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We start by considering the sine-Gordon partial differential equation (pde) with an arbi-

trary perturbation. Using the method of Kuzmak-Luke, we investigate those conditions

the perturbation must satisfy in order for a breather solution to be a valid leading-order

asymptotic approximation to the perturbed problem. We analyse the cases of both sta-

tionary and moving breathers. As examples, we consider perturbing terms which include

typical linear damping, periodic sinusoidal driving, and dispersion caused by higher order

spatial derivatives. The motivation for this study is that the mathematical modelling of

physical systems, often leads to the discrete sine-Gordon system of odes which are then

approximated in the long wavelength limit by the continuous sine-Gordon pde. Such limits

typically produce fourth-order spatial derivatives as higher order correction terms. The

new results show that the stationary breather solution is a consistent solution of both the

quasi-continuum SG equation and the forced/damped SG system. However, the moving

breather is only a consistent solution of the quasi-continuum SG equation and not the

damped SG system.

1 Introduction

The approximation of discrete equations by continuum versions has a long history. An

important question in the use of continuum approximations, is whether the exact solution

of an approximate equation is a good approximation to the solution of the original discrete

problem. For example, the approximating pde may have an exact travelling wave or

breather solution; but this does not necessarily mean that the original discrete system

has a travelling wave or breather. It is often assumed that while waves move through

continuous systems, they do not persist in spatially discrete systems due to a Peierls-

Nabarro barrier.

Common applications of the discrete Klein-Gordon system include mathematical mod-

els of Josephson junctions, for example, in the work of Golubov et al [15] and Malomed

[21], and models of DNA [11, 23, 28], as reviewed by Yakushevich [37]. Both Englander

et al. [11] and Salerno [28] approximated the discrete sine-Gordon equation (DSG)

d2un

dt2
= un+1 − 2un + un−1 − Γ2 sinun, (1.1)
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by its continuous counterpart, which is φtt = φxx−sinφ, the sine-Gordon pde (SG). This

approximation process involves replacing the discrete variable n by a continuous variable,

x, and the second difference φn+1 − 2φn + φn−1 by a second derivative term, φxx. By

rescaling x and t, all parameters can be removed from the sine-Gordon equation. This

pde is integrable, and has travelling wave solutions, as well as stationary and moving

breather solutions. However, (1.1) is not integrable for any value of Γ. Whilst there is

an integrable version of the discrete sine-Gordon equation, it arises from the ’light-cone’

formulation of ΦXT = sinΦ, giving d
dt

(Φn+1 − Φn) = Γ sin 1
2 (Φn+1 +Φn), as derived by

Orfandis [22] and others.

The effects of discreteness in systems such as (1.1) have been studied by a number of

authors, notably those interested in the dynamical systems theory perspective. Whilst

it is possible for motion to occur in discrete systems, see, for example, the proof of the

existence of travelling waves in the discrete and nonintegrable FPU system [13], this

behaviour is far from commonplace. Peyrard and Kruskal studied the motion of a kink,

and its slowing due to the discreteness of the DSG lattice [24]. More recently, Boesch

and Peyrard [3] have investigated the effects of discreteness on breathers, and the more

general localisation of energy has been investigated by Dauxois and Peyrard [7] and Flach

and Willis [12]. Thus the DSG equation (1.1) has qualitatively different properties to that

of the SG pde.

The use of quasi-continuum techniques to study the dynamics of nonlinear lattices was

initiated by Collins [5] and Collins and Rice [6], who considered the Fermi-Pasta-Ulam

system, which models a chain of atoms connected by nonlinear interaction potential. This

system is governed by the equation of motion d2φn/dt
2 = V ′(φn+1)−2V ′(φn)+V ′(φn−1).

Small amplitude waves which vary slowly with n can, subject to certain conditions on

V (φ), be approximated by partial differential equations (pdes). The simplest such equa-

tion is the fourth-order Boussinesq equation φtt = φxx+(φp)xx+φxxxx, where continuous

x replaces the discrete n. However, the solitary wave solutions of this become very nar-

row at larger speeds, which is unphysical for a lattice approximation. The improved

equations suggested by Collins [5], Collins and Rice [6], Rosenau [25, 26], have the form

φtt = φxx + (φp)xx + φxxtt.

In [35] a number of continuum versions of the discrete sine-Gordon equation (1.1) are

derived, these include higher order terms from the standard Taylor series expansion of

the second difference term which, when rescaled, yields the standard continuum limit

utt = uxx − sinu+ εuxxxx +O(ε2), (1.2)

where ε ≪ 1. However, there are also expansions which rely on ‘improved’ approximating

techniques pdes, [25, 26, 32, 33] leading to

utt = uxx − sinu+ ε
(
uxxtt + uxx cosu− u2

x sinu
)
+O(ε2), (1.3)

utt = uxx − sinu+ ε
(
3uxxxx + 2uxxtt + 2uxx cosu− 2u2

x sinu
)
+O(ε3). (1.4)

Thus our aim is to investigate the properties of pde approximations such as (1.2) more

closely, to see if they reflect the properties of the original system (1.1) better than the

simple SG pde.

In [33, 34] a combination of the standard continuum limit and variational methods

were used to derive approximations of breather modes in the perturbed sine-Gordon
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equation. These perturbations led to changes in the frequency-amplitude and width-

amplitude relationships for breathers. In [35] a classic small amplitude multiple-scales

expansion was performed on the continuum formulation, the standard continuum limit

equation and on the Padé approximations above. At leading order all equations have the

same solution, but at higher-order, there are subtle differences between the continuum

formulation and the continuum approximations. However, we would expect these subtle

differences to become more significant were larger amplitude solutions to be considered.

The complementary problem of approximating a system which is continuous in both

space and time by one with discrete space and continuous time has also received at-

tention. The approximation of continuous systems by discrete counterparts has been

investigated by Kevrekedis [17] for a variety of systems, by considering carefully how to

discretise each nonlinearity. The outcome of this is that the Peierls-Nabarrow potential

can be removed, by ensuring that a quantity akin to momentum is conserved. Kevrekedis

et al. [18] have noted that if one approximates a continuous Klein-Gordon equation by

a the expected discretisation, then the discrete momentum is not conserved. Hence they

propose adding a perturbation term to the discrete system which ensures conservation

of momentum. However, this is at the expense of the energy no longer being constant.

Dmitriev et al. [9] have pointed out that for the Klein-Gordon system, the additional

terms required to conserve momentum, destroy the conservation of energy cause and

permit accelerating waves to occur. In addition, Cisneros-Ake [4] has used variational

approximations to model the motion of dislocations in lattices using both spatially dis-

crete and continuous descriptions. He finds the shape of the kink solutions to be similar,

but significant differences in the shape of the dispersion relation.

Perturbation theory based on the inverse scattering transform has been previously

applied to the moving breather (see, for example, [16]). This technique differs from the

applied mathematics literature on oscillatory waves. Firstly, approximate breathers are

sought in a restricted family of solutions which lack the long length scale. Secondly, local

wave number and frequency are not introduced and conservation of waves does not form

part of the analysis [36]. The results of this inverse scattering analysis will be compared

with our asymptotic analysis of the moving breather which is consistent with the applied

mathematics literature on oscillatory waves.

Herein, we use the method of Kuzmak-Luke [19, 20] to analyse the perturbed sine-

Gordon equation for large-amplitude stationary and moving breathers. The stationary

breather is a nonlinear oscillator with spatial dependence, the only previous analysis of

this type is for the damped oscillations of an incompressible viscous drop [31]. The moving

breather corresponds to a wave with two short scales in which the local frequency and

local wave number are correlated. Our analysis of this particular wave is the first of its

type; nevertheless, it has several features in common with the single-phased Klein-Gordon

wave studied in [30].

Breathers have been shown not to persist for the perturbed sine-Gordon equation: they

very slowly radiate their energy due to exponentially small terms (see [8, 14, 29]). Our

approximate analysis of stationary and moving breathers takes place on a time scale of

order 1/ǫ which is much shorter than the extremely slow decay due to radiation, where ǫ is

the small parameter. Exponentially small terms are irrelevant on an order 1/ǫ time scale.

Furthermore, numerical simulations have shown that, over long time scales, breathers of
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the perturbed sine-Gordon equation may also blow up or split into a kink-antikink pair

(see [1, 2] and references therein). The following asymptotic analysis will only be valid

when breathers are stable solutions.

In the next section, the asymptotic analysis of the stationary breather is performed

for an arbitrary perturbation. The perturbations to the continuous sine-Gordon system

in the continuum versions of the discrete sine-Gordon equation are shown to be non-

dissipative and the effects of small-amplitude damping in a discrete lattice such as DNA

are investigated. Section 3 describes the more challenging asymptotic analysis of the

moving breather. The perturbations in the continuum versions of the discrete sine-Gordon

equation are also shown to be non-dissipative in this case. However, the moving breather

is found to be incompatible with damping in contrast to the stationary breather. Finally,

in Section 4 we discuss the results, and compare them with the results of others’ work.

2 Stationary breather

We consider perturbed sine-Gordon equations of the form

∂2u

∂t2
− ∂2u

∂x2
+ sin(u) = ǫF

(
x, t, u,

∂u

∂x
,
∂u

∂t
, . . .

)
, (2.1)

with the boundary conditions that

u decays to zero exponentially as x → ±∞, (2.2)

in which 0 < ǫ ≪ 1 and F is an arbitrary perturbation function. Furthermore we assume

that the boundary value problem (2.1)-(2.2) with ǫ = 0 has time periodic solutions.

2.1 The leading-order solution

For ǫ ≪ 1, the frequency of the stationary breather is approximately constant when

t = O(1). However, over a time scale of t = O(1/ǫ), the variation of the frequency is an

order one effect. In order to capture this effect over the 1/ǫ time scale, we adopt a fast

time scale t+ and a slow time scale t̃ with

dt+

dt
= ω(t̃), t̃ = ǫt,

where ω(t̃) is the frequency of oscillation. The main idea behind Kuzmak’s approach is

that the leading order solution, u0 is periodic in t+, with period precisely 2π, so that if

the perturbation F causes the frequency of oscillation to change this is accounted for by

changing the frequency ω(t̃) and not by altering u0. We introduce expansions of the form

u ∼ u0(t
+, x, t̃) + ǫu1(t

+, x, t̃), F ∼ F0(t
+, x, t̃) + ǫF1(t

+, x, t̃),

as ǫ → 0. The leading-order problem is given by

ω2 ∂
2u0

∂t+ 2
− ∂2u0

∂x2
+ sin(u0) = 0, (2.3)

with the boundary condition

u0 decays to zero exponentially as x → ±∞, (2.4)
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and the periodicity condition

u0(t
+ +Ψ, x, t̃) = u0(t

+ +Ψ− 2π, x, t̃), (2.5)

where Ψ(t̃) is the phase shift. This problem is readily integrated to yield the stationary

breather solution

u0 = 4 arctan

(
(1 − ω2)1/2 cos(t+ +Ψ)

ω cosh((1− ω2)1/2(x+ Λ))

)
. (2.6)

The slowly varying phase shift Ψ(t̃) and the constant Λ should be incorporated into (2.6),

Λ corresponding to the arbitrariness of the origin of x in (2.3)-(2.5). We note that u0 is

even about t+ +Ψ = nπ and about x+ Λ = 0, where n is an integer. The former parity

condition corresponds to

u0(t
+ +Ψ, x+ Λ, t̃) = u0(2π − (t+ +Ψ), x+ Λ, t̃)

in combination with the periodicity condition (2.5), whereas the latter parity condition

corresponds to

u0(t
+ +Ψ, x+ Λ, t̃) = u0(t

+ +Ψ,−(x+ Λ), t̃).

The amplitude envelope, which in this problem is only governed by the frequency of

oscillation, is of interest in the subsequent analysis.

2.2 The first correction

At next order we have

ω2 ∂
2u1

∂t+ 2
− ∂2u1

∂x2
+ cos(u0)u1 = F0 − 2ω

∂2u0

∂t̃∂t+
− dω

dt̃

∂u0

∂t+
, (2.7)

with the boundary condition

u1 decays to zero exponentially as x → ±∞, (2.8)

and the periodicity condition

u1(t
+ +Ψ, x, t̃) = u1(t

+ +Ψ− 2π, x, t̃), (2.9)

following the equations (2.4)-(2.5). The Fredholm alternative is now applied to this linear

problem (2.7)-(2.9). We define

〈 . 〉 =
∫ 2π−Ψ

t+=−Ψ

∫
∞

x=−∞

. dx dt+.

A function v in the null space of the adjoint problem satisfies

ω2 ∂2v

∂t+ 2
− ∂2v

∂x2
+ cos(u0)v = 0, (2.10)

subject to the boundary condition

v → 0 as x → ±∞, (2.11)

and the periodicity condition

v(t+ +Ψ, x, t̃) = v(t+ +Ψ− 2π, x, t̃). (2.12)
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Our linear problem for the first correction (2.7)-(2.9) can only have a solution if

dω

dt̃

〈
v
∂u0

∂t+

〉
+ 2ω

〈
v
∂2u0

∂t̃∂t+

〉
= 〈vF0〉 , (2.13)

for any v in the null space.

Two linearly independent solutions of the adjoint problem (2.10)-(2.12) have been

determined

v1 =
∂u0

∂t+
, v2 =

∂u0

∂x
,

where the first solution is odd about t+ +Ψ = nπ and the second even. Since u0 is even

about x + Λ = 0, so is ∂u0/∂t
+, and ∂u0/∂x is odd about x+ Λ = 0. The first solution

corresponds to an amplitude modulation equation and the second a solvability condition

associated with the stationary breather. The equation for the modulation of the phase

shift Ψ(t̃) requires consideration of the problem at O(ǫ2).

2.2.1 Amplitude modulation equation

If we substitute the first solution v1 into (2.13), we obtain the equation

dω

dt̃

〈(
∂u0

∂t+

)2
〉

+ 2ω

〈
∂u0

∂t+
∂2u0

∂t̃∂t+

〉
=

〈
∂u0

∂t+
F0

〉
.

We define the wave action

J(ω(t̃)) =
ω

2

〈(
∂u0

∂t+

)2
〉
,

in order to rewrite the our modulation equation as

dJ

dt̃
= 1

2

〈
∂u0

∂t+
F0

〉
. (2.14)

We note that the wave action defined above is distinct from the action which is usually

defined in the Lagrangian-Hamiltonian derivation. In order to simplify the wave action,

we write

J = 8Ω

∫
∞

ξ=−∞

sech2(ξ)I(ξ, ω(t̃))dξ,

in which Ω = (1 − ω2)1/2/ω and

I =

∫ 2π−Ψ

t+=−Ψ

sin2(t+ +Ψ)

(1 + Ω2sech2(ξ) cos2(t+ +Ψ))2
dt+.

Using the substitution z = ei(t
++Ψ) and integrating around the unit circle in the complex

plane, we obtain

I =
π

(Ω2sech2(ξ) + 1)1/2

and

J = 8πΩ

∫
∞

ξ=−∞

sech2(ξ)

(Ω2sech2(ξ) + 1)1/2
dξ.
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We now introduce the substitution y = tanh(ξ) to yield J = 16π arccos(ω) or

ω = cos(J/16π), (2.15)

provided that J < 8π2. The amplitude envelope may be expressed in simplified form

umax(x, t̃) = 4 arctan

(
tan(J/16π)

cosh(sin(J/16π)[x+ Λ])

)
. (2.16)

2.2.2 Solvability condition

If we substitute the second solution v2 into (2.13), we have

dω

dt̃

〈
∂u0

∂x

∂u0

∂t+

〉
+ 2ω

〈
∂u0

∂x

∂2u0

∂t̃∂t+

〉
=

〈
∂u0

∂x
F0

〉
.

The first term on the left-hand side of this equation contains the product of even and

odd functions integrated over one period of oscillation, this being zero. The second term

on the left-hand side requires further analysis. The structure of u0 takes the form (in

view of (2.6))

u0 = u0(t
+ +Ψ(t̃), x;ω(t̃)).

This structure may be differentiated to yield

∂2u0

∂t̃∂t+
=

∂2u0

∂ω∂t+
dω

dt̃
+

∂2u0

∂t+ 2

dΨ

dt̃
,

where the first term on the right-hand side is odd in t+ + Ψ and the second even. We

substitute and exploit parity arguments again to obtain

2ω
dΨ

dt̃

〈
∂u0

∂x

∂2u0

∂t+ 2

〉
=

〈
∂u0

∂x
F0

〉
.

This equation may be further simplified by substitution of (2.3) and integrating in x to

yield the solvability condition 〈
∂u0

∂x
F0

〉
= 0. (2.17)

The amplitude modulation equation (2.14) and solvability equation (2.17) are necessary

conditions for the linear problem for the first correction (2.7)-(2.9) to have a solution.

2.3 Necessary conditions

If the continuous sine-Gordon equation is to be a valid approximation, then the amplitude

envelope should remain constant. The two necessary conditions for stationary breather

solutions on continuous media to represent breather solutions on discrete lattices are
〈
∂u0

∂t+
F0

〉
= 0,

〈
∂u0

∂x
F0

〉
= 0. (2.18)

In the continuum version (1.2), we have

F0 =
∂4u0

∂x4
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which is even about t+ +Ψ = nπ and x+Λ = 0. The left-hand side of the first condition

in (2.18) is the product of an odd and even function in t++Ψ integrated over the period

of oscillation, this being zero. The left-hand side of the second condition in (2.18) is the

product of an odd and even function in x+Λ integrated over the real line, which is also

zero. Both necessary conditions are met and the amplitude envelope remains constant.

As the solutions in [30] demonstrate, the phase shift Ψ(t̃) may still vary even when the

frequency and amplitude are constant.

If we consider the continuum reformulations to the discrete operator obtained using

Padé approximations (1.3) and (1.4), then

F0 = ω2 ∂4u0

∂x2∂t+ 2
+

∂2u0

∂x2
cos(u0)−

(
∂u0

∂x

)2

sin(u0)

and

F0 = 3
∂4u0

∂x4
+ 2ω2 ∂4u0

∂x2∂t+ 2
+ 2

∂2u0

∂x2
cos(u0)− 2

(
∂u0

∂x

)2

sin(u0),

respectively. We have F0 even about t+ +Ψ = nπ and x+ Λ = 0 in both of these cases.

The conditions in (2.18) are met following the same parity argument as above. Thus, it

is quite feasible for a static breather solution to be the large-time asymptotic solution

in this case. This is consistent with the existing theory in which, in the anti-continuum,

limit stationary breathers can be rigorously proven to exist in discrete Klein-Gordon

systems.

2.4 Numerical method

In this subsection, an accurate numerical method for the perturbed discrete SG equation

is described. We consider the system of ordinary differential equations

d2ûn

dt2
= ûn+1 − 2ûn + ûn−1 − sin(ûn) + ǫF̂n, (2.19)

where −N + 1 ≤ n ≤ N − 1 and F̂n is a perturbation centred at n. The nodes neglected

in this truncation are modelled by the discrete one-way wave equations

dû−N

dt
= û−N+1 − û−N ,

dûN

dt
= ûN−1 − ûN . (2.20)

The coupled system of equations (2.19)-(2.20) is solved using the NAG routine D02EJF.

The discrete stationary breather is investigated using the initial conditions

ûn(0) = 4 arctan

(
(1− ω2)1/2

ω cosh((1 − ω2)1/2n)

)
,

dûn

dt
(0) = 0,

with the corresponding initial conditions being taken for the continuum version, in which

ω(0) = cos(π/16). In order to validate the numerical method, our first problem concerns

the unperturbed discrete problem and the asymptotic envelope of (1.2). As both of these

problems are Hamiltonian, constant amplitudes should be anticipated. The results of the

numerical simulation and the asymptotic envelope are shown in Figure 1, the agreement

being excellent.
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Figure 1. Stationary breather integrated over an integer number of periods with ǫ = 0.1:
(a) û0(t) and its asymptotic envelope umax(0, t) for 0 ≤ t ≤ tend and (b) ûn(0), ûn(tend) and
umax(x, tend).

2.5 DNA simulation

A stationary breather on the discrete lattice of DNA may be simulated by perturbations

of the form F = uxxxx − λut + α sin(ω̄t) in (2.1) and F̂n = −λdûn/dt + αsin(ω̄t) in

(2.19), where λ > 0 and α > 0. We have

F0 =
∂4u0

∂x4
− λω

∂u0

∂t+
+ α sin(ω̄t).

The first term reproduces the effect of discreteness, the second models damping and the

third represents a small amplitude background forcing in DNA [37]. The slow time scale,

t̃, is based on the first term in the perturbation, whereas the effect of damping or forcing

is small on this ”discreteness” time scale. The amplitude modulation equation (2.14)

becomes
dJ

dt̃
+ λJ =

α

2

〈
∂u0

∂t+
sin(ω̄t)

〉
, (2.21)

in which

t+ =
1

ǫ

∫ ǫt

s=0

ω(s)ds.

The solvability condition (2.17) is satisfied by considering parity. Equation (2.21) is not

amenable to analytical solution. Henceforth, we consider the damped breather (α = 0),

then (2.21) is readily integrated to yield

J(ω(t̃)) = J(ω(0))e−λt̃.

On the long time scale, we have an exponential decay. Using (2.15), the modulated

frequency is given by

ω(t̃) = cos

(
J(ω(0))

16π
e−λt̃

)
.

In order to validate the results, we consider ǫ = 0.1 and λ = 0.01 and the initial condition

J(ω(0)) = π2 or ω(0) = cos(π/16). The slow modulation of amplitude in the discrete

SG equation and its continuum version are compared in Figure 2, the agreement being

excellent.
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Figure 2. Stationary breather integrated over an integer number of periods with ǫ = 0.1 and
λ = 0.01: (a) û0(t) and its asymptotic envelope umax(0, t) for 0 ≤ t ≤ tend and (b) ûn(0),
ûn(tend) and umax(x, tend).

3 Moving breathers

We again consider the perturbed sine-Gordon equations (2.1) with the boundary condi-

tions (2.2). We assume that the initial conditions with ǫ = 0 are consistent with moving

breather solutions which are exactly periodic.

3.1 The leading-order solution

For ǫ ≪ 1, the local frequency and the local wave number of the moving breather are

approximately constant when t = O(1) and x = O(1). However, over a time scale of

t = O(1/ǫ) or a length scale of x = O(1/ǫ), the variation of the local frequency and the

local wave number is an order one effect. In order to capture this effect over the 1/ǫ time

and length scales, we adopt two fast scales θ and φ defined by

θx =
ωk

µ
, θt = −ω2

µ
, φx =

ω

µ
and φt = −k

µ
, (3.1)

where µ =
√
ω2 − k2, the slow time scale t̃ = ǫt, the slow length scale x̃ = ǫx, k = k(x̃, t̃)

and ω = ω(x̃, t̃). The level surfaces of θ and φ can be recognized as waves with two

distinct slowly varying wave speeds. The moving breather will be periodic in θ with local

wave number ωk/µ, local frequency ω2/µ and local phase velocity ω/k. The short scale

φ is required to model the second slowly varying wave speed k/ω. The moving breather

is not periodic in φ; however, the solution is exponentially small outside a short interval.

These definitions are a generalization of the definition of the local wave number and local

frequency for a strongly nonlinear wave train (see, for example, [36]), this formulation

being based on the Lorentz invariance of the unperturbed problem. If k = 0, then we

recover the fast scales for the stationary breather except that θt = −ω. The definitions

of θ and φ given by (3.1) are consistent only if

∂

∂t
(θx) =

∂

∂x
(θt),

∂

∂t
(φx) =

∂

∂x
(φt);
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that is,

∂

∂t̃

(
ωk

µ

)
+

∂

∂x̃

(
ω2

µ

)
= 0,

∂

∂t̃

(
ω

µ

)
+

∂

∂x̃

(
k

µ

)
= 0, (3.2)

respectively. We introduce expansions of the form

u ∼ u0(φ, θ, x̃, t̃) + ǫu1(φ, θ, x̃, t̃), F ∼ F0(φ, θ, x̃, t̃) + ǫF1(φ, θ, x̃, t̃),

as ǫ → 0. The leading-order problem is given by

ω2 ∂
2u0

∂θ2
− ∂2u0

∂φ2
+ sin(u0) = 0. (3.3)

The boundary condition becomes

u0 decays to zero exponentially as φ → ±∞,

and the periodicity condition

u0(φ+ Λ, θ +Ψ, x̃, t̃) = u0(φ+ Λ, θ +Ψ− 2π, x̃, t̃),

where Λ(x̃, t̃) is a slowly varying parameter and Ψ(x̃, t̃) is the phase shift. The moving

breather integral of this problem is given by

u0 = 4 arctan

(
(1− ω2)1/2 cos(θ +Ψ)

ω cosh((1− ω2)1/2(φ+ Λ))

)
. (3.4)

We note that u0 is even about θ+Ψ = nπ and about φ+Λ = 0, where n is an integer. In

(3.4), θ and φ represent time-like and space-like variables, respectively. The amplitude

envelope, which in this problem is only governed by ω, is of interest in the subsequent

analysis.

3.2 The first correction

At next order we have

ω2 ∂
2u1

∂θ2
− ∂2u1

∂φ2
+ cos(u0)u1

= F0 + 2

(
ω2

µ

∂2u0

∂t̃∂θ
+

k

µ

∂2u0

∂t̃∂φ
+

ωk

µ

∂2u0

∂x̃∂θ
+

ω

µ

∂2u0

∂x̃∂φ

)

+
∂

∂t̃

(
ω2

µ

)
∂u0

∂θ
+

∂

∂t̃

(
k

µ

)
∂u0

∂φ
+

∂

∂x̃

(
ωk

µ

)
∂u0

∂θ
+

∂

∂x̃

(
ω

µ

)
∂u0

∂φ
, (3.5)

with the boundary condition

u1 decays to zero exponentially as φ → ±∞, (3.6)

and the periodicity condition

u1(φ+ Λ, θ +Ψ, x̃, t̃) = u1(φ+ Λ, θ +Ψ− 2π, x̃, t̃). (3.7)

As for the stationary breather, the Fredholm alternative is applied to this linear problem

(3.5)-(3.7). We define

〈 . 〉 =
∫ 2π−Ψ

θ=−Ψ

∫
∞

φ=−∞

. dφ dθ.
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A function v in the null space of the adjoint problem satisfies

ω2 ∂
2v

∂θ2
− ∂2v

∂φ2
+ cos(u0)v = 0, (3.8)

subject to the boundary condition

v → 0 as φ → ±∞, (3.9)

and the periodicity condition

v(φ+ Λ, θ +Ψ, x̃, t̃) = v(φ + Λ, θ +Ψ− 2π, x̃, t̃). (3.10)

Our linear problem for the first correction (3.5)-(3.7) can only have a solution if
〈
v

[
∂

∂t̃

(
ω2

µ

)
∂u0

∂θ
+

∂

∂t̃

(
k

µ

)
∂u0

∂φ
+

∂

∂x̃

(
ωk

µ

)
∂u0

∂θ
+

∂

∂x̃

(
ω

µ

)
∂u0

∂φ

]〉

+2

〈
v

[
ω2

µ

∂2u0

∂t̃∂θ
+

k

µ

∂2u0

∂t̃∂φ
+

ωk

µ

∂2u0

∂x̃∂θ
+

ω

µ

∂2u0

∂x̃∂φ

]〉
= −〈vF0〉 , (3.11)

for any v in the null space.

Two linearly independent solutions of the adjoint problem (3.8)-(3.10) have been de-

termined

v1 =
∂u0

∂θ
, v2 =

∂u0

∂φ
,

where the first solution is odd about θ + Ψ = nπ and the second even. Since u0 is even

about φ + Λ = 0, so is ∂u0/∂θ, and ∂u0/∂φ is odd about φ + Λ = 0. The first solution

corresponds to an amplitude modulation equation and the second a solvability condition

associated with the moving breather.

3.2.1 Amplitude modulation equation

In view of (3.4), the structure of u0 takes the form

u0 = u0(φ+ Λ(x̃, t̃), θ +Ψ(x̃, t̃);ω(x̃, t̃)).

This structure may be differentiated to yield

∂2u0

∂t̃∂θ
=

∂2u0

∂φ∂θ

∂Λ

∂t̃
+

∂2u0

∂θ2
∂Ψ

∂t̃
+

∂2u0

∂ω∂θ

∂ω

∂t̃
, (3.12)

∂2u0

∂t̃∂φ
=

∂2u0

∂φ2

∂Λ

∂t̃
+

∂2u0

∂φ∂θ

∂Ψ

∂t̃
+

∂2u0

∂ω∂φ

∂ω

∂t̃
. (3.13)

The first and third terms on the right-hand side of (3.12) and the second term on the

right-hand side of (3.13) are odd about θ + Ψ = nπ; the remaining terms on the right-

hand sides of (3.12)-(3.13) are even. The first term on the right-hand side of (3.12) and

the second and the third terms on the right-hand side of (3.13) are odd about φ+Λ = 0;

the remaining terms on the right-hand sides of (3.12)-(3.13) are even. A similar result

may be obtained by differentiating with respect to x̃.

If we substitute the first solution v1 into (3.11) and exploit the parity of the terms, we
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ω

Figure 3. A comparison of the functionals J1(ω)/16π denoted by (A) and J2(ω)/16π by (B)

obtain the modulation equation

ω

µ

∂J1

∂t̃
+

k

µ

∂J1
∂x̃

= − 1
2

〈
∂u0

∂θ
F0

〉
, (3.14)

in which

J1(ω(x̃, t̃)) =
ω

2

〈(
∂u0

∂θ

)2
〉

= 16π arccos(ω),

provided that J1 < 8π2.

3.2.2 Solvability condition

If we substitute the second solution v2 into (3.11) and again exploit the parity of the

terms, we have

ωk

µ

∂J2

∂t̃
+

ω2

µ

∂J2
∂x̃

= − 1
2

〈
∂u0

∂φ
F0

〉
, (3.15)

in which

J2(ω(x̃, t̃)) =
1

2ω

〈(
∂u0

∂φ

)2
〉

= 16π

[
(1− ω2)1/2

ω
− arccos(ω)

]
.

The functionals J1(ω) and J2(ω) are compared in Figure 3. It is noteworthy that although

J1 and J2 are different quantities, they are directly related via J2 = 16π tan(J1/16π)−J1.

3.3 Necessary conditions

On the long time scale and length scale, we have two unknowns ω and k. There are

four equations for these two unknowns: two consistency conditions (3.2), an amplitude

modulation equation (3.14) and a solvability condition (3.15). The two slowly varying

parameters Ψ and Λ do not appear in these four equations: the equations for their modu-

lation require consideration of the problem at O(ǫ2). For general perturbations, we would
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x

Figure 4. A comparison of the numerical solution of the discrete SG equation and the
asymptotic solution using phase shifts independent of the long length scale.

not expect this overdetermined system to have a solution; however, we are interested in

the special case in which ω and k are constant. The system of four equations reduces to

two necessary conditions for the approximation of breather solutions on discrete lattices
〈
∂u0

∂θ
F0

〉
= 0,

〈
∂u0

∂φ
F0

〉
= 0. (3.16)

In the continuum version (1.2), we have

F0 =
ω4

µ4

[
k4

∂4u0

∂θ4
+ 4k3

∂4u0

∂θ3∂φ
+ 6k2

∂4u0

∂θ2∂φ2
+ 4k

∂4u0

∂θ∂φ3
+

∂4u0

∂φ4

]
. (3.17)

The first, third and fifth terms on the right-hand side of (3.17) are even about θ+Ψ = nπ

and about φ + Λ = 0, whereas the second and fourth terms on the right-hand side of

(3.17) are odd about θ+Ψ = nπ and about φ+Λ = 0. Both necessary conditions (3.16)

are met based on parity arguments. The necessary conditions for (1.3) and (1.4) are also

met in a similar manner. We note that, in general, the slowly varying parameters Ψ and

Λ will not be constant for these three non-dissipative perturbations.

The constancy of k and ω is consistent with the inverse scattering analysis in [16];

however, the two approaches differ in that the phase shifts are predicted to be functions

of the long length scale in this article. In order to investigate which of these approaches

agrees with the numerical solutions, we consider the numerical solution of the discrete

moving breather and the analytical solution of the continuum version with the initial

conditions given by ω = cos(π/16), k = sin(π/16) and the phase shifts being zero. After

one hundred time units, the numerical solution is compared with (3.4) except that the

phase shifts are taken to be independent of the long length scale as in [16]. Figure 4

shows that the phase shifts are correct for 0 ≤ x ≤ 10, but the phase shift is incorrect for

x ≥ 20. The phase shifts need to be slowly varying functions of space in order to obtain

an accurate leading-order solution.
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3.4 Damping

The system of four equations ((3.2), (3.14) and (3.15)) for the two unknowns (ω and k)

on the long time scale and length scale provides little insight into the underlying physics.

Accordingly, we again consider a perturbation which represents damping in the form

F = −λut and λ > 0. We have

F0 =
λω2

µ

∂u0

∂θ
+

λk

µ

∂u0

∂φ
,

which we substitute into (3.14) and (3.15) to obtain

ω
∂J1

∂t̃
+ k

∂J1
∂x̃

= −λωJ1

and

k
∂J2

∂t̃
+ ω

∂J2
∂x̃

= −λkJ2,

respectively. After some algebraic manipulation, equations (3.2) may be rewritten as

∂k

∂t̃
+

∂ω

∂x̃
= 0, k2

∂ω

∂t̃
+ 2kω

∂ω

∂x̃
− ω2 ∂k

∂x̃
= 0.

The only solution is k = 0. We have recovered the damped stationary breather. The

damped moving breather should not be expected to exist in the presence of dissipation.

Inverse scattering analysis also predicts substantially new effects with non-zero damp-

ing [16], but damped moving breathers are still predicted.

4 Discussion

Whilst the theory of Kuzmak-Luke has previously been applied to strongly nonlinear

waves, these analyses have been restricted to the periodic case. Here, we have applied

the theory to waves which are periodic in time, but solitary in space. To our knowledge

this is the first application of this theory to such a system.

The sine-Gordon system is interesting, since it possesses both moving and stationary

solutions, as well as both simple travelling waves and breather modes, which have an

internal degree of freedom. For these more complex waves, we have found expressions for

the wave action, which describe its dependence on frequency which, using multiple scales

asymptotics, is permitted to evolve on a long time scale.

We have calculated expressions for special quantities of interest, namely the wave

action, in the static and moving breather cases. In the static case there is just one

quantity, J , which corresponds to the kinetic energy of the system. This is conserved in the

case of the quasi-continuum sine-Gordon system, decreases exponentially for the damped

sine-Gordon system and satisfies an inhomogeneous ordinary differential equation for the

forced sine-Gordon system. In all cases, the solvability condition (2.17) is met, showing

that static breather solutions give the correct leading-order behaviour on an order 1/ǫ

time scale.

For the moving breather, there are two wave actions, corresponding to the kinetic

energy (J1) and the elastic component of the potential energy (J2). In this case, we

have two consistency conditions (3.2), an amplitude modulation equation (3.14) and a
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solvability condition (3.15). It is not possible to satisfy all of these in the case of a damped

sine-Gordon system, so the decay of a moving breather in such a system is expected to be

more complex than simply a moving breather with slowly varying amplitude, frequency

and speed. A moving breather in a quasi-continuum sine-Gordon system, however, meets

all the specified conditions on an order 1/ǫ time scale.

Recent experimental results on the long lifetimes of moving breathers in a layered

crystal insulator will require more realistic models than the sine-Gordon system [27]. It

is noteworthy that the technique applied in this article is quite general; it does not rely

on the rare properties of integrability as in the case of the inverse scattering method.

The method of Kuzmak-Luke may be readily extended to meet these new challenges. In

particular, the methodology outlined in this paper is useful in the use of quasi-continuum

methods, which rely on the approximation of a discrete system by a hierarchy of con-

tinuous ones using asymptotic techniques. The leading order continuum equation may

have solutions with special properties, such as travelling waves or breathers. It is then

desirable to know whether the original discrete system possesses solutions with similar

properties. The above theory enables one to determine whether such solutions exist in

the next order continuum asymptotic equation.

In summary, we have derived conditions under which the multiple scales asymptotic

techniques used in previous works give consistent breather solutions. These conditions are

given in Section 2.3 for the stationary breather and Section 3.3 for the moving breather

and we have given illustrations of both cases when they are met and when they fail.
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