitivity. While the
maximum achievable precision scales again with N, the spec-
ified temperature range is dimension-independent in this case.
These results were obtained by considering a large bosonic
sample in thermal equilibrium, weakly coupled to the probe
through a linear interaction term, ensuring ergodicity. It would
be interesting to discuss to which extent can the estimation
precision be enhanced with a suitably engineered thermal cou-
pling, e.g. by externally controlling the scattering length in a
cold atomic gas [38]]. In principle, this would allow the exper-
imenter to directly manipulate the scaling factor 7 in eq. (6).

Finally, it is worth mentioning that even though quantum
coherence in the initial state of the probe may not be directly



linked to the overall maximization of the precision, the poten-
tial role played by quantumness in thermometry remains an
open problem [13}[15]] that deserves a study on its own.
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Details on the proof of the optimality of the effective two-level
probes

Below, we give further details on the proof of the optimality
of effective two-level thermalized probes with N — 1 times
degenerate excited state, for the maximization of the energy
variance. For an N-level probe in a thermal state, this writes
as

2

N
AR (&) = (B - (AP =77 ) ?ef“”—(Z‘Zeieﬂ/T) : )

i=1

where Z = 3; e~/ In order to find the stationary points of AH?({;}) we simultaneously impose the N conditions d. AH>({g;}) =

0, which result in the following system of transcendental equations
(

e—a/T

Z

One may now subtract the j-th of such equations from the i-th
one, obtaining

(€—€)|e+e-2(()+T)|=0. (10)

That is, the stationary points of AH? are such that any two en-
ergy eigenvalues must be either equal or sum up to 2((H)+T).
A set of conditions like eq. (T0) cannot be simultaneously met
by more than two different energy eigenvalues {¢,, €_}. Hence,
the only energy spectra compatible with stationarity are those
of effective two-level atoms with ground state degeneracy Ny1
and an N — N, times degenerate excited state. Without loss
of generality, we may always shift the spectrum so as to set
€. = 0. According to eq. (T0), the gap of the effective two-
level system becomes Q* = €, — e_ = 2((H) + T).

Note that for an effective two-level probe the average en-
ergy rewrites as

(N —Ng)xe™
Ny + (N — Ny) e’
where we have introduced the notation x = Q/T for the
frequency-to-temperature ratio (recall that we work in units
of i = kg = 1). The energy gap at stationarity can be thus
conveniently cast as

(H(x;N,No)y =T (11

N =N, x}*V’NO +2

exxﬁb =
" .
[VO AalAh —-2

(12)

[% (B - 287) + & (2 - ;) + 2<F1>(% - 1)] -0 Vie{l,--- N} 9)

(

In order to determine the ground and excited state de-
generacies yielding the largest energy variance at the
critical frequency-to-temperature ratio, we can compare
AHz(x;‘V’NO;N, Nop) with AHZ(x;‘\,U_l’N;N, Ny — 1), where

2 No(N = Np) x2e*
[(N = No) + Ng e]*

AR*(x;N,Ny) =T (13)

This yields AH?(xy 13N, No — 1) = AH*(x}y s N, No) =
%(xf\,%No_l - x;*\%NO) > 0, which is positive according to eq.
Hence, an effective two-level probe with maximally degener-
ate excited state (i.e. Ny = 1) has the largest energy variance

at stationarity.

All that is left is to prove that such stationary point is in-
deed a maximum for the energy variance. For that purpose,
we shall compute explicitly the elements of the Hessian ma-
trix H;; = O*AR?/ J€;0¢€; and check its eigenvalues for neg-
ative definiteness at the stationary point. After a lengthy but
otherwise straightforward calculation, one can see that the di-
agonal elements evaluate to



PAH?

H, =
061.2

ZT

+Z 5T (2T? + 2(AY2T + (A)) — (H*) = 22T + (A))e; + ef)]

while the off-diagonals are given by

~ PAL?  e—tare)T

ij —
J afian

27?2

We are interested in the particular case of an effective two-
level spectrum with N —1 times degenerate excited state at the
corresponding optimal gap x* = xy . For this configuration,
the Hessian has the following structure

acc - ¢

cbd--d
H:Cdb"'d, (16)

cdd - b

where a = 7_{ii|e,-=0’ b (]_{iils,':x*’ ¢ = (]_(ijlsi:0,5j=x‘
Hijle=x =0 and d = Hjjl¢=¢,=x». To compute these ele-
ments from egs. (T4) and (I3) we can also make the follow-
ing replacements Z = 2x*/(2 + x*), (H) = L(x* - 2) and
(H?) = T;x*(x* —2)and e = (N - 1)=%2. yielding

¥

a= —é(x*2—4) (17a)
T (17b)
c= % (17¢)

= —éév;_zl); (17d)

Finally, the diagonalization of the Hessian leads to the fol-
lowing eigenvalues: 4; = —(x* — 2)/(2(N — 1)) (N — 2 times
degenerate), A, = —(x*2 = 4)/(8(N = 1)) and A3 = 0 (both
non-degenerate). The vanishing eigenvalue follows from the
invariance of AH? under uniform global shifts of all energy
levels. Note as well that x* > 2, as follows from eq. @]), im-
plying that both A; and A, are negative definite. This demon-
strates that the stationary point corresponds indeed to a maxi-
mum.

We have thus rigorously proven that an effective two-level
spectrum with an N — 1 times degenerate excited state at en-
ergy T x* yields the largest possible energy variance for an N-

= |4 (€ + € = 2T) + (& + €)(AT — & — €)) + 2(H*) — 6(A)* - 217

—-&/T 2
- (e ) [2(<ﬁ2> —3(H)? — 4T(H) - T?) + 8(T + (A))e; — 4¢>

Vie{2,---,N}, (14)

(

Vi# . (15)

(

dimensional system at thermal equilibrium with temperature
T.m
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