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Bell’s theorem shows that no local hidden-variable model can explain the measurement statistics
of a quantum system shared between two parties, thus ruling out a classical (local) understanding
of nature. In this Letter we demonstrate that by relaxing the positivity restriction in the hidden-
variable probability distribution it is possible to derive quasiprobabilistic Bell inequalities whose
sharp upper bound is written in terms of a negativity witness of said distribution. This provides
an analytic solution for the amount of negativity necessary to violate the CHSH inequality by an
arbitrary amount, therefore revealing the amount of negativity required to emulate the quantum
statistics in a Bell test.

1. INTRODUCTION

It has now been 60 years since John Stewart Bell wrote his
famous paper on the Einstein-Podolsky-Rosen (EPR) paradox
[1], and 50 years since the first experimental Bell test [2]. The
majority of physicists are perfectly happy to concede that in the
lab we see experimental results consistent with the postulates
of quantum mechanics. However, the implications of these
mathematical postulates on the ‘reality’ of the wavefunction is
still very much up for debate [3–8].

These Bell experiments remain as some of the most impor-
tant demonstrations for the reality of the quantum state and
the death of a ‘local realism’ picture of nature. In such an
experiment a physical system is distributed between spatially
separated observers, and we allow these observers to perform
measurements on their local system. The emerging statistics
prove that physical systems are not bound to behave locally
(in accordance to local hidden-variable models). Rather, the
statistics are consistent with the postulates governing quantum
mechanics.

In this work we remove the postulates of quantum mechan-
ics and instead allow a physical system to be distributed ac-
cording to a quasiprobability (hidden-variable) distribution
that is allowed to take negative values. Although we are per-
fectly content with real negative numbers in physics, negative
quasiprobabilities– despite receiving support from individuals
such as Dirac [9] and Feynman [10] and having a solid mathe-
matical foundation [11, 12]– have been a long debated issue
in theoretical physics [13]. See, for example, the extensive
discussion surrounding the interpretation of negative values
in the Wigner distribution [14, 15]. In the majority of con-
siderations, quasiprobability distributions are used to describe
states that are not directly observed; that is, all observable mea-
surement statistics must be governed by ordinary probability
distributions. As an example, a Wigner function may assign a
negative quasiprobability to a particle having a particular posi-
tion/momentum combination, but any physical measurement,

∗ morris.quantum@gmail.com

constrained by Heisenberg uncertainty, will have an all-positive
outcome distribution. This feature ensures that no outcome is
ever predicted to be seen occurring a negative number of times
[10], and similarly protects the quasiprobability physicist from
falling victim to ‘Dutch book’ arguments [16, Ch.3].

An important motivator for this work is the result of Al-Safi
and Short [17] which showed that it is possible to simulate all
non-signalling correlations, (those which adhere to the princi-
ples of special relativity) [18, 19], if one allows negative values
in a probability distribution. However, physical reality does
not explore this full set of correlations – but rather, is restricted
to those achievable by quantum correlations. Therefore the
question that we pose in this Letter is:

“What are the restrictions on the negativity in a
hidden-variable probability distribution such that it can

emulate the statistics seen in a physical Bell experiment?”

to answer this question we construct CHSH inequalities
for two parties [20] whose degree of violation is witnessed
by the amount of negativity present in the hidden-variable
probability distribution. Our witness yields a value of 0 for a
quasiprobability distribution which is entirely positive, such as
that which would describe an ordinary classical system.

To put this result in context [17] showed that negativity in
the hidden-variable distribution can produce nonlocality. A
contribution by [28] then observed in numerics the correlation
that stronger nonlocality requires more negativity. Here we
develop this into a precise analytical bound.

2. SETUP

Let us consider the following experimental setup. A source
( distributes a system between 2 observers, the :th observer
can choose some measurement G: ∈ {0, 1, . . . , -: } and record
some outcome H: ∈ {1, 2, . . . , .: }, the possible values of :
being {�, �}. A specific experimental setup is characterised
by the conditional probability,

% (H�, H� |G�, G�) . (1)
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FIG. 1. A source ( distributes a system between two spatially sep-
arated observers, Alice (�) and Bob (�). Alice and Bob choose to
measure their local part of the system with measurements G�, G� ,
with possible outcomes H�, H� ∈ {−1, +1}. The statistics of their
measurement outcomes depending upon the physical system being
distributed by the source.

The physical theory governing the behaviour of the system and
experiment determines the achievability of certain conditional
probability distributions resulting from these experiments. We
are interested in the following three physical theories:
• Classical theory admits probability distributions (1) of the

following form,∑
_�,_�

%� (H� |G�, _�)%� (H� |G�, _�) %Λ (_�, _�) , (2)

where %Λ (_�, _�) is a probability distribution defined over
local hidden variables. With each choice of hidden variables
we associate a local scenario governed by ordinary local prob-
ability distributions %: (H: |G: , _: ) for the observables H�, H�.
The hidden-variable probability distribution %Λ determines
how such local scenarios are mixed, and the probability dis-
tributions %: (H: |G: , _: ) are called “_: -local” because they
belong to the scenario associated with a particular value of _: ,
not to be confused with the (observable) marginal probabil-
ity distributions that are obtained by marginalising the total
probability distribution, equation (2).

The physical substance of equation (2) is worth discussing.
_� labels all degrees of freedom associated to the signal trans-
mitted from the source to Alice. This is referred to as a hidden
variable, as Alice is not able to directly access _�. She is
limited to observations of measurement outcomes, H�, which
depend on both the choice of measurement, G�, and the signal
itself, and even when these are both fixed the measurement out-
comes may still be random, encapsulated in %� (H� |G�, _�).
Similarly, the source itself may not always prepare the signals
deterministically. This is encoded in the local-hidden-variable
distribution, %Λ (_�, _�).
• Quantum theory endows us with a Hilbert space structure

for our quantum states that admits probability distributions (1)

of the following form,

Tr
[(
"
(�)
H� |G� ⊗ "

(�)
H� |G�

)
d

]
, (3)

where d � 0 and " (:)
H: |G: are Positive Operator-Valued Mea-

sures (POVMs) [21] for each : .
• Non-signalling Theory, our third physical theory, pro-

hibits the sending of information faster than the speed of light
[18, 19]. Such a theory has the conditions on its conditional
probability distribution that for any : ∈ {�, �},∑

H:

% (H�, H� |G�, G�) (4)

is independent of G: . These three physical theories range
from the most restrictive (classical), to the least restrictive (no-
signalling), with quantum theory existing somewhere between
the two [18].

Representing the full set of correlations that the quantum
conditional probability distribution in equation (3) allows one
to reach is a notorious problem, and the set has recently been
shown to be not closed [22]. Therefore we instead restrict our-
selves to studying the achievable bounds that these conditional
probabilities allow one to reach in nonlocal experiments; the
original and most famous of which being the Bell inequality
[1].

Definition 1 (Bell inequality). Given observers � and �, each
with measurement choice G: ∈ {0: , 1: } with outcomes H: ∈
{−1, +1}, experiments performed on the systems adhere to the
bound,

|� (0�, 0�) − � (0�, 1�) + � (1�, 0�) + � (1�, 1�) | ≤ -,
(5)

where both the correlation measure � (G�, G�) =∑
H�,H�

H�H� %(H�, H� |G�, G�) and bound - ∈ R+ are
theory dependent. The left-hand side of this inequality is often
called the score of the experiment.

Each physical theory admits a different conditional proba-
bility distribution, and hence a different achievable bound - .
Classical theory has the CHSH bound - = 2 [20], quantum
theory has the Tsirelson bound of - = 2

√
2 [23] and non-

signalling distributions - = 4 [18]. We are interested in the
achievable bounds of a classical system’s probability distribu-
tion when the hidden-variable distribution in said probability
distribution can be negative.

3. RESULTS

We now define an important object for this work, the
quasiprobability distribution.

Definition 2 (Quasiprobability distribution). We define a
quasiprobability distribution as %̃Λ : Λ1 × · · · × Λ# → R
where Λ8 ⊂ R and |Λ8 | < ∞∀ 8, that is properly normalised,
such that, ∑

_1 ,...,_#

%̃Λ (_1, . . . , _# ) = 1. (6)
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It can be seen that the collection of functions adhering to
the above definition forms a convex set, which we will denote
P̃, a super set of the convex set of positive probability distri-
butions P ⊂ P̃. We must now determine how to quantify the
presence of negativity in our quasiprobability distributions. To
this end we will use a well-known method for quantitatively
detecting properties of a quantum state, witnesses [24–27]. Let
us therefore proceed by defining a negativity witness:

Definition 3 (Negativity witness). Given some properly nor-
malised probability distribution %, a well-defined negativity
witness is one which,

N(%) = 0 ∀% ∈ P . (7)

We may additionally require such a witness to ‘faithfully’ detect
negativity,

N(%) > 0 ∀% ∈ P̃\P . (8)

In the following, we consider classical local hidden-variable
models as defined in equation (2), but we replace the hidden-
variable probability distribution %Λ with a quasiprobability
distribution %̃Λ,∑

_�,_�

%� (H� |G�, _�) %� (H� |G�, _�) %̃Λ (_�, _�) . (9)

This corresponds to a scenario where different local statis-
tics of observations, governed by _-local (ordinary) proba-
bility distributions %: (H: |G: , _: ), are mixed according to a
quasiprobability distribution %̃Λ. However, when %̃Λ takes
negative values, we should no longer think of the model as an
ignorance mixture of valid local scenarios but rather as a non-
local model [17]. Furthermore, when compared with ordinary
hidden-variable models not all combinations of hidden-variable
and _-local probability distributions are valid; only those com-
binations which lead to well-defined % (H�, H� |G�, G�) are
valid, i.e., comprised of values between 0 and 1 (the normali-
sation condition is always fulfilled). Previous numerical work
has focused on negativity arising not from a quasiprobability
hidden-variable distribution but rather from the total (joint)
probability distribution while only requiring valid marginal
distributions [28]. However, since the total probability distri-
bution governs observable outcome statistics, obtained when
Alice and Bob communicate their results with each other, neg-
ativity would imply that certain correlations are expected to be
seen occurring a negative number of times. In the Supplemen-
tal Material (SM) we provide an instructive example which
exhibits valid marginals but negativity in the total probability
distribution. In contrast such situations are excluded in our
model.

In addition to the correlation function between two measure-
ments G� and G�, � (G�, G�), it will also be useful to define
_: -local expectation values corresponding to an imagined sce-
nario where observer : is able to perform measurement G: in
the local scenario corresponding to _: ,

〈:〉G:
_:

:=
∑
H:

H:%: (H: |G: , _: ). (10)

This _: -local expectation value will be useful to formulate
our results, but does not correspond to the actual observations
which are themselves governed by equation (9).

We are now in a position to state the main result of this
Letter , the quasiprobabilistic Bell inequality.

Theorem 1 (Quasiprobabilistic Bell inequality). Given ob-
servers � and �, each with measurement choice G: ∈ {0: , 1: }
with outcomes H: ∈ {−1, +1} whose systems are distributed
according to some quasiprobability distribution %̃Λ, then the
quasiprobabilistic Bell inequality holds:���� (0�, 0�) − � (0�, 1�) + � (1�, 0�) + � (1�, 1�)���

≤ 2 + N(%̃Λ), (11)

where

N(%̃Λ) ≔
{
N+ (%̃Λ) if � (1�, 0�) + � (1�, 1�) < 0,
N− (%̃Λ) else,

(12)

is a negativity witness, and

N± (%̃Λ) :=
∑
_�,_�

[
2 ±

(
〈�〉1�

_�
〈�〉1�

_�
+ 〈�〉1�

_�
〈�〉0�

_�

)]
(���%̃Λ (_�, _�)��� − %̃Λ (_�, _�)) .

The proof (see SM) of this theorem begins analogously with
Bell’s proof of the CHSH bound [29], but diverges when the
assumption % ∈ P is made in Bell’s proof. The above result
shows that if an arbitrary amount of negativity is allowed in the
hidden-variable probability distribution then the upper bound
of equation (11) can be arbitrarily large. However, it should
be noted that a natural limit of 4 in the relevant Bell tests (i.e.,
for the upper bound in the quasiprobabilistic Bell inequality) is
imposed by the requirement that % (H�, H� |G�, G�) is a well-
defined, valid probability distribution [48].

The previous result of Al-Safi and Short [17] showed that it
was possible to violate said inequality up to this no-signalling
bound of - = 4. Therefore, in order to emulate the physical
results seen in Bell tests (Tsirelson bound) one needs a neg-
ative probability distribution whose witness equals N(%̃Λ) =
2(
√

2 − 1). In the latter examples section we show that for
any N(%̃Λ)≤ 2, there exist quasiprobabilistic hidden-variable
models with valid local measurement statistics that saturate
inequality (11). We would hope that if a physical mechanism
was discovered that allowed a hidden-variable probability dis-
tribution to have the appearance of negativity, see this recent
contribution for a discussion on possible operational interpreta-
tions [31], one would expect that said physical mechanism was
limited in such a way that it resulted in the Tsirelson bound and
more generally was able to reconstruct the limits on quantum
correlations.

It is also important to note that although said witnessN(%̃Λ)
is a valid witness according to definition 3 it is not necessarily a
‘faithful’ one. However this can be rectified, at the cost of loos-
ening the bound, by redefining said witness. For example the
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function N ′(%̃Λ) :=
∑
_�,_�

4
(���%̃Λ (_�, _�)��� − %̃Λ (_�, _�)) ,

is defined to be both a valid and ‘faithful’ witness.
There are numerous generalisations of the famous CHSH

inequalities, such as multiple parties [32], arbitrary outcomes
[33], etc. [34]. These would no doubt be interesting to study but
we leave it to future work to explore these other generalisations
and instead focus on the scenario in which Alice and Bob have
access to an arbitrary number of measurement settings [35].

Theorem 2. Given observers � and �, each with = ≥ 2
measurements G: ∈ {0: , 1: , . . . , = − 1: } with outcomes H: ∈
{−1, +1} whose systems are distributed according to some
quasiprobability distribution %̃Λ,����� =−1∑

8=0

� (8�, 8�) +
=−1∑
8=1

� (8�, 8 − 1�) − � (0�, = − 1�)
�����

≤ 2= − 2 + N= (%̃Λ), (13)

where N= (%̃Λ) =
∑=−1
8=1 N (8) (%̃Λ) is a negativity witness with

N (G) (%̃Λ) ≔
{
N (G)+ (%̃Λ) if � (0�, G�) + � (0�, G − 1�) < 0,
N (G)− (%̃Λ) else,

(14)

where

N (G)± (%̃Λ) B
∑
_�,_�

[
2 ±

(
〈�〉G�

_�
〈�〉G�

_�
+ 〈�〉G�

_�
〈�〉G−1�

_�

)]
(���%̃Λ (_�, _�)��� − %̃Λ (_�, _�)) .

The proof of the above theorem can be found in the SM, it
utilises proof by induction by chaining together the inequalities
from theorem 1. In the next section we show that the bound
in theorem 2 can be saturated. Namely, for any N= (%̃Λ)≤ 2,
there exist well-defined % (H�, H� |G�, G�), characterised by a
quasiprobability hidden-variable distribution %̃Λ (_�, . . . , _=),
that saturate inequality (13). In addition, analogously to the
two measurement result, at the cost of loosening the bound we
can ensure that the above witness is also ‘faithful’ by choosing
for all G, N (G) (%̃Λ) = N ′(%̃Λ).

Example.— In order to understand how to saturate the Bell
inequality from Theorem 1, we rewrite the left-hand side of
equation (11) as, �����∑

_

M(_) %̃Λ (_)
�����. (15)

We replaced the hidden variables _� and _� with a single
hidden variable _ because our example only uses a single hid-
den variable _. Further,M(_) := 〈�〉0�

_
〈�〉0�

_
− 〈�〉0�

_
〈�〉1�

_
+

〈�〉1�
_
〈�〉0�

_
+ 〈�〉1�

_
〈�〉1�

_
are the scores of each of the _-local

distributions , that is −2 ≤ M(_) ≤ 2 holds.
For a given value of the negativity witness, we exceed the

local bound maximally by the simple strategy of weighting clas-
sical distributions withM(_) = +2 with positive quasiprob-
ability, while simultaneously taking a classical distribution

with M(_) = −2 with negative weight. To ensure that the
total probability distribution % (H�, H� |G�, G�) is well-defined
we make a choice of three deterministic classical distribu-
tions with positive weight and a fourth with negative weight.
Our four deterministic classical distributions can be denoted
[(−,−)�, (−, +)�], [(+,−)�, (−,−)�], [(+, +)�, (+, +)�] and
[(+,−)�, (−, +)�]. Here, our notation means that the distribu-
tions can be produced by assigning the first pair of symbols to
Alice and the second to Bob. Each party chooses to read either
the first or second of the symbols given to them (this choice
reflects their measurement setting G: ) while the outcome of
their measurement is determined by the symbol itself; that is,
H: = +1 (H: = −1) for a plus (minus) sign. This experimental
description of distributing classical information makes clear
that these distributions are local, with our hidden variable _
indicating which of these sets the source actually produces.

The source produces each of the distributions according to
the following quasiprobability distribution,

%̃Λ (_) =
{

4+N
12 for _ = 1, 2, 3,
−N4 for _ = 4,

(16)

whereM(_) = 2 if _ = 1, 2, 3 andM(_) = −2 if _ = 4. We
can use tables to represent _-local probability distributions, and
the total probability distribution is then given as the weighted
sum of such tables:

4 + N
12


H�H�

G�G� −− −+ +− ++
00 1 0 0 0
01 0 1 0 0
10 1 0 0 0
11 0 1 0 0


+ 4 + N

12


H�H�

G�G� −− −+ +− ++
00 0 0 1 0
01 0 0 1 0
10 1 0 0 0
11 1 0 0 0


+ 4 + N

12


H�H�

G�G� −− −+ +− ++
00 0 0 0 1
01 0 0 0 1
10 0 0 0 1
11 0 0 0 1


− N

4


H�H�

G�G� −− −+ +− ++
00 0 0 1 0
01 0 0 0 1
10 1 0 0 0
11 0 1 0 0


=

1
12


H�H�

G�G� −− −+ +− ++
00 4 + N 0 4 − 2N 4 + N
01 0 4 + N 4 + N 4 − 2N
10 8 − N 0 0 4 + N
11 4 + N 4 − 2N 0 4 + N


. (17)

The requirement that the resulting total probability distribu-
tion must be valid implies N ≤ 2 which corresponds to the
no-signalling limit. Furthermore, it is easy to check that said
distribution indeed gives a value of N for the negativity wit-
ness.

The quasiprobabilistic Bell inequality score for this exper-
iment is 2 + N , which upon substituting equation (16) into
the negativity witness, can be seen to saturate the bound. In
the SM we discuss how one can generalise the above to the
=-measurement scenario.
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4. CONCLUSION

We have shown that there exists a relationship between the
amount of negativity allowed in a local-hidden-variable distri-
bution, and the degree to which said distribution can demon-
strate nonlocality in a Bell experiment. In particular, theorem
2 introduces a quasiprobabilistic Bell inequality, which gives
us a sharp bound in the scenario of two parties with = inputs
(corresponding to a choice between = measurements) and can
be used straightforwardly to reconstruct quantum statistics us-
ing nothing more than local, separable classical probability
distributions and a quasiprobability distribution over them –
granted an appropriately well spent budget of negativity.

The negative quasiprobability is essential precisely because
the distribution is over local states (local hidden variables).
If one allows nonlocal hidden variables then it is possible to
describe all quantum computing (including Bell tests) with
entirely positive probabilities [36]

Our work sits within the long-established tradition of trying
to understand quantum theory through interpretative lenses
which remove some particular aspect from a classical world-
view. Such approaches are wide and varied, including su-
perdeterminism [37, 38]; retro-causality [39]; invoking an
irreducible role for subjectivity in physics [7, 40, 41]; tak-
ing physical reality to consist of interacting, separate realms
[42, 43]; allowing the relativity of pre and post-selection [44];
taking Hilbert space to be literal [45], and so on. Here we add
to this list, in that we present an additional way to re-capture
the nonlocal features of quantum theory: through having a
finite amount of negativity allowed in a hidden-variable distri-
bution over scenarios which are, in themselves, entirely local

and classical. We are not claiming that such quasi distributions
are ‘real’ – only, more modestly, that such a perspective could
not be ruled out at this stage. Such a perspective may even pro-
vide new ways of looking at open quantum problems, such as
determining the source of quantum advantages for computing
[46].

Pursuing this line of reasoning, we would hope that our re-
sults may help to determine the fundamental restrictions on
a system’s quasiprobability hidden-variable distribution such
that it captures the full character of physical correlations. Put
another way; we know that zero negativity can capture the set
of classical correlations, whilst un-bounded negativity can cap-
ture the non-signalling set. Given that the set of quantum cor-
relations lies between these two – what are the restrictions on
the quasiprobability hidden-variable distribution which would
suffice to identify the full set of quantum correlations? We
leave this question for future work.
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Appendix A: Proof of theorem 1

Theorem. Given observers � and �, each with measurement choice G: ∈ {0: , 1: } with outcomes H: ∈ {−1, +1} whose systems
are distributed according to some quasiprobability distribution %̃Λ, then the quasiprobabilistic Bell inequality holds:

|� (0�, 0�) − � (0�, 1�) + � (1�, 0�) + � (1�, 1�) | ≤ 2 + N(%̃Λ), (A1)

where

N(%̃Λ) ≔
{
N+ (%̃Λ) if � (1�, 0�) + � (1�, 1�) < 0,
N− (%̃Λ) else,

(A2)

is a negativity witness, and

N± (%̃Λ) :=
∑
_�,_�

[
2 ±

(
〈�〉1�

_�
〈�〉1�

_�
+ 〈�〉1�

_�
〈�〉0�

_�

)] (���%̃Λ (_�, _�)��� − %̃Λ (_�, _�)) .
Proof. The first part of the proof follows Bell’s 1971 derivation of the CHSH inequality [29]. For brevity in the proof we will just
write %̃Λ as %.

We start by rewriting the correlation function,

� (G�, G�) :=
∑
H�,H�

H�H�

∑
_�,_�

%� (H� |G�, _�) %� (H� |G�, _�) % (_�, _�)

=
∑
_�,_�

〈�〉G�
_�
〈�〉G�

_�
%(_�, _�), (A3)
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where 〈:〉G:
_:

:=
∑
H:
H:%: (H: |G: , _: ), is the _: -local expectation value for observer : performing measurement G: . Starting with

the following difference between correlation functions,

� (0�, 0�) − � (0�, 1�)

=
∑
_�,_�

(
〈�〉0�

_�
〈�〉0�

_�
− 〈�〉0�

_�
〈�〉1�

_�

)
%(_�, _�)

=
∑
_�,_�

(
〈�〉0�

_�
〈�〉0�

_�
− 〈�〉0�

_�
〈�〉1�

_�
± 〈�〉0�

_�
〈�〉0�

_�
〈�〉1�

_�
〈�〉1�

_�
∓ 〈�〉0�

_�
〈�〉0�

_�
〈�〉1�

_�
〈�〉1�

_�

)
%(_�, _�)

=
∑
_�,_�

〈�〉0�
_�
〈�〉0�

_�

(
1 ± 〈�〉1�

_�
〈�〉1�

_�

)
%(_�, _�) −

∑
_�,_�

〈�〉0�
_�
〈�〉1�

_�

(
1 ± 〈�〉1�

_�
〈�〉0�

_�

)
%(_�, _�), (A4)

where the “±” in equation (A4) is to be understood as either “+” in all terms or “−” in all terms. Taking the absolute value of both
sides and using the triangular inequality,��� (0�, 0�) − � (0�, 1�)��

≤
��� ∑
_�,_�

〈�〉0�
_�
〈�〉0�

_�

(
1 ± 〈�〉1�

_�
〈�〉1�

_�

)
%(_�, _�)

��� + ��� ∑
_�,_�

〈�〉0�
_�
〈�〉1�

_�

(
1 ± 〈�〉1�

_�
〈�〉0�

_�

)
%(_�, _�)

���. (A5)

Starting with the first term on the right-hand side of inequality (A5), we again apply the triangular inequality,��� ∑
_�,_�

〈�〉0�
_�
〈�〉0�

_�

(
1 ± 〈�〉1�

_�
〈�〉1�

_�

)
%(_�, _�)

��� ≤ ∑
_�,_�

���〈�〉0�_� 〈�〉0�_� (
1 ± 〈�〉1�

_�
〈�〉1�

_�

)
%(_�, _�)

���
=

∑
_�,_�

���〈�〉0�_� 〈�〉0�_� ������ (1 ± 〈�〉1�_� 〈�〉1�_� ) %(_�, _�)���. (A6)

As H: ∈ {−1, +1} we can say
���〈:〉G:_: ��� ≤ 1 ∀ : , we can write,��� ∑

_�,_�

〈�〉0�
_�
〈�〉0�

_�

(
1 ± 〈�〉1�

_�
〈�〉1�

_�

)
%(_�, _�)

��� ≤ ∑
_�,_�

��� (1 ± 〈�〉1�_� 〈�〉1�_� ) %(_�, _�)���
=

∑
_�,_�

��� (1 ± 〈�〉1�_� 〈�〉1�_� ) ������%(_�, _�)���
=

∑
_�,_�

(
1 ± 〈�〉1�

_�
〈�〉1�

_�

) ���%(_�, _�)��� (A7)

where we have used the fact that
(
1 ± 〈�〉1�

_�
〈�〉1�

_�

)
is necessarily non-negative because of the choice of eigenvalues, H: ∈

{−1, +1}.
Similarly, we find for the second term on the right-hand side of inequality (A5)��� ∑

_�,_�

〈�〉0�
_�
〈�〉1�

_�

(
1 ± 〈�〉1�

_�
〈�〉0�

_�

)
%(_�, _�)

��� ≤ ∑
_�,_�

(
1 ± 〈�〉1�

_�
〈�〉0�

_�

) ���%(_�, _�)���. (A8)

By adding inequalities (A7) and (A8) we find the following upper bound for the left-hand side of inequality (A5),��� (0�, 0�) − � (0�, 1�)�� ≤ ∑
_�,_�

[
2 ±

(
〈�〉1�

_�
〈�〉1�

_�
+ 〈�〉1�

_�
〈�〉0�

_�

)] ���%(_�, _�)���. (A9)

So far the proof followed Bell’s 1971 derivation [29] of the CHSH inequality. In Bell’s derivation, one assumes that the joint
probability distribution is positive, %(_�, _�) ≥ 0, which, using the definition of the correlation function and the triangle
inequality, leads to the well-known CHSH inequality, |� (0�, 0�) − � (0�, 1�) + � (1�, 0�) + � (1�, 1�) | ≤ 2.

We have to take another approach because here %(_�, _�) can be a quasiprobability distribution and thus take negative values.
For each of the two inequalities (A9) (corresponding to the choice for “±”), we define a negativity witness N± (%) for some
normalised distribution % ∈ P̃ as the difference obtained by replacing |%(_�, _�) | with %(_�, _�) in the right-hand side of
inequality (A9),

N± (%) :=
∑
_�,_�

[
2 ±

(
〈�〉1�

_�
〈�〉1�

_�
+ 〈�〉1�

_�
〈�〉0�

_�

)]
[|% (_�, _�) | − % (_�, _�)] . (A10)
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Note that although this negativity witness is perfectly valid according to the definition in the main text, it is not faithful
because 2 ±

(
〈�〉1�

_�
〈�〉1�

_�
+ 〈�〉1�

_�
〈�〉0�

_�

)
may be zero for % ∈ P̃/P, i.e., N± (%) may be zero for a quasiprobability distribution.

Nevertheless we can now write inequality (A9) as,��� (0�, 0�) − � (0�, 1�)�� ≤ ∑
_�,_�

[
2 ±

(
〈�〉1�

_�
〈�〉1�

_�
+ 〈�〉1�

_�
〈�〉0�

_�

)]
%(_�, _�) + N± (%). (A11)

The first term on the right-hand side of inequality (A11) can then be simplified using the definition of the correlation function
(A3) and that %(_�, _�) is normalized,∑

_�,_�

[
2 ±

(
〈�〉1�

_�
〈�〉1�

_�
+ 〈�〉1�

_�
〈�〉0�

_�

)]
%(_�, _�)

=
∑
_�,_�

2%(_�, _�) ±
∑
_�,_�

(
〈�〉1�

_�
〈�〉1�

_�
+ 〈�〉1�

_�
〈�〉0�

_�

)
%(_�, _�)

= 2 ± [� (1�, 0�) + � (1�, 1�)] . (A12)

Thus, inequality (A11) becomes��� (0�, 0�) − � (0�, 1�)�� ≤ 2 ± [� (1�, 0�) + � (1�, 1�)] + N± (%). (A13)

Now, we choose the inequality corresponding to “+” if [� (1�, 0�) + � (1�, 1�)] is negative, and the inequality corresponding to
“−” else. This allows us to write��� (0�, 0�) − � (0�, 1�)�� ≤ 2 − |� (1�, 0�) + � (1�, 1�) | + N (%), (A14)

where we defined

N(%) ≔
{
N+ (%) if � (1�, 0�) + � (1�, 1�) < 0,
N− (%) else.

(A15)

From inequality (A14), we obtain��� (0�, 0�) − � (0�, 1�)�� + |� (1�, 0�) + � (1�, 1�) | ≤ 2 + N(%), (A16)

and with one final use of the triangular inequality we find a CHSH-type inequality for arbitrary % ∈ %̃,

|� (0�, 0�) − � (0�, 1�) + � (1�, 0�) + � (1�, 1�) | ≤ 2 + N(%), (A17)

completing the proof.

Appendix B: Proof of theorem 2

Theorem. Given observers � and �, each with = ≥ 2 measurements G: ∈ {0: , 1: , . . . , = − 1: } with outcomes H: ∈ {−1, +1}
whose systems are distributed according to some quasiprobability distribution %̃Λ,�����=−1∑

8=0

� (8�, 8�) +
=−1∑
8=1

� (8�, 8 − 1�) − � (0�, = − 1�)
����� ≤ 2= − 2 + N= (%̃Λ), (B1)

where N= (%̃Λ) =
∑=−1
8=1 N (8) (%̃Λ) is a negativity witness with

N (G) (%̃Λ) ≔
{
N (G)+ (%̃Λ) if � (0�, G�) + � (0�, G − 1�) < 0,
N (G)− (%̃Λ) else,

(B2)

where N (G)± (%̃Λ) B
∑
_�,_�

[
2 ±

(
〈�〉G�

_�
〈�〉G�

_�
+ 〈�〉G�

_�
〈�〉G−1�

_�

)] (���%̃Λ (_�, _�)��� − %̃Λ (_�, _�)) .
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Proof. The proof is similar to the creation of chained CHSH inequalities, see [47] for an intuitive description, and works by
induction in =.
Anchor step = = 2: see theorem 1.
Inductive step: Suppose that theorem 2 holds for = = : . We will prove the theorem for = = : + 1. Starting from the left-hand side
of equation (B1) for = = : + 1, we find����� :∑

8=0

� (8�, 8�) +
:∑
8=1

� (8�, 8 − 1�) − � (0�, :�)
����� (B3)

=

�����:−1∑
8=0

� (8�, 8�) +
:−1∑
8=1

� (8�, 8 − 1�) − � (0�, :�) + � (:�, :�) + � (:�, : − 1�)
����� (B4)

=

�����:−1∑
8=0

� (8�, 8�) +
:−1∑
8=1

� (8�, 8 − 1�) − � (0�, :�) + � (:�, :�) + � (:�, : − 1�)

+ � (0�, : − 1�) − � (0�, : − 1�)
����� (B5)

≤
�����:−1∑
8=0

� (8�, 8�) +
:−1∑
8=1

� (8�, 8 − 1�) − � (0�, : − 1�)
�����+

|� (:�, :�) + � (:�, : − 1�) + � (0�, : − 1�) − � (0�, :�) | (B6)

≤ 2: − 2 +
:−1∑
8=1

N (8) (%̃Λ) + 2 + N (:) (%̃Λ) (B7)

= 2(: + 1) − 2 + N:+1 (%̃Λ), (B8)

which concludes the induction. The inequality in line (B6) is the triangle inequality, and we proceed from that line by using the
induction hypothesis and theorem 1 for measurements 0�, :� for Alice, and : − 1�, and :� for Bob.

Appendix C: Saturation of the =-measurement quasiprobabilistic Bell inequality

We can generalise the 2-measurement example from the main text to = measurements in the following way. Using equation
(A3), we rewrite the left-hand side the n-measurement Bell inequality as,�����∑

_

M(_) %̃Λ (_)
�����, (C1)

where we use only a single hidden variable _, and

M(_) :=
=−1∑
8=0

〈�〉8�
_
〈�〉8�

_
+
=−1∑
8=1

〈�〉8�
_
〈�〉8−1�

_
− 〈�〉0�

_
〈�〉=−1�

_
(C2)

are the scores of each of the _-local distributions, that is −(2= − 2) ≤ M(_) ≤ 2= − 2 holds.
We again consider 4 classical scenarios, 3 of which achieve a score of 2= − 2 but now the last achieving a score of 2= − 6. The

source produces each of the distributions according to the following quasiprobability distribution,

%̃Λ (_) =
{

4+N=
12 for _ = 1, 2, 3,
−N=4 for _ = 4,

(C3)

where _ = 1, 2, 3 corresponds to classical distributions with score 2= − 2, and _ = 4 to 2= − 6. We can see that this distribution
saturates the =-measurement quasiprobabilistic Bell inequality from theorem 2,

(2= − 2)%̃Λ (1) + (2= − 2)%̃Λ (2) + (2= − 2)%̃Λ (3) + (2= − 6)%̃Λ (4) = 2= − 2 + N=. (C4)

We now need to come up with the _-local probability distributions which result in a well-defined % (H�, H� |G�, G�) and gives the
correct value for the witness N=. To do this we can generalise the classical distributions from the main text for = measurements,
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using the same notation as previously, such classical distributions are,

[(
=︷    ︸︸    ︷

−, . . . ,−)�, (
=−1︷    ︸︸    ︷

−, . . . ,−, +)�]_=1,[(+,
=−1︷    ︸︸    ︷

−, . . . ,−)�, (
=︷    ︸︸    ︷

−, . . . ,−)�]_=2, [(
=︷   ︸︸   ︷

+, . . . , +)�, (
=︷   ︸︸   ︷

+, . . . , +)�]_=3,

[(+,
=−1︷    ︸︸    ︷

−, . . . ,−)�, (
=−1︷    ︸︸    ︷

−, . . . ,−, +)�]_=4. (C5)

It is easy to check that all such distributions achieve for _ = 1, 2, 3 a score 2= − 2, and for _ = 4, 2= − 6. Since the distribution for
_ = 4 enters into the total probability distribution, % (H�, H� |G�, G�), with negative weight, the other _-local distributions (with
_ = 1, 2, 3) must compensate for that negativity to ensure that the total probability distribution is valid.

It is easy to see that this is indeed the case by observing that for each combination of Alice and Bob’s signs for _ = 4 that same
combination of symbols appear in the same places for at least one of the other distributions. We also find that requiring positivity
of the total probability distribution also gives us the no-signalling condition:

%̃Λ (_) + %̃Λ (4) ≥ 0 for _ = 1, 2, 3 =⇒ N= ≤ 2 ∀ = ≥ 2. (C6)

The final thing to check is that said distributions in equation (C5) coupled with the quasiprobability distribution in equation (C3)
gives the required value N= for the negativity witness N= (%̃Λ) =

∑=−1
8=1 N (8) (%̃Λ) with

N (G) (%̃Λ) ≔
{
N (G)+ (%̃Λ) if � (0�, G�) + � (0�, G − 1�) < 0,
N (G)− (%̃Λ) else,

(C7)

where N (G)± (%̃Λ) B
∑
_�,_�

[
2 ±

(
〈�〉G�

_�
〈�〉G�

_�
+ 〈�〉G�

_�
〈�〉G−1�

_�

)] (���%̃Λ (_�, _�)��� − %̃Λ (_�, _�)) .
Firstly, we can see by going through the distributions in equation (C5) that for all measurement choices G, � (0�, G�) +� (0�, G−

1�) > 0 meaning that the witness we calculate for all G in the sum of N= (%̃Λ) is N (G)− (%̃Λ). We then go through the expectation
values in the definition of N (G)− (%̃Λ) for all G for the _ = 4 distribution given in equation (C5), from which we can see,

2 −
(
〈�〉G�4 〈�〉

G�
4 + 〈�〉

G�
4 〈�〉

G−1�
4

)
=

{
0 for G = 1, . . . , = − 2
2 for G = = − 1.

(C8)

meaning that upon calculating N= (%̃Λ)
∑=−1
8=1 N (8) (%̃Λ), we get

N= (%̃Λ) =2
(���%̃Λ (4)��� − %̃Λ (4))

=N=, (C9)

as required.

Appendix D: Valid marginals do not imply a valid total probability distributions

In the following, we present an example of a negative total probability distribution that exhibits valid marginal probabilities for
all observers. We consider the setting of theorem 1 in the Letter with two observers each having two measurements each with
two outcomes. Similarly to the example saturating the bound from theorem 1, we construct a quasiprobabilistic mixture of four
different scenarios each of which can be created locally by the source,

4 + N
8

©«



H�H�

G�G� −− −+ +− ++
00 1 0 0 0
01 1 0 0 0
10 1 0 0 0
11 1 0 0 0


+



H�H�

G�G� −− −+ +− ++
00 0 0 0 1
01 0 0 0 1
10 0 0 0 1
11 0 0 0 1



ª®®®®®®¬
− N

8

©«



H�H�

G�G� −− −+ +− ++
00 0 1 0 0
01 0 1 0 0
10 0 1 0 0
11 0 1 0 0


+



H�H�

G�G� −− −+ +− ++
00 0 0 1 0
01 0 0 1 0
10 0 0 1 0
11 0 0 1 0



ª®®®®®®¬
=

1
8


H�H�

G�G� −− −+ +− ++
00 4 + N −N −N 4 + N
01 4 + N −N −N 4 + N
10 4 + N −N −N 4 + N
11 4 + N −N −N 4 + N


. (D1)
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Clearly, each of the tables corresponds to a trivial deterministic strategy where the outcomes are independent from the measure-
ments chosen by Alice or Bob. It can also be seen that the total probability distribution (the right-hand side of equation (D1)) is
negative for N > 0. Nevertheless, it is easy to check that the corresponding marginals are valid probablity distributions which
predict equiprobable outcomes independent from the measurements chosen by Alice and Bob,

?(H� |G�) =
∑
H�

?(H�, H� |G�, G�) (D2)

=
1
2
∀H�, G�, G�, (D3)

?(H� |G�) =
∑
H�

?(H�, H� |G�, G�) (D4)

=
1
2
∀H�, G�, G� . (D5)

Equation (D1) would correspond to an experiment, where Alice and Bob each find outcomes according to a valid (marginal)
distribution. However, as soon as they would communicate their findings with each other, their joint outcome statistics would be
governed by a negative probability distribution - a contradiction with the laws of probability. A rather extreme scenerio which
potentially avoids this contradiction could be a setting where communication is fundamentally impossible for the observers, e.g.,
involving event horizons. In common scenarios, where communication is possible, one must impose that the total probability
distribution is valid. We impose this stronger condition throughout.
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[40] Christopher A. Fuchs, N. David Mermin, and Rüdiger Schack. An introduction to QBism with an application to the locality of quantum

mechanics. American Journal of Physics, 82(8):749–754, aug 2014.
[41] Markus P. Müller. Law without law: from observer states to physics via algorithmic information theory. Quantum, 4:301, jul 2020.
[42] James T. Cushing, Arthur Fine, and Sheldon Goldstein, editors. Bohmian Mechanics and Quantum Theory: An Appraisal. Springer

Netherlands, Dordrecht, 1996.
[43] Michael Esfeld, Mario Hubert, Dustin Lazarovici, and Detlef Dürr. The Ontology of Bohmian Mechanics. The British Journal for the
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