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The importance of current contributions to shielding
constants in density-functional theory

Sarah Reimann,** Ulf Ekstrém,** Stella Stopkowicz,* Andrew M. Teale,*” Alex Borgoo,*
and Trygve Helgaker “I

The sources of error in the calculation of nuclear-magnetic-resonance shielding constants de-
termined by density-functional theory are examined. Highly accurate Kohn—Sham wave functions
are obtained from coupled-cluster electron density functions and used to define accurate—but cur-
rent independent—density-functional shielding constants. These new reference values, in tandem
with high-accuracy coupled-cluster shielding constants, provide a benchmark for the assessment
of errors in common density-functional approximations. In particular the role of errors arising in
the diamagnetic and paramagnetic terms is investigated, with particular emphasis on the role of
current-dependence in the latter. For carbon and nitrogen the current correction is found to be,
in some cases, larger than 10 ppm. This indicates that the absence of this correction in general
purpose exchange-correlation functionals is one of the main sources of errors in shielding calcula-
tions using density functional theory. It is shown that the current correction improves the shielding
performance of many popular approximate DFT functionals.

-1 Introduction

; Nuclear-magnetic-resonance (NMR) shielding constants describe
4 how an externally applied magnetic field is modified by the elec-
s trons surrounding the nuclei. The rich information contained in
6 this response has made NMR spectroscopies a key tool in exper-
7 imental chemistry. The prediction and interpretation of NMR
s spectra is therefore an important application area of quantum
o chemistry. Moreover, the sensitivity of this experimentally acces-
10 sible shift represents a valuable test for the electronic-structure
11 methodologies of quantum chemistry. In particular, for the ap-
12 plicability of Kohn—-Sham density-functional theory (DFT), it is
13 important to improve on the poor performance > of existing
14 density-functional approximations (DFAs). From a DFT point
15 of view, these calculations also represent an important theoret-
16 ical challenge since the prediction of NMR shieldings relies on
17 the induced electron current-density dependence of the exact
1s exchange—correlation functional® or, alternatively, on its explicit
19 dependence on the magnetic field.* The development of current-
20 dependent DFAs remains an open problem.” In particular, it has
21 been observed that the inclusion of a current dependence based
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22 on the free-electron-gas model does not lead to improved NMR
23 shieldings.

24 For the purpose of analyzing approximate schemes for the cal-
25 culation of NMR shielding constants it is fruitful to write the
26 shielding tensor as consisting of three terms,

27 6 =0c%+1oh" + o;.’ara. (1)

28 The first term is the diamagnetic shielding (as defined in Section
20 2.1) which depends on the electron density p only. The second
30 term is the current-independent part of the paramagnetic shield-
31 ing (defined in Section 2.2), while the last term contains the cur-
32 rent dependence. It has long been appreciated that, with the use
ss of popular DFAs, the errors in 6912 are small, ' and most develop-
3+ ment has been focused on improving the description of the para-
ss magnetic shielding. ''='> Until recently it has been assumed that
36 67" can be neglected. © However, new theoretical and computa-
37 tional developments have allowed the importance of the current
3s dependence of DFAs to be studied in isolation and it was found
39 that these effects are not small compared with the total error of
40 the best DFAs. ' This observation constitutes an incentive to de-
41 velop a current correction to the exchange-correlation functional
42 of existing current-independent DFAs. Since the current correc-
43 tions are expected to be relatively small it is important that errors
44 in the underlying DFA are well balanced and minimized where
45 possible. The aim of this paper is to quantify the magnitude of
46 the current contribution, to analyze other sources of error (orig-
47 inating from the electron density in the diamagnetic shielding),
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4s and to suggest suitable DFAs to which further current corrections
49 can be reliably applied.

so  We here study a collection of DFAs chosen to cover the fa-
s1 miliar sequence consisting of the local-density approximation
s2 (LDA'"), generalized-gradient approximation (GGA) functionals
s3 (BLYP'/>*® and PBE "), hybrid functionals (B97“" and B3LYP "),
s+ and meta-GGA functionals (TPSS“<). We also include the KT2
ss functional, * developed specifically for NMR shielding constants.
s6 Since a comparison with experiment requires a treatment of vi-
s7 brational effects, ' we compare instead with accurate theoretical
ss shielding constants calculated at a fixed molecular geometry us-
so ing coupled-cluster theory with single, double and perturbative
60 triple excitations (CCSD(T)).

61 The diamagnetic contribution to the shielding constant can
2 be defined to depend only on the ground-state electron density.
63 Therefore, we examine the error in the density calculated using
64 different DFAs by comparison with the CCSD(T) reference density.
65 In the absence of a field the exact exchange-correlation functional
66 is purely density dependent. For such a purely density-dependent
7 functional, which neglects current dependence but yields the ex-
6s act charge density at zero field, the paramagnetic response is de-
6o termined purely by the values of the orbitals and eigenvalues of
70 the Kohn-Sham system. Using this fact we are able to calculate
71 the 6p™ term in Eq. (1) and distinguish errors originating from
72 the neglect of current dependence from those coming from the
73 use of an approximate exchange-correlation functional.

»2 Theory

75 2.1 NMR shielding constants

76 The NMR shielding tensor ok associated with nucleus K is de-
77 fined as the second-order derivative of the molecular electronic
78 energy with respect to the external magnetic field with flux den-
79 sity B and the magnetic moment Mg of that nucleus at B =0 and
so Mg =0,

d’E

~ dBdMx @

81 Ok .
B,My=0
82 In common with all second-order magnetic properties, the shield-
83 ing tensor can be decomposed into diamagnetic and paramag-
s4 Netic parts,

85 GKZG?(ia+0§ara,

3

s6 but this decomposition is not unique. Throughout this work we
87 use London atomic orbitals to ensure gauge origin independence
ss of our results. We follow the convention that the diamagnetic
so part depends only on the ground-state density; all terms describ-
90 ing some form of response to the field, including the response en-
91 coded in the London atomic orbitals or gauge-invariant atomic or-
92 bitals (GIAOs), are contained in the paramagnetic part.~* Specif-
93 ically, we define the diamagnetic part as (omitting here and else-
92 where the summation over electrons)
0> |

<o

96 where rx = r — Rk is the position vector of the electron relative
o7 that of the nucleus Rk, and rg =r — Rg is the position vector

I‘Bl‘[{ — l'ol"}é
3
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dia 1
95 O = —
k=2

4
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os of the electron relative to the gauge origin Rp. Unless other-
90 wise stated, atomic units are used in this paper. Setting the
100 gauge origin at nucleus K, the diamagnetic NMR shielding con-
101 stant becomes directly proportional to the expectation value of
102 the Coulomb interaction at the nucleus

O>. 5)

1

3 <°
104 In the present paper, the quality of the total shielding constant o
105 and its diamagnetic part O'IC{“a calculated with different DFAs will
106 be assessed by a direct comparison with accurate CCSD(T) values,
107 thereby quantifying also the error in the paramagnetic part oy .
108 We also analyze the sources of error in G}?ara and, in particular,
100 quantify the error incurred by neglecting the field dependence of
110 the exchange—correlation functional, as discussed in the following

111 subsection.

1

| .
103 G,‘?a = 7Tr0'?(la =
rK

3

112 2.2 Magnetic perturbations in current-independent DFT

113 Here we are concerned only with pure density functionals, i.e.
114 LDA, GGA, and the exact universal functional. When the cur-
115 rent dependence of the exchange—correlation energy is neglected,
116 the ground-state energy can be decomposed into familiar com-
117 ponents: the non-interacting kinetic energy 7s(p,A) with a de-
118 pendence on the vector potential A, the exchange-correlation—
119 Hartree energy Exca(p), and the interaction between the elec-
120 trons and the external scalar potential v set up by the nuclei,

121 (V,p)!

w E0A) =inH{T(p.A)+ Ean(p)+ (o) | [p(F)dr =N} (6)
123 Note that within this approximation, Ey.y here remains the stan-

124 dard “non-magnetic” exchange—correlation-Hartree energy.

We now show that, for a current independent functional of
126 the above form, the second derivative with respect to the vector
127 potential is simply the second derivative of the non-interacting
128 kinetic energy. Assuming the existence of a minimizing density
120 pgs(v,A) and that the derivatives are well defined (for a discus-
130 sion of this point in conventional DFT see Ref.<”), the DFT Euler
131 equation is given by

125

O (0. A) + Exen (p)) +v(x) = . @

op(r)

132

For closed-shell systems (which are considered here), the first
derivative of T; with respect to A vanishes since T3(p,A) is an
even function of A at A = 0. The Euler equation is therefore au-
tomatically satisfied to first order in A, implying that the density
depends on A only to second order. Setting p = py+ p»A? and ex-
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panding the ground-state energy to second order in A, we obtain

E(v,A) = T5(po,0) + Excri (Po) + (Po, V)

3] e
2

(Ts(p, A )+ Exeri(P))
tf ( 5p(r)

A(r)A(r)drdr’
(Pmo)

(P0,0)

+ v(r)) p2(r)A(r)%dr, €©))]
133 where the last term vanishes because the Euler equation is sat-
134 isfied for the reference state; since the density variations are
135 particle-number preserving for all A, the integral u [p,(r)A%(r)dr
136 vanishes. Hence, the second derivative of a closed-shell ground-
137 State energy with respect to the vector potential, at zero vector
138 potential, is simply the second derivative of the non-interacting
130 kinetic energy. Note that the exchange—correlation kernel contri-
140 butions, arising from the second derivative of Eyy., appear only
141 at higher orders in A. This well-known result is usually stated for
122 LDA and GGA functionals in terms of the “magnetic Hessian”.
143 The present proof relies only on the observation that T; is even in
142 Aat A=0.

155 For the shielding tensor, we then insert A = Ay + Ag, where
146 Ag and Ak are the vector potentials associated with B and M,
147 respectively, to obtain the usual formula in terms of Kohn-Sham
148 orbitals and eigenvalues. Neglecting the contribution due to Lon-
140 don orbitals the expression is

NS (ila) (allri li) +hec.

“LL €& ’

1 a

9

para
150 (o) p =
151 where h.c. is the hermitian conjugate and 1 is the angular momen-
152 tum operator.

153 It should be noted that by employing Eq. (8) the shielding ten-
154 sor (or indeed other magnetic properties) can be computed for an
155 arbitrary input density without knowledge of the exact exchange-
156 correlation (XC) functional. All that is required are the second
157 derivatives of Ty, which can be obtained from the Kohn-Sham
158 wave function corresponding to p. This wave function can be ob-
150 tained by various approaches, for example the Zhao-Morrison—
160 Parr~’/ method employed by Wilson and Tozer *~ for the calcula-
161 tion of shieldings. We instead use the method outlined in Section

162 3.

s 3 Computational Details

164 We have evaluated total and diamagnetic NMR shielding con-
165 stants for a set of small atoms and molecules, at the CCSD(T)
166 equilibrium geometries. In the next section, we compare wave-
167 function quantities from Hartree-Fock (HF) theory, second-order
168 Mgller—Plesset (MP2) perturbation theory, and CCSD(T) theory
160 with those from a representative set of standard DFAs. To quan-
170 tify the error arising from the neglect of the current dependence
171 in the DFA, we also present Kohn-Sham shielding constants ob-
172 tained from accurate CCSD(T) densities using an established in-
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173 version scheme.

The coupled-cluster calculations of shielding constants were
175 performed using CFOUR. " A development version of DALTON °*
176 was used for all other calculations, except those involving the
177 TPSS functional. The latter were evaluated with the LONDON
178 quantum-chemistry software. “°~

179 Meta-GGAs, such as TPSS, depend on the Kohn-Sham kinetic
180 energy density 7o(r) = %Z?CC [Vé;(r)||>. In magnetic fields this
181 quantity must be generalized in a gauge-invariant fashion. Max-
182 imoff and Scuseria“” suggested the use of the physical kinetic
183 energy density

174

. 1
TMSZTQ+JP~A+EPA2. (10)

184

185 This quantity is gauge invariant but introduces an explicit depen-
186 dence of the XC energy on the vector potential A. Another prob-
17 lem is that the so-called “isoorbital indicator” used in the TPSS
188 functional can take unphysical values in magnetic fields.”® We
180 denote the TPSS functional with this choice of T by ¢TPSS(ys).
190 Another option is to use the gauge-invariant kinetic energy pro-

101 posed by Dobson, °/ and used by Becke*® and Tao,
j2
192 D =T —ﬁ. (11)

103 This kinetic energy density depends only on the paramagnetic
104 current, and not on the external magnetic field.
195 to physical isoorbital indicator values. This functional, here de-
196 noted ¢cTPSS(1p), is equivalent to that introduced by Bates and
197 Furche for the calculation of excitation energies in Ref. " and its
198 implementation and application to magnetic properties will be
199 discussed in detail elsewhere.”" For reference we also compute
200 shielding values using the gauge dependent 7, with the gauge
201 origin placed on the molecular center of mass. We refer to this
202 functional as TPSS(7y). The shielding constants with the TPSS
203 and cTPSS functionals presented in this work were obtained by a
204 numerical differentiation, using finite magnetic fields — for further
205 details see Ref.®.

We used the augmented correlation-consistent basis sets by
207 Dunning and coworkers, known to be suitable for the computa-
208 tion of magnetic properties.”* We investigated basis-set conver-
200 gence and found the aug-cc-pVQZ basis**>** to be appropriate
210 for the systems studied in this work. Cartesian Gaussian basis
»11 sets have been used throughout all calculations.

To ensure gauge-origin independence of the total shieldings,
213 we employ London orbitals. “>>*® We note that the DALTON pro-
214 gram uses a definition for the diamagnetic part of the NMR shield-
215 ing constant that includes a contribution from the London atomic
216 orbitals. We here use the definition in Eq. (4), where we ob-
217 tain the corresponding values using separate calculations without
218 London orbitals.

219 In order to isolate the effect of the current dependent exchange-
220 correlation energy on the shieldings we calculate the non-
221 interacting Kohn—-Sham potential, orbitals and orbital energies
222 corresponding to a specific electron density using the procedure
223 of Wu and Yang. “° The paramagnetic shielding constants are then
224 obtained using Eq. (9). These calculations were carried out using
225 a locally modified version of the DALTON program.~~ Total shield-

It also leads

206

212

Journal Name, [year], [vol.], 1-11 |3



226 ing constants calculated using this method will be called ogg in
227 the following.

»s 4 Results and discussion

220 In this section, we analyze the errors coming from the diamag-
230 netic and the paramagnetic parts of the NMR shieldings to gain
231 insight into the limitations of common DFAs and the role of cur-
232 rent dependence. We study a set of small systems (He, Ne, HF,
233 CO, Np, H,O, NH3, and CHy) for which we computed accurate
232 CCSD(T) reference values, and also obtained the corresponding
235 accurate Kohn—Sham non-interacting wave functions.

236 4.1 Current-dependence of DFT shielding constants
237 We begin by assessing the importance of Gjpara relative to the dia-
23s magnetic and current-independent contributions to the shielding
230 constant in Eq. (1) for the molecules in the test set, see Table 1.
240 In this table, o is the total shielding constant calculated using
241 CCSD(T) theory and the diamagnetic part 6412 is the expecta-
242 tion value in Eq. (4) calculated from the CCSD(T) density matrix.
243 To obtain the paramagnetic density and current contributions,
242 we have first calculated the total current free shielding constant
245 Ogg using the Wu-Yang scheme with the CCSD(T) density as de-
246 scribed in Section 3 and then used the relations 65" = ogg — 641
247 and Gjpara =0 — Ogs.

248 From Table 1, we first note that the current contribution is
249 typically one to two orders of magnitude smaller than the dia-
250 and paramagnetic contributions to the shielding constants. How-
251 ever, since the dia- and paramagnetic contributions are always
252 of opposite sign and may nearly cancel, the current contribution
253 to the shielding cannot always be neglected and sometimes be-
254 comes important. For example, in o¢ in CO, the total shielding is
255 5.4 ppm with a current contribution of 11.0 ppm, twice as large
256 as the total shielding; in this particular case, the total dia- and
257 paramagnetic contributions are 327.0 and —332.6 ppm. In Ny, the
258 situation is similar but less dramatic, the total shielding constant
250 being —57.4 ppm with a large current contribution of 13.3 ppm.
260 Clearly, the current contribution to the shielding constants cannot
261 in general be neglected, at least for heavy atoms: for the non-
262 hydrogen atoms in Table 1, the current contribution ranges from
263 1.7 to 13.3 ppm. For proton shieldings, the current contribution
264 is negligible, contributing in all cases less than 1% to the total
265 shielding constant. Although our estimated error, due to approx-
266 imation in the Wu-Yang procedure, on the current contribution
267 lies below 0.05 ppm for the H atom, we cannot be completely
26s confident that the negative sign of the current contribution for
260 this atom is not a basis set error. For the other atoms the current
270 contribution is clearly positive.

»n The main source of error in the calculated 6™ values arise
272 from the orbital and potential basis sets, as well as optimization
273 thresholds, employed in the Wu-Yang calculations. By studying
274 the convergence of the results in terms of the potential and orbital
275 basis sets (we use the same family of aug-cc-pVXZ sets for both)
276 when going between the QZ and 5Z sets we can estimate the
277 errors in Table 1, which are listed in the last column of the same
278 table. The by far largest error, most likely smaller than 1.5 ppm,
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279 is in the current contribution for N,, but this and other errors do
280 not change any conclusion or has any significant impact on the
281 statistic in the following sections.

232 Finally, we note that the current contribution is positive for all
283 heavy atoms in Table 1, increasing the shielding constant and re-
284 ducing the overall paramagnetic contribution. For the protons,
285 by contrast, the current contribution is negative in all cases. We
286 cannot rule out that the very small negative current contribution
27 for proton is a numerical artifact; however, this seems unlikely in
238 view of the high degree of convergence for the proton shielding
280 of the HF molecule. It appears, therefore, that the current contri-
200 bution to shielding constants can be both negative and positive.

201 4.2 Diamagnetic shielding constants and the role of the elec-

202 tron density

203 Since the current contribution to the shieldings in the previous
204 subsection was shown to sometimes be as large as 10 ppm it
20s would be a worthwhile effort to develop an approximate DFT
206 expression for this correction. For this reason it is important to
297 investigate the sources of errors in the diamagnetic and para-
208 magnetic contributions for existing DFAs. For an evaluation of
299 the diamagnetic shielding constants, we compare calculated DFA,
300 HF, and MP2 diamagnetic contributions to the shielding constants
301 with the corresponding CCSD(T) values. In Table 2, we report the
s02 mean and standard deviation of the error in ¢4 for the different
s03 models. Although only a limited number of systems are consid-
s04 ered the methods can be qualitatively ranked, in order from small-
305 est to largest absolute errors, as CCSD, MP2 < PBE, B3LYP, B97,
306 BLYP, TPSS, HF < LDA < KT2. Note that both forms of cTPSS
307 give the same result as TPSS, since the diamagnetic shielding is
308 defined as not including any current effects. The most remarkable
300 observation is that the KT2 functional, which has been optimized
310 for improving total NMR shielding constants, gives an error in the
s diamagnetic shielding at least an order of magnitude larger than
s12 all other methods. We note that the hybrid functionals B3LYP
313 and B97 and the meta-GGA functional TPSS are not significantly
314 better than the best GGA functionals, but most DFAs are clearly
315 outperformed by MP2 theory. The exception is PBE, which gives
316 very high quality diamagnetic shieldings for our test set.

317 Although the diamagnetic part of the shielding constant is the
318 focus of this section, it is just one measure of a “good den-
s19 sity”. Exchange—correlation functionals are typically optimized
s20 for ground-state energies, which include the expectation value
s21 (r~1). We therefore expect these functionals to give good dia-
322 magnetic shieldings, but it is nevertheless worthwhile to investi-
323 gate the density error in more detail. In the paramagnetic part
324 of the shielding [Eq. (9)] the presence of the r—3 operator is ex-
325 pected to give larger weights to density errors near the nucleus,
326 compared to the diamagnetic term.

327 We therefore investigate the electron density errors of the dif-
328 ferent methods in a more general sense. In Figure 2 the density
320 errors Ap(r), rAp(r), r*Ap(r) and r*Ap(r) are plotted as functions
ss0 of r (where Ap = p — pccsp(ry) for the helium and neon atoms.
331 The first of these shows the local density error at different loca-
332 tions in the atom, and integrates to the expectation value (r~2).

This journal is © The Royal Society of Chemistry [year]



Table 1 The diamagnetic, current independent paramagnetic and current dependent paramagnetic parts of the benchmark shielding constants in

ppm, calculated at the CCSD(T) level, together with estimates of the absolute error due to the Wu-Yang procedure.

Molecule c = codia 4 oy 4 Gjp ara Err
He 59.9 59.9 0 0 0
Ne 552.0 552.0 0 0 0
HF(H) 28.9 108.6 —79.5 —-0.2 0.05
CH4(H) 31.3 87.7 -56.3 —-0.1 0.05
NH;3 (H) 31.5 95.5 —63.9 -0.1 0.05
H,O(H) 30.8 102.4 -71.4 —-0.2 0.05
CH4(C) 199.4 297.0 —104.9 7.3 0.05
CO(Q) 5.4 327.0 —332.6 11.0 0.05
NH;3(N) 270.7 354.5 —89.4 5.6 0.5
N, (N) -57.4 384.7 —455.4 13.3 1.5
H,O0(0) 337.8 416.2 —-82.0 3.6 0.2
CO(0O) -51.7 444.8 —501.0 4.5 0.5
HF(F) 420.8 482.1 —63.0 1.7 0.5

Table 2 Mean absolute density error I (Eq. 12), mean and standard deviation (S) of the shielding error (in ppm) Acdi* = g2 — gdia 7 (left),
Ac = 0 — occsp(r) (middle) and Aoks = o — oks (right). Here oks is the current independent DFT shielding computed from the CCSD(T) densities.
This method is also labeled KS(CCSD(T)) in the table. The I value for TPSS and cTPSS was omitted for technical reasons.

Method I Acdia  S(Agdia) Ac  S(Ao) Aogs  S(Aoks)
LDA 0.14 —~1.01 0.53 —9.60 14.61 —6.02 11.50
BLYP 0.13 0.19 0.15 -9.62 11.36 —6.04 7.71
PBE 0.08 0.03 0.11 -8.58 10.91 —5.00 7.61
KT2 0.13 2.51 1.66 -2.00 4.14 1.58 5.16
B97 0.05 0.15 0.05 -9.18 11.79 —5.60 8.39

B3LYP 0.07 0.11 0.09 —10.36 13.32 —6.78 9.65
TPSS(1) - 0.22 0.09 —4.44  4.68 —-0.86 2.95
cTPSS(1p) - 0.22 0.09 -7.15  8.29 -3.57 4.92
cTPSS(Tys) - 0.22 0.09 -6.57  7.20 -2.99 3.87
HF 0.14 —-0.15 034 -11.59 17.85
MP2 0.03 —-0.01 0.09 3.80 5.10
CCSD 0.02 0.01 0.04 -1.28 203
KS(CCSD(T)) 0 0 0 -3.57  4.59

This journal is © The Royal Society of Chemistry [year]
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333 The second quantity integrates to the error in the expectation
ssa value (r~!), while the third integrates to the error in the num-
335 ber of electrons (which is zero), and the fourth integrates to the
336 error in the atomic quadrupole moment.

Considering the maximum error at different r in the two first
33s rows of Figure 2, rather than the average error appearing in the
330 diamagnetic shielding integral, we obtain a ranking CCSD < MP2
s40 < TPSS, HF < PBE, B3LYP, B97, BLYP < KT2 < LDA. The CCSD
341 error is not plotted, to reduce visual clutter, but this error is in
342 all cases smaller than that of all other methods. For simplicity
343 the GGA functionals are not distinguishable in the figure, but the
342 overall trends and spread are clearly visible. In particular, the
345 density error near the nucleus is very large for all DFAs. However,
346 this error is cancelled by opposite errors further away from the
s47 nucleus, leading overall to good accuracy of the (r~!) expectation
348 value relevant for the diamagnetic shielding.

337

399 From the different weightings shown in Figure 2, we conclude
sso that a similar trend holds for the quadrupole moments. How-
351 ever, the advantage of HF is now less pronounced and the KT2 er-
352 TOT less severe. The TPSS functional loses its advantage over the
353 other DFAs in the regions far away from the nucleus, but these are
354 less relevant for shieldings. We note that a radial density analysis
355 has recently been utilized to understand density errors associated
. Our density
357 study differs slightly in the choices of functionals, and importantly
sss includes data for the TPSS meta-GGA functional. This functional
ss0 is found to be the best performing DFA in our benchmark. While
360 it has the same error trends (i.e. too large density at the nucleus
361 and similar density error oscillations away from the nucleus) as
se2 the GGA functionals it has the smallest absolute errors and more
363 mild oscillations. Since the HF density errors often are of oppo-
364 Site sign to the DFA errors one might think that hybrid functionals
36s would be good overall performers. This is not the case for the
366 B3LYP functional, which gives results in line with the pure GGA
367 functionals.

3s6 with the correlation treatment in DFAs in Refs. />

ses  Figure 1 shows the error Ap along the bond axis for the N,
360 and H,O molecules. In both cases, it is clear that there exist re-
370 gions near the nuclei, up to the inner-valence region, where the
371 Kohn-Sham calculations yield densities considerably worse than
372 HF. However, as can be seen from the mean of the integral of the
373 absolute density errors,

1= [ Ip(x) - pecspem r)ldr. (12)
375 presented in Table 2, the global density error is somewhat smaller
376 for the approximate Kohn-Sham calculations. BLYP has a similar
377 absolute error I as HF, but since the errors at a particular point
378 in space often have opposite sign (see Fig. 2) it is not surprising
379 that the hybrid functional B3LYP reduces the value of [ signifi-
ss0 cantly. However, the pure GGA functionals PBE and B97 both
ss1 perform similar to, or better than, B3LYP by the same measure.
3s2 However, the value of / seems to be only weakly correlated with
ss3 the quality of the diamagnetic shielding. The KT2 functional has
384 a large diamagnetic error but the value of 7 is not larger than for
3ss BLYP. This emphasizes the physical fact that it is the density near
g6 each atomic nucleus which is important for the shielding of that
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3s7 particular nucleus.

The reason that the DFAs perform better than the HF method
380 according to these measures is that the errors, while large, are lo-
300 calized to small regions near the nuclei. Furthermore, the density
391 errors oscillate about zero as we move away from the nucleus,
392 as seen in Figure 1. Around the nuclei all DFA densities show
393 @ much larger error than the HF method; however, as we move
394 away from the nuclei, the DFA densities improve relative to the
395 HF density. It should also be pointed out that the absolute value
396 of the DFA error is about two orders of magnitude larger in the
397 core region than in the valence region. In other words, the HF
a8 density has, relative to the CCSD(T) density, a more uniform er-
390 ro1, whereas the DFAs perform better in the valence region but
400 are much worse in the core region.

388

401 To summarize this section we note that for the worst perform-
402 ing functionals for the diamagnetic shieldings (LDA and KT2) the
403 plot of the density errors clearly show the origin of their poor
404 diamagnetic performance. However, investigating the PBE densi-
405 ties, which give the best diamagnetic shieldings of all the tested
406 DFAs, reveals that this good performance is a result of error can-
407 cellation. The TPSS functional, on the other hand, has smaller
40s maximum errors and its gauge-independent cTPSS variants may
400 be a more promising functional for shieldings, considering the
410 (here unquantified) effect of the core density on the paramag-
a1 netic shielding tensor.

412 Finally we note that, for the considered molecules, MP2 gives
413 densities that are of much higher quality than all considered DFAs,
412 but as can be seen in Table 2 such high quality densities are
415 not needed for high (i.e. sub-ppm) accuracy in the diamagnetic
416 shielding constants.

417 4.3 Total NMR shielding constants

418 Table 2 contains the mean and standard deviation of the error in
419 the NMR shielding constant for the different methods. We first
420 consider the error with respect to the CCSD(T) shieldings (Ao in
421 columns five and six), which include current contributions. One
422 should note that the CO and N, molecules are the most difficult
423 cases for all the methods. This means that the average error
424 is strongly influenced by these two molecules, emphasizing the
425 molecules with the largest errors.

426  Regarding the error in the total shielding, we obtain a ranking
427 CCSD < KT2, MP2 < TPSS(1p), cTPSS(nvs), cTPSS(1p) < PBE,
428 B97, BLYP < B3LYP, LDA < HF. The KT2 exchange—correlation
420 functional clearly benefits from having been constructed by fitting
430 to experimental shielding data, performing well for total shielding
431 constants in spite of its poor performance for the diamagnetic
432 part. The KT2 errors have roughly equal contributions from the
433 diamagnetic and paramagnetic parts, whereas the error in the
434 paramagnetic term dominates for all other DFAs, among which
435 TPSS(7p) is a clear winner.

436 Surprisingly, the current including, gauge-independent variants
437 of cTPSS both perform slightly worse than TPSS(7p), although
438 they still give better values than the remaining DFAs. Since 7, de-
430 pends on the choice of gauge the TPSS(1) functional cannot be
410 recommended for general use, but the results seem relatively in-
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Fig. 1 The density error Ap = p — pccspr) for N2 and H, O is plotted along the molecular axis and O-H bond respectively. Line types are the same as
in Fig. 2

aq1 sensitive to small shifts in gauge origin. Moving the gauge origin 477 nificantly. The standard deviations decrease by about 2 ppm, and
442 from the center of mass to the shielding nucleus in N, resulted in 78 the average error decreases in magnitude by about 3-4 ppm. The
443 a shielding shift of 0.7 ppm for TPPS(1). 479 exception is KT2, which has a nearly unchanged average error but
44 The last row of the table shows the performance of the 4s0 an increase in the standard deviation by about 1 ppm.
ass KS(CCSD(T)) functional. This is in fact the current-independent .  Using the current independent reference values the ranking of
as6 shielding ogs computed using the CCSD(T) density. This func- .5 the DFAs changes. The best functional is now TPSS(1), followed
447 tional is a close approximation to the shielding that would be .s; by cTPSS, while the best GGA functional is PBE. It is noteworthy
a3 obtained from an exact, but current independent, DFT shield- .s, that, again, the gauge-dependent TPSS(1,) performs better than
a0 ing calculation. One sees that the error is surprisingly slightly .ss ¢cTPSS. The reasons for that need to be explored in future work.
as0 larger than the error of the KT2 functional. The reason that KT2 s KT2 is now the second best functional overall, but in contrast to
ss1 stands out from all other DFAs is that it has been directly fitted .s; the other functionals the current correction actually worsens its
a2 to experimental shielding data. It is evident from the diamag- .ss performance.
+s3 netic performance and density error of KT2 that this fitting pro- ., The ¢TPSS functional is clearly an interesting case since it
454 cedure has lead to improved total shielding constants, but has ,, already includes a current correction and so direct comparison
sss introduced other sources of errors in the functional. An improved ,, with the current independent benchmark values is not appropri-
sss functional, KT3, ” which remedies some of these errors, was later ., ate. The current correction in ¢TPSS(1p), arises naturally in the
ss7 introduced. However, KT3 does not give improved shielding con- ., Taylor expansion of the spherically averaged exchange hole as
sss stants, and the authors remark that it gives rather poor electronic ., shown by Dobson. >’ Unfortunately, since the current dependence
aso energies. Since these energies contain the same expectation value .. in ¢TPSS cannot be easily disentangled from the requirement for
a0 (r~1) as the diamagnetic shielding constants it is likely that KT3 496 gauge-invariance of Exc, it is not easy to quantify the extent to
se1 suffers from the same diamagnetic errors as KT2. o7 which the treatment of current effects is complete, nor how these
498 corrections interact with errors already present in the underly-
«2 4.4 Importance of current contributions to the exchange- a4 ing exchange-correlation functional form. Further investigation
463 correlation energy so0 of these points, including the worse performance of cTPSS com-
464 The method rankings in the last subsection, including the ranking 5ot pared to TPSS, is left to further work. Nonetheless, it is notewor-
465 of the MP2 method, are very similar to those obtained for car- so> thy that cTPSS performs better than all DFAs except KT2 when
466 bon and hydrogen by Flaig et al.” The DFA benchmark we have s compared with CCSD(T) data. The quality of the current cor-
s just discussed is however flawed for our purpose, because current 504 rected results can be compared to MP2, although it tends to un-
s6s independent DFAs are compared to reference numbers which in- 50 derestimate shielding constants by a similar extent to which MP2
s clude current effects. If a current correction is developed it should s0s Overestimates.
470 be applied to a base functional that gets as close as possible to
w1 the current independent shielding ogs = %42 + 65™™. Therefore
472 we have re-evaluated the performance of the DFAs benchmarked sos By directly calculating the exchange correlation current contribu-
473 in the previous section against the oxs numbers computed us- soo tion to NMR shielding constants (using CCSD(T), together with
474 ing CCSD(T) electron densities. The results are found in the two s the Wu-Yang method of obtaining the corresponding Kohn—-Sham
475 rightmost columns of Table 2. The most striking feature of these si1 system) we have shown that the current contribution can in some
476 columns is that the performance of all DFAs, but one, improve sig- si2 cases amount to more than 10 ppm for carbon and nitrogen

s» 5 Conclusions
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s13 atoms. This means that the missing current contribution may be
s14 one of the leading causes of errors in shielding calculations using
s15 approximate DFT functionals. This also suggests that current in-
s16 dependent functionals should be judged based on their ability to
s17 reproduce accurate ab initio numbers with the current contribu-
s18 tion subtracted. As shown in Section 4.4 this reduces the average
s19 errors in the functionals by several ppm. The exception is the em-
s20 pirical KT2 functional, which was fitted to experimental shielding
s21 data. As such the functional already implicitly includes an empir-
s22 ical current correction, and it fits better to the current including
s23 benchmark set than the current free one.

s« In order to understand the large errors made by KT2 in the
s2s diamagnetic part of the shielding constant we have studied the
s26 ground state electron density for helium, neon, CO and N;. The
s27 origin of the errors in KT2 diamagnetic shieldings is clearly seen
s28 in the density, which has a very large error within 0.2 Bohr of the
s20 nucleus. The standard GGA functionals, and PBE in particular,
s30 give excellent diamagnetic shieldings, but still have large density
s31 error oscillations near the nucleus. Here TPSS stands out as the
s32 exchange-correlation functional with the most balanced density
s33 error. The MP2 methods gives densities with much smaller max-
s3¢ imum error than any density functional approximation, but for
s35 our test set of molecules this high accuracy is not needed for the
s36 purpose of NMR shieldings.

s37  For our (fairly small) benchmark set the current corrected
s3s CTPSS functional provides results of similar quality to MP2. These
s30 results suggest that current dependent meta-GGA functionals
se0 such as ¢TPSS may provide a good base for the further devel-
sa1 opment of DFAs for use in CDFT. The extent to which remain-
s42 ing errors in these functionals can be attributed to the incomplete
se3 treatment of current effects or errors in the underlying exchange—
s44 correlation functional form will be investigated in future work. To
s4s make further progress it may be necessary to address both aspects
s46 simultaneously.
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