
Push-to-See: Learning Non-Prehensile Manipulation to Enhance
Instance Segmentation via Deep Q-Learning

Baris Serhan1∗, Harit Pandya2, Ayse Kucukyilmaz1, and Gerhard Neumann3

Abstract— Efficient robotic manipulation of objects for sort-
ing and searching often rely upon how well the objects are
perceived and the available grasp poses. The challenge arises
when the objects are irregular, have similar visual features (e.g.,
textureless objects) and the scene is densely cluttered. In such
cases, non-prehensile manipulation (e.g., pushing) can facilitate
grasping or searching by improving object perception and
singulating the objects from the clutter via physical interaction.
The current robotics literature in interactive segmentation fo-
cuses solely on isolated cases, where the central aim is on search-
ing or singulating a single target object, or segmenting sparsely
cluttered scenes, mainly through matching visual futures in
successive scenes before and after the robotic interaction. On
the other hand, in this paper, we introduce the first interactive
segmentation model in the literature that can autonomously
enhance the instance segmentation of such challenging scenes
as a whole via optimising a Q-value function that predicts
appropriate pushing actions for singulation. We achieved this
by training a deep reinforcement learning model with reward
signals generated by a Mask-RCNN trained solely on depth
images. We evaluated our model in experiments by comparing
its success on segmentation quality with a heuristic baseline, as
well as the state-of-the-art Visual Pushing and Grasping (VPG)
model [1]. Our model significantly outperformed both baselines
in all benchmark scenarios. Furthermore, decreasing the seg-
mentation error inherently enabled the autonomous singulation
of the scene as a whole. Our evaluation experiments also serve
as a benchmark for interactive segmentation research.

I. INTRODUCTION

Robotic object manipulation tasks such as sorting, search-
ing or singulation often require a visual understanding of
the objects in the task space. Although the state-of-the-
art computer vision (CV) algorithms like Mask R-CNN
are highly capable in object segmentation and classification
[2], their performance decreases when the scene is complex
and cluttered due to the presence of occlusions. Similarly,
even the human eye might not detect an object when it is
hidden under a cluttered heap. On the other hand, unlike
CV algorithms, human intelligence can manipulate the clutter
based on its prior knowledge of objects to see the invisible.
This ability is a result of embodied cognition where percep-
tion and action modalities are tightly coupled for learning.
Coupling robotic manipulation with visual perception would
also enable robots to learn how to tackle complex scenes and
facilitate object detection in densely cluttered heaps.

Although the idea of using robotic manipulation and
interaction to segment objects can be seen in the early

*Corresponding author: baris.serhan@nottingham.ac.uk
1School of Computer Science, University of Nottingham, UK
2Toshiba Research, Cambridge, UK
3Institute for Anthropomatics and Robotics, Karlsruhe Institute of Tech-

nology, Germany

Fig. 1: An example of scenes before and after the interactions. The
initial heap at t0 and the singulated heap after conducting n pushes with
the Push-to-See model at tn. Four images at t0 and tn in row-order from
top left to bottom right: RGB, Segmentation Error, Ground Truth, Depth.
The objects which cannot be detected (i.e. false negatives) are coloured in
red tones in segmentation error images. In this example, all false negatives
at t0 become true positives at tn after cluttered objects are singulated with
the learned pushing policy.

robotics literature [3], thorough studies on improving visual
perception via interactive strategies start from the beginning
of the century [4], [5]. These approaches rely upon classical
CV techniques such as template matching and optic flow to
track the same objects between successive interactions. The
figure-ground separation through object or motion features is
still the most common approach in the current interactive seg-
mentation literature [6], [7], [8]. However, these approaches
face challenges for textureless objects and dense clutters
commonly occurring in industrial scenario, since the features
becomes difficult to distinguish.

Learning how to push is an essential problem for robotics
when the goal is to autonomously search or grasp objects
within a dense heap. Non-prehensile manipulation allows
objects to be visible or graspable by singulating them from
the clutter. Whilst majority of the current robotics literature
focuses solely on segmenting/singulating a single target
object or works in sparsely populated scenes [7], [9], [10], in
this paper, we provide a solution to a more complex problem:
the segmentation of all the objects in a dense clutter via
learning a non-prehensile manipulation policy. In this work,
we refer to a clutter when there are more than 28 objects
that are closely piled together in multiple planes and cause
partial or full occlusions.

To solve this problem, we suggest a two-fold model
that consists of a Deep Q-Network [11] to predict non-
prehensile interactions through trial and error (Push-DQN),
and a reward generator (Mask-RG), which involves a Mask-
RCNN [2] trained solely with depth images, to reinforce the
best pushing actions during training. An example of how
our model, Push-to-See, changes the scenes before and after
manipulation is shown in Figure 1. Our quantitative results

IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA) 2022. ACCEPTED VERSION. MAY 2022.

indicate a substantial improvement in achieving complete
scene singulation with 75% success against baselines with
∼ 7%. (see Table I).

The contributions of our work could be summarised as
follows:

• We present a novel self-supervised approach for improv-
ing instance segmentation through interactions. To the
best of our knowledge, we are the first to showcase
successful segmentation of dense clutter of over 28
objects.

• Our method inherently enables the autonomous singu-
lation of the scene as a whole, thus almost all objects
in the clutter become easily graspable at the end of the
task.

• We provide a testing algorithm together with simulation
scenes, evaluation metrics, baselines and trained mod-
els, which can be used together as a benchmark for in-
teractive segmentation research (https://github.
com/ALRhub/push-to-see.git).

II. RELATED WORK

In this section, we review existing body of work in the field
of instance segmentation and its application to other robotics
domains such as grasping, searching and pose estimation.

Instance segmentation For robotics applications such as
manipulation or obstacle avoidance, it is crucial to identify all
the objects in a given scene. The problem of identifying all
the objects in a given scene is referred to as instance segmen-
tation. Recent works in computer vision literature take a top-
down approach towards instance segmentation: They employ
deep neural networks to generate several proposals for ob-
jects then classify them as object instances in a supervised [2]
or weakly supervised fashion [12]. While texture information
is crucial for segmenting different objects, several robotic
tasks require the handling of textureless objects, such as
industrial parts and rubble [13]. A few recent approaches
learn instance segmentation only from depth information of
irregular shaped objects from a single depth image [14] or
point clouds [15] for cluttered bin picking scenarios. These
approaches learn to extract segmentation boundaries from
depth cues, however for arbitrarily shaped unseen objects
under severe occlusions additional information is required
to infer the correct object boundaries. In this paper, we
interact with the environment through pushing actions for
obtaining additional information about object boundaries
thus improving the instance segmentation.

Interactive segmentation: Segmenting all objects for a
complex scene using a single image could be challenging.
Thus, for improving the segmentation performance, a few
approaches consider segmentation on a video [16] or actively
selecting a viewpoint [17]. The advantage of using robots
for scene segmentation is the added ability to manipulate
the scene through actions such as pushing or picking, a.k.a.
interactive segmentation. Interactive segmentation has been
widely studied in robotics literature [3], [4], [5], [18], [19],
[8], [7], [20], where the dominant approach is to over-
segment the image into super-pixels, which are tracked

over consecutive frames, clustered together and assigned
to the objects they belong to. These approaches employ
classical optical flow estimation techniques for matching
segmentation-clusters before and after the pushing action,
which is challenging for textureless objects due to lack
of features. In [18] and [19], authors use grasping action
instead of pushing. They remove an object from the scene
by grasping and lifting it. The segmentation of that object is
then computed by frame difference (before and after object
removal) or using a deep neural network. Thus, their efficacy
depends largely upon the success of grasping which itself
is difficult for dense clutter without accurate segmentation.
On the other hand, we aim to learn a policy that leverages
pushing actions to improve the segmentation itself.

Applications to other robotic tasks Several robotics
tasks rely on precise instance segmentation such as object
singulation and searching [21], [9], [22], where the task is
to de-clutter the environment. Our approach could be seen as
a total singulation approach since we segment every object
instance in the scene. In [22] authors assume objects are
segmented and present rule based policies for singulating
them. Whereas, [21] trains a CNN in supervised manner
to predict push location and directions from an RGBD
images. Both [21] and [22] greedily select the best push
and do not perform long term planning which is important
for dense clutters. As a result, their policies suffer from
severe performance drops in dense clutters; for example the
performance in [22] drops from 88% to 49% when the
number of objects in the clutter are increased from 3 to
15. In contrast, we show successful singulation for over 28
objects. A few very recent approaches [9], [23], [24], similar
to ours, propose a DQN based policy for object singulation or
searching; however they only singulate a single object with a
given colour within a clutter of differently coloured objects.
On the contrary, we perform singulation of all the objects in
the scene within a dense clutter, and do not assume texture
information on the objects.

Recent deep network based grasping approaches [25],
[26] showcase superior grasping performance over classical
approaches for top grasps, however they assume the object is
segmented and free from clutter. To circumvent this issue a
few approaches [1], [27], [10] perform pushing interactions
for improving grasping. In [10], authors combine Dexnet [25]
with heuristic based pushing interactions which improves the
grasping performance of Dexnet by 15%. In [10], authors
attempt to learn a value function, that improves the grasping
performance. A recent work [1] proposed two DQNs to
learn the synergy between pushing and grasping, i.e., aim
to grasp if possible, otherwise push. Authors gave higher
award to grasping, so that pushing actions assist the grasping.
In contrast to these approaches, our objective is to improve
the segmentation performance itself. Moreover, our approach
can readily be combined with grasp proposal networks to
improve grasping performance as well.

Fig. 2: (a) Overview of Push-to-See. Our model is two-fold: a Mask R-CNN based reward generator (Mask-RG) and a DQN based pushing predictor
(Push-DQN). RGB, depth and ground truth (GT) segmentation masks are captured from the simulation environment. The depth and GT images are fed into
Mask-RG in order to generate a segmentation score based on the difference in category-agnostic instance segmentation quality of the previous scene and
the current scene. Meanwhile, 16 RGB-D heightmaps are generated from the depth and RGB to represent the current state-action value for 224×224×16
possible pushing actions similarly as in [1]. Push-DQN is then trained through trial and error by the reward signal to learn the best action-value pair (i.e.
pushing action) which would enhance the instance segmentation of the consecutive scene. (b) Experimental setup consisting of 2 sets of objects from
INRIA and VPG. Dense clutters include 28 objects in Task no 1 and 30 objects in Task no 2. Note the small depth variations in INRIA objects which
makes their segmentation challenging. We employ only depth features for segmentation.

III. APPROACH

This paper presents Push-to-See, a methodology that en-
ables robots to autonomously learn how to push a cluttered
pile of objects to improve instance segmentation by sin-
gulating the clutter through self-supervision. To tackle this
problem, we designed a two-fold model, which consists of
a Mask R-CNN based Reward Generator (i.e., Mask-RG)
to produce segmentation rewards via depth images, and a
Deep Q-Network (DQN) based pushing predictor (i.e., Push-
DQN), which is trained with this reward signal to find
the best actions that decrease the segmentation error in the
consecutive scene. The overall autonomous learning pipeline
and a summary can be seen in Figure 2(a). The details of
Mask-RG and Push-DQN are given in the following two
subsections below.

A. Mask-RG: A Mask R-CNN based Reward Generator

1) Model: Mask-RCNN [2] has recently been adapted for
robot vision by training it via depth images in a Sim2Real
study [14]. We used a similar approach in order to predict
category-agnostic instance segmentation of the objects in a
heap. We triplicated the depth channel and fed those into a
Mask-RCNN model with a ResNet-50 FPN backbone. Mask-
RG had first been trained offline in simulation separately
from Push-DQN. Then, it was used to determine a segmen-
tation quality score for each scene by inference during Push-
DQN training.

2) Database Generation: The physics engines and simu-
lation platforms provide an opportunity to collect thousands
of samples to train and test the robotics models in a cost-
effective way. V-REP simulation environment [28] has been
used to generate a database for Mask-RG training in our
study. Figure 2(b) shows the 18 3D object models (provided
by Larsen Team at INRIA Nancy, France) that form the
randomly generated heaps. Our database generation script,
first, randomly selected 24 to 32 objects from this set by
limiting each object instance count to 4, and then, dropped
them one by one onto the workspace by randomising their
initial pose in each iteration. Once the objects were settled,

the depth data and the ground truth segmentation masks of
the scene were collected from the top view. Thus, a database
of 12.5k samples of heaps were generated.

3) Training and Test: The collected scenes were randomly
reorganised to have a training, validation and a test dataset
as, 80%, 10% and 10% of the database respectively.

10k 1024x1024 pixel depth images were fed into the
model. It was then trained for 40 epochs by stochastic
gradient decent using ResNet-50 as the backbone, where the
learning rate was set to 1.0e-4, batch size to 5, momentum
to 0.9, and the weight decay to 5.0e-5.

As the model is category agnostic and the test scenes were
composed of the same objects, the coco evaluation on the test
set returned high scores:

• Average Precision (AP) @[IoU=0.50:0.95 | area=all |
maxDets=100] = 0.822

• Average Recall (AR) @[IoU=0.50:0.95 | area=all |
maxDets=100]=0.843

Here, the maximum detection limit (maxDet) was set to
100 and the AP and AR were calculated over multiple
Intersection over Unions (IoU) with step size .05.

4) Reward Generation: Mask-RG returns a segmentation
score to generate rewards for the training of Push-DQN with
the following equation:

Mst = (

nt∑
i=1

Ji)/n− 0.02nf , (1)

where Mst is the Mask-RG segmentation score of the scene
at time t, Ji is the Jaccard index of ith true detection, n
is the number of objects dropped in the scene, whilst nt
and nf are the number of true detections and false negatives
(non-detected) objects respectively.

B. Push-DQN: A Deep Q-Network for Non-Prehensile In-
teraction

In order to learn best pushing actions that improve the
instance segmentation of the consecutive scenes, we used

deep reinforcement learning, in particular, the Deep Q-
learning framework [11]. Our architecture is inspired by
Zeng et al.’s study [1].

1) State and action representations: Each state (st) was
represented as a 224x224 RGB-D heightmap of the robot’s
workspace from the top view by merging and transforming
the RGB and Depth data captured from a fixed perspective
view. Each pixel of the state representation maps 2 × 10−3

m2 of actual space.
The non-prehensile action (at) to select is a straight

pushing action of 0.1 m, whose direction vector is collinear
to the normal of z-axis at a fixed height. In each state st,
the agent can perform a pushing action, at, in 16 different
directions starting from a selected point in st . Thus the
output of the network represents the Q-values, Q(st, at), for
a discrete 224x224x16 state-action space.

2) Rewards: Our reward function is based on an eval-
uation of how well the selected pushing action at st led to
enhance the instance segmentation of the scene at st+1. First,
we generate a segmentation score (Mst) via Mask-RG. Then,
we determine a reward/punishment for the current action by
weighting the difference of consecutive segmentation scores
as follows:

Mδ =Mst+1
−Mst ,

R(st, st+1) =

{
sgn(Mδ)(10Mδ)

2 , if
∑

(st+1 − st) > c

−0.5 , otherwise ,
(2)

where c is the change detection threshold. The change is
measured by counting the number of changed pixels between
two consecutive heightmaps. As can be seen in Equation (2),
when a pushing action does not cause a significant change
in the scene, the agent is given a punishment of −0.5.

3) Training: The training of the fully convolutional net-
work of Push-DQN has been done by stochastic gradient
decent using the Huber loss function as in [1]. During train-
ing, 28 to 34 INRIA objects were randomly dropped in the
robot’s workspace in V-REP simulation (see the next section
for simulation details). The agent performed a pushing action
in each iteration either based on the highest Q-value or ran-
domly regarding the exploration rate ε. The initial exploration
rate of 0.5 has been decayed to 0.1 during training via an
ε-greedy exploration policy. After each pushing, the instance
segmentation quality of the current scene was predicted by
Mask-RG and an immediate reward signal R(st, st+1) was
calculated considering the segmentation of the previous scene
according to Equation (2). The expected reward (yt) was
then determined by summing this immediate reward with
a discounted (γ = 0.5) future expectation obtained via a
forward pass in Push-DQN as:

yt = R(st, st+1) + γQ(st+1, argmaxa′Q(st+1, a
′)) (3)

where a′ is the set of all possible pushing actions.
Two models have been trained with different thresholds

(Figure 3). During the training of Model 1 (M1), the de-

Fig. 3: Moving average of the episode failure rates during two model
trainings (window size: 40). (The training curves have been smoothed out
for printing by a Savitzky–Golay filter.). Upper panel shows the failure rate
of Push-to-See (M1) during training in Condition 1, whilst lower panel is
the training of Push-to-See (M2) in Condition 3. Red vertical lines indicate
each 5000±30 training iterations. Since the episodes require more pushing
actions at the beginning of the training, the distance between these lines are
smaller.

tections over a confidence score of 0.80 were considered as
valid predictions. These were then matched with the ground
truth segmentations using 0.80 IoU threshold to determine
TPs (true positives). An episode was successful when Mask-
RG score Mst reached over the success threshold of 0.85.
If this cannot be achieved after 30 consecutive pushes,
that episode was considered as a failure and the scene
was reinitiated during the training. For Model 2 (M2), the
confidence and mask (IoU) thresholds were set to 0.85, whilst
the success threshold to 0.90. The threshold levels of M1
and M2 correspond, respectively, to Condition 1 and 3 in
the evaluation experiments (Table I). Both models have been
trained around 40k iterations each of which took around a
week on a NVIDIA GTX 1080 Ti GPU. Figure 3 shows
how the failure rate decreases during training of the models.
Whilst initial 75% failure rate decreases to around 12% by
M1 in Condition 1, the training of M2 decreases the episode
failure rate from around 95% to 57% in Condition 3. This
outcome is a result of the increase in the difficulty of the task
during the second training due to higher thresholds. M2, on
the other hand, performs better in the evaluation experiments
that are presented in the next section.

IV. EXPERIMENTS

To test how well the agent performs, we designed two
experiment tasks, as well as a baseline policy to compare
the learned policy of the model.

A. Environment

The experiments were conducted on V-REP simulation en-
vironment using a UR5 robot. The manipulation trajectories
were planned using the inverse kinematics of the simulator
and the physical interactions were calculated via Bullet 2.83
with 100 ms simulation time steps.

We generated two cluttered scenes with initially fixed
object locations (Figure 2(b)) to benchmark two baselines

and two Push-to-See models trained with different thresholds
(Figure 3). Task no 1 includes 28 objects from 15 categories
from the INRIA 3D models mentioned previously, whilst
Task no 2. has 30 objects from 8 VPG categories. We have
3 experiment conditions, where the difficulty of the task was
raised from Condition 1 to Condition 3 by increasing the
thresholds (see Table I).

B. Experiment Design

The goal of this study is to singulate objects from each
other sufficiently, so that the instance segmentation quality
of the scene reaches a certain quality level (Mst > success
threshold). This level of quality is usually achieved when all
28 objects can be detected by Mask-RG. It should be noted
that this is not a strict rule since the segmentation score Mst

can possibly be higher than the success threshold even if
there is an undetected object, if all the other objects have
very high IoU scores (see Equation (1)).

The agent is considered as successful if it can improve the
instance segmentation score Mst above the success threshold
in maximum 30 consecutive non-prehensile actions within a
testing episode, and as unsuccessful otherwise.

During the experiments, the exploration rate ε was set to
zero and no training has been performed. Algorithm 1 shows
the computational steps followed to conduct evaluation ex-
periments.

Algorithm 1: Testing task pipeline
initialise the scene;
initialise the model with pre-trained weights;
executing pushing action ← False;
(child thread) while executing pushing action do

predicted action ← Qπ(st, at);
calculate the pushing trajectory;
execute action;
executing pushing action ← False;

end
(main thread) while True do

camera data ← V-REP simulation;
if this is the first iteration then

Mask-RG ← current camera data;
Mask-RG → initial seg. score Mst0

;
end
executing pushing action ← True;
if the very first pushing already executed then

if Mst > quality threshold then
episode success ← True;

end
detect any changes in the scene;
if not episode success then

calculate rewards;
end

end
wait for executing pushing action;
if episode success or failure is True then

reinitialise the scene for the next episode;
end
save camera data for the next iteration;
if not the first iteration then

camera data ← V-REP simulation;
Mask-RG ← camera data;
Mask-RG → segmentation score Mst0

;
end

end

C. Baseline Policies

Although there exist rule-based non-prehensile manipula-
tion policies for singulation of objects in sparsely populated
scenes [10], [9], to the best of our knowledge, there is not
any pushing-only policy in literature which is suitable to
use as a baseline for our task that involves densely cluttered
environments. Thus, we implemented a heuristic pseudo-
random policy to use as one of our baselines. The policy
implements the following:
• detect the highest point of the clutter
• select one of the 16 different pushing directions ran-

domly
• move the gripper to the radius of 10 points away from

the highest point in the selected direction
• generate a push towards the top of the heap
This pseudo-random baseline can enhance the instance

segmentation quality to a certain degree, however, when the
complexity of the task increases (e.g. adding more objects or
setting high thresholds) it fails to decrease the segmentation
error.

Furthermore, the Visual Pushing and Grasping (VPG)
model, which is the state-of-the-art model on integrating non-
prehensile manipulation with grasping [1], was included as
the second baseline. We trained VPG in its authors’ setup
for 3000 iterations (2400 iterations in [1]) and evaluated
in our two benchmark tasks. It should be emphasised that
VPG has two action primitives (pushing and grasping) and
we did not restrict the VPG’s use of grasping actions for
not giving it a disadvantage. We assumed that being able to
grasp and remove the objects from the scene would benefit in
decreasing the segmentation error since the task gets difficult
with more objects in the clutter.

D. Results

The two trained models and two baseline policies were
tested using Algorithm 1 to evaluate our approach. In each
experiment, models were run for a minimum of 40 episodes
using 3 different threshold conditions in Task no 1 and
one condition in Task no 2. Each episode had maximum
of 30 pushing iterations to solve the task, otherwise they
were considered as failures. Table I shows the average
episode success rate and average number of pushes during
the experiments for each model in each condition. As we
expected, increasing the mask (IoU) and success thresholds
decreased the success rate whilst increasing the number of
pushes required to singulate objects. In all cases, Push-to-See
performed better than the baseline models.

It is important to note that both Mask-RG and Push-DQN
have solely been trained on INRIA objects and the same
model weights were used in the second task with the VPG
objects without any fine-tuning. As can be seen in the table,
the models performed even better with these unseen objects
in Task no 2. This is probably the outcome of that the VPG
objects have much simpler geometry than the INRIA objects.

Figure 5 shows an example of how the mean average recall
(mAR) at .85 IoU threshold increases after each pushing

Fig. 4: A qualitative example of mask prediction during two testing episodes in Task no 1 in Condition 2 (Push-To-See M2 in upper panel,
Heuristic baseline in lower panel). The figure shows how the consecutive pushes decreases the segmentation error of the scene after each interaction. At
the initial state s0, both Mask-RG models receive the same depth and GT images. Red coloured objects are the false negatives (FN). Whilst Push-To-See
successfully completes the episode by detecting all of the initial 15 FNs at s0 after 17 conducting pushes, the heuristic baseline fails to succeed in this
episode. After 30 pushing trials, the baseline decreases the number of FNs from 15 to 5 at s30.

TABLE I: Experiment results

Method Avg. #Actions per
Episode

Success(%)

Task no 1. (INRIA Objects)
Condition 1: Mask threshold= 0.80 - Success threshold= 0.85

Heuristic Baseline 27.83 30.0%
VPG [1] 26.55 31.0%
Push-to-See M1 15.48 91.3%
Push-to-See M2 13.37 95.0%

Condition 2: Mask threshold= 0.85 - Success threshold= 0.85
Heuristic Baseline 29.48 6.5%
VPG [1] 29.85 4.9%
Push-to-See M1 25.57 52.4%
Push-to-See M2 23.5 75.0%

Condition 3: Mask threshold= 0.85 - Success threshold= 0.90
Heuristic Baseline 30.0 0.0%
VPG [1] 30.0 0.0%
Push-to-See M1 28.88 16.7%
Push-to-See M2 27.77 37.2%

Task no 2. (VPG Objects)
Condition 2: Mask threshold= 0.85 - Success threshold= 0.85

Heuristic Baseline 15.83 85.7%
VPG [1] 15.6 85.0%
Push-to-See M1 11.02 96.2%
Push-to-See M2 9.33 96.8%

a Heuristic baseline b Push-to-See M2

Fig. 5: Mean Average Recall @.85 IoU in Task No 1 in Condition 2. Y
axes indicate mAR@.85 scores for each particular push conducted one after
another. When a task is solved after a push, the final mAR score were carried
for the remaining iterations in that episode for calculating the average.

interaction via the heuristic baseline and Push-to-See (M2)
during testing in Task no 1 in Condition 2. Although the
baseline model has a low success rate in this case, it still
improves the segmentation quality significantly. On the other
hand, the trained model enhances the segmentation faster and
higher than the baseline and completes 75% of the episodes
successfully. The comparison on how well the models can
find undetected objects (i.e., false negatives) in the same test

condition can be seen in Figure 6 (see also Figure 4 for a
the qualitative example). 15 of 28 objects of the initial scene
can not be detected in this task condition. Whilst the baseline
decrease the number of unpredicted objects in the heap to
5.72 after 30 interactions, Push-to-See predicts almost all the
objects during the test (The average FN after the 30th push
was 1.37.)

a Heuristic baseline b Push-to-See M2

Fig. 6: Average number of false negatives (FN) per consecutive push in Task
no.1 and Condition 2. When a task is solved after a push, the final FN score
were carried for the remaining iterations in that episode for calculating the
average.

V. CONCLUSIONS
In this paper, we presented a novel interactive segmenta-

tion approach, to improve instance segmentation quality of
densely cluttered scenes by learning how to manipulate ob-
jects in a self-supervised manner. The inherent consequence
of enhancing the segmentation quality of the scene was the
autonomous singulation of all the objects from each other.
Our approach achieves 75% success rate for a strict 85%
IoU as compared to ∼ 7% success achieved by the baselines,
which is a significant improvement over the existing state-
of-the-art. Moreover, our approach can tackle dense heaps of
over 28 objects that lack identifiable features which is crucial
for practical applications. Our rigorous experimental protocol
also provides a new evaluation methodology, which can be
used as a benchmark for interactive manipulation research in
future studies.

ACKNOWLEDGEMENT
This research has been supported by HEAP (Human-

Guided Learning and Benchmarking of Robotic Heap Sort-
ing, CHIST-ERA | EPSRC, grant no: EP/S033718/2) and
NCNR (National Centre for Nuclear Robotics, EPSRC, grant
no: EP/R02572X/1) projects. Authors thank to Dr Mihai
Andries and the Larsen Team at INRIA, Nancy, for providing
the 3D object models.

REFERENCES

[1] A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and T. Funkhouser,
“Learning synergies between pushing and grasping with self-
supervised deep reinforcement learning,” in 2018 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pp. 4238–
4245, IEEE, 2018.

[2] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in
Proceedings of the IEEE international conference on computer vision,
pp. 2961–2969, 2017.

[3] C. J. Tsikos and R. K. Bajcsy, “Segmentation via manipulation,”
Technical Reports (CIS), p. 694, 1988.

[4] G. Metta and P. Fitzpatrick, “Better vision through manipulation,”
Adaptive Behavior, vol. 11, no. 2, pp. 109–128, 2003.

[5] P. Fitzpatrick, “First contact: an active vision approach to segmen-
tation,” in Proceedings 2003 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2003)(Cat. No. 03CH37453),
vol. 3, pp. 2161–2166, IEEE, 2003.

[6] T. Patten, M. Zillich, and M. Vincze, “Action selection for interac-
tive object segmentation in clutter,” in 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 6297–6304,
IEEE, 2018.

[7] J. Kenney, T. Buckley, and O. Brock, “Interactive segmentation for ma-
nipulation in unstructured environments,” in 2009 IEEE International
Conference on Robotics and Automation, pp. 1377–1382, IEEE, 2009.

[8] H. Van Hoof, O. Kroemer, and J. Peters, “Probabilistic segmentation
and targeted exploration of objects in cluttered environments,” IEEE
Transactions on Robotics, vol. 30, no. 5, pp. 1198–1209, 2014.

[9] I. Sarantopoulos, M. Kiatos, Z. Doulgeri, and S. Malassiotis, “Total
singulation with modular reinforcement learning,” IEEE Robotics and
Automation Letters, vol. 6, no. 2, pp. 4117–4124, 2021.

[10] M. Danielczuk, J. Mahler, C. Correa, and K. Goldberg, “Linear push
policies to increase grasp access for robot bin picking,” in 2018 IEEE
14th International Conference on Automation Science and Engineering
(CASE), pp. 1249–1256, IEEE, 2018.

[11] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[12] P. Tang, X. Wang, A. Wang, Y. Yan, W. Liu, J. Huang, and A. Yuille,
“Weakly supervised region proposal network and object detection,” in
Proceedings of the European conference on computer vision (ECCV),
pp. 352–368, 2018.

[13] R. Grimm, M. Grotz, S. Ottenhaus, and T. Asfour, “Vision-based
robotic pushing and grasping for stone sample collection under com-
puting resource constraints,” in IEEE International Conference on
Robotics and Automation (ICRA), pp. 0–0, 2021.

[14] M. Danielczuk, M. Matl, S. Gupta, A. Li, A. Lee, J. Mahler, and
K. Goldberg, “Segmenting unknown 3d objects from real depth images
using mask r-cnn trained on synthetic data,” in 2019 International
Conference on Robotics and Automation (ICRA), pp. 7283–7290,
IEEE, 2019.

[15] Z. Dong, S. Liu, T. Zhou, H. Cheng, L. Zeng, X. Yu, and H. Liu, “Ppr-
net: point-wise pose regression network for instance segmentation
and 6d pose estimation in bin-picking scenarios,” in 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pp. 1773–1780, IEEE, 2019.

[16] D. Pathak, R. Girshick, P. Dollár, T. Darrell, and B. Hariharan,
“Learning features by watching objects move,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 2701–2710, 2017.

[17] C. Xie, Y. Xiang, A. Mousavian, and D. Fox, “Unseen object
instance segmentation for robotic environments,” arXiv preprint
arXiv:2007.08073, 2020.

[18] D. Pathak, Y. Shentu, D. Chen, P. Agrawal, T. Darrell, S. Levine,
and J. Malik, “Learning instance segmentation by interaction,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pp. 2042–2045, 2018.

[19] W. Boerdijk, M. Sundermeyer, M. Durner, and R. Triebel, “Self-
supervised object-in-gripper segmentation from robotic motions,”
arXiv preprint arXiv:2002.04487, 2020.

[20] J. Pajarinen and V. Kyrki, “Decision making under uncertain seg-
mentations,” in 2015 IEEE International Conference on Robotics and
Automation (ICRA), pp. 1303–1309, 2015.

[21] A. Eitel, N. Hauff, and W. Burgard, “Learning to singulate objects
using a push proposal network,” in Robotics research, pp. 405–419,
Springer, 2020.

[22] Z. Dong, S. Krishnan, S. Dolasia, A. Balakrishna, M. Danielczuk, and
K. Goldberg, “Automating planar object singulation by linear pushing
with single-point and multi-point contacts,” in Proc. IEEE Conf. on
Automation Science and Engineering (CASE), pp. 1429–1436, IEEE,
2019.

[23] M. Danielczuk, A. Angelova, V. Vanhoucke, and K. Goldberg, “X-
ray: Mechanical search for an occluded object by minimizing support
of learned occupancy distributions,” in 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 9577–9584,
IEEE, 2020.

[24] Y. Yang, H. Liang, and C. Choi, “A deep learning approach to grasping
the invisible,” IEEE Robotics and Automation Letters, vol. 5, no. 2,
pp. 2232–2239, 2020.

[25] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea,
and K. Goldberg, “Dex-net 2.0: Deep learning to plan robust grasps
with synthetic point clouds and analytic grasp metrics,” arXiv preprint
arXiv:1703.09312, 2017.

[26] D. Morrison, P. Corke, and J. Leitner, “Closing the Loop for Robotic
Grasping: A Real-time, Generative Grasp Synthesis Approach,” in
Proc. of Robotics: Science and Systems (RSS), 2018.

[27] A. Boularias, J. A. Bagnell, and A. Stentz, “Learning to manipulate
unknown objects in clutter by reinforcement,” in Twenty-Ninth AAAI
Conference on Artificial Intelligence, 2015.

[28] E. Rohmer, S. P. Singh, and M. Freese, “V-rep: A versatile and
scalable robot simulation framework,” in 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 1321–1326, IEEE,
2013.

