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Introduction: 

Hyperalgesia, increased responsiveness to noxious stimulation, results from tissue 

damage and inflammation. There are two defined types of hyperalgesia, primary and 

secondary; primary hyperalgesia is found in areas of tissue damage, whereas 

secondary hyperalgesia is evident in undamaged skin adjacent [37,48,69,73], or more 

distant to the area of damage [12,19,60,61]. Heat and mechanical stimuli are the most 

commonly used stimulus modalities in behavioural and mechanistic studies of 

hyperalgesia. Increased responses to both modalities are often reported in primary 

hyperalgesia, whereas typically only mechanical responses are enhanced in secondary 

hyperalgesia [31,37,38,48,73]. Thermal responses are, however, also sometimes 

reported to change in secondary hyperalgesia [13,25,30,50,69].  

High threshold mechanical stimuli used in experimental studies have been postulated 

to predominately activate A-nociceptors, whereas thermal stimuli are thought to 

principally activate C-nociceptors [10,15,26,56,73]. This distinction in nociceptor 

activation could explain the frequent absence of heat hyperalgesia (no C-nociceptor 

sensitization), in the presence of mechanical hyperalgesia (A-nociceptor sensitization) 

in studies of secondary hyperalgesia, for example following capsaicin application in 

humans (e.g.[37]), or nerve injury in animals (e.g.[22]).  

It is generally agreed that the mechanisms that mediate primary and secondary 
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hyperalgesia are distinct. Primary hyperalgesia is attributed to both peripheral 

nociceptor sensitisation at the site of injury, and central sensitization, whereas 

secondary hyperalgesia results largely from central sensitization, triggered and often 

maintained by enhanced afferent input. Secondary (mechanical) hyperalgesia 

resulting from capsaicin injection [58] or tissue damage in man [72], can be reduced 

by A-fibre blockade, and is dependent upon activity in capsaicin-sensitive 

C-nociceptors [55,59,64] innervating the area of primary hyperalgesia [4,30,58,60]. 

These observations led Treede and colleagues to hypothesise that C-nociceptor drive 

leads to sensitization of central neurons to A-nociceptor activation, resulting in 

secondary punctate mechanical hyperalgesia [37,72,73].  

A- and C-nociceptors have different functions in pain sensation; activation of 

C-nociceptors evokes slow, burning, poorly localized pain whereas activation of 

A-nociceptors evokes sharp, well localized pain [37,46]. Thus differences in 

nociceptor sensitisation are likely to serve different functions; A-nociceptors are 

postulated to serve protective functions, signalling acute tissue damage [11] whereas 

C-nociceptors may signal on-going tissue damage [14]. In addition, as a result of the 

different distributions of C- and A-nociceptor input to superficial and deep dorsal 

horn [21], and their different properties and functions, the different dorsal horn 

laminae are functionally distinct [28,47].  
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In order to determine whether there are different contributions of A- and C-nociceptor 

inputs in primary and secondary hyperalgesia, we used a method to preferentially 

activate either A- or C-nociceptors using thermal stimulation alone [34,42,71]. This 

method enables the interpretation of the consequences of A- and C- nociceptor 

activation, without the additional confound of different stimulus modalities. In these 

studies we tested the following hypotheses: 1. that inflammatory arthritis results in 

secondary hyperalgesia only to A- and not C-nociceptor stimulation; 2. that cutaneous 

inflammation results in primary hyperalgesia to both A- and C-nociceptor stimulation, 

and 3. that spinal neurons in specific laminae are sensitised to only A-nociceptor 

inputs in areas of secondary hyperalgesia but to both A- and C-nociceptor inputs in 

primary hyperalgesia. 

 



Basic science research report 

 6 

Materials and methods: 

Animal preparation 

A total of 92 male Wistar rats (250–300g, Harlan UK) were used in these experiments. 

All procedures involving experimental animals were carried out in accordance with 

the U.K. Animals (Scientific Procedures) Act 1986 plus associated guidelines and 

with the approval of the University of Bristol Ethical Review Group.  

 

Inflammation was induced by injection of 100µl Freund's Complete Adjuvant (FCA, 

Sigma, UK, 29-gauge BD insulin syringes) under brief isoflurane anesthesia (2 % in 

O2,). Primary hyperalgesia: inflammation was induced by subcutaneous injection into 

the dorsal hindpaw (n=32: EMG studies n=14, Fos studies n=18), and the inflamed 

area of the hindpaw stimulated for study of primary hyperalgesia. Secondary 

hyperalgesia: inflammatory arthritis was induced by intra-articular injection into the 

knee joint (n=32: EMG studies n=14, Fos studies n=18) and the hindpaw stimulated 

for study of secondary hyperalgesia. Naïve animals were used as controls (n=28:EMG 

studies n= 14, Fos studies n=14).  

Seven days after FCA injection rats were re-anaesthetised with halothane (2.5 % in O2) 

and a branch of the external jugular vein was cannulated for anaesthetic maintenance 

(intravenous alphaxalone infusion 25 mg.kg-1·h-1), and the external carotid artery 
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cannulated to monitor blood pressure. Body temperature was maintained at 

approximately 37 ºC using a thermostatically controlled blanket.  

 

Preferential activation of A- and C-heat nociceptors 

A thermal stimulation apparatus was used to deliver slow or fast rates of skin heating 

respectively to the rat hind paw dorsum in animals in experimental groups (n=75: 

EMG studies n=42, Fos studies n=33)) to preferentially activate either C- or A- 

nociceptors, as described previously [42]. In brief, heat from a sputter-coated 

projector bulb was focused onto a blackened copper disk positioned at the focal point. 

A T-type thermocouple (0.02-mm-diameter, made in-house) was fixed to the outer 

surface of the copper plate and therefore recorded the surface skin temperature when 

in contact with the hindpaw dorsum. Using a constant bulb voltage, fast rates of 

heating (7.5 ± 1 ºC·s-1 measured over 2 s from the start of heating) were used to 

preferentially activate myelinated A-fiber heat nociceptors, whereas slow rates of 

heating (2.5 ± 1 ºC·s-1 measured over 4s from the start of heating) were used to 

preferentially activate unmyelinated C-fiber heat nociceptors. Previous studies from 

our laboratory [34,42] have shown that these heating rates reproduce the 

sub-epidermal heating rates described by Yeomans et al [70,71] that preferentially 

activate A- and C-nociceptors. The starting temperature of the heat lamp was 30 ºC, 
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and the cut off temperatures (controlled by a Spike2 script) of the heat lamp were 57 

ºC for fast and 55ºC for slow rates of heating respectively, to prevent damage to the 

hind paw. Heating was controlled through a PC. For recording of withdrawal 

thresholds to noxious skin heating, alternate fast and slow ramps were applied at 

inter-stimulus intervals of 8 minutes in each animal as described previously [28].  

 

Determination of withdrawal thresholds to A- and C-nociceptor stimulation in areas 

of primary and secondary hyperalgesia.  

Electromyographic (EMG) recordings were made in a total of 42 rats, naïve (n=14), 

dorsal hindpaw cutaneous inflammation (primary hyperalgesia, n=14) and knee joint 

arthritis (secondary hyperalgesia, n=14). An intramuscular bipolar electrode was 

made from two short lengths of Teflon-coated, 0.075-mm-diameter, stainless steel 

wire (Advent Research Materials, UK). Teflon insulation was removed from the end 

of the wire to allow for electrical contact, and then the wire was inserted into the 

biceps femoris of the left hind leg to record EMG activity during the withdrawal 

reflex. The EMG signal was amplified (×10000) and filtered (50 Hz to 5 kHz; 

NeuroLog System; Digitimer), before being captured for subsequent analysis via a 

1401plus (Cambridge Electronic Design) onto a PC running Spike2 version 5 

software (Cambridge Electronic Design). 



Basic science research report 

 9 

 

Induction of Fos protein in spinal dorsal horn by A- or C-nociceptor stimulation in 

primary and secondary hyperalgesia.  

In a second series of experiments, a total of 50 animals was divided into three groups, 

naïve n=14, (unstimulated =5, stimulated =9), dorsal hind paw inflammation (primary 

hyperalgesia, n=18, unstimulated =6, stimulated =12) and knee joint arthritis 

(secondary hyperalgesia, n=18, unstimulated =6, stimulated =12). Unstimulated naïve 

and hyperalgesic animals were also included to control for the effects of anaesthesia 

and the inflammatory process. These 17 animals were anaesthetised and maintained 

for 4 hours, but were not subject to thermal stimulation. 

Following surgery, as described above, animals were allowed to stabilize for 2 hours, 

and then either A- or C- nociceptors were stimulated as described above.  

After stimulation, animals were maintained under anaesthesia for a further 2h to allow 

development of Fos expression in the spinal cord. At the end of experiments, animals 

were killed by overdose of alphaxalone and perfused transcardially with saline 

followed by paraformaldehyde (4% in 0.1M phosphate buffer 300ml). The spinal 

cords (L3-L5) were removed, post fixed in 4% paraformaldehyde overnight, 

cryoprotected in 30% sucrose solution for at least 24 h and the L3-L5 region sectioned 

transversely at 40 µm on a freezing microtome. 
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Immunohistochemical processing for visualisation of Fos protein 

Free-floating spinal cord sections were incubated for 48-72 hours at 4°C with a 

polyclonal Fos antibody (Santa Crus Biotechnology, 1:5000) in phosphate buffered 

saline (PBS) containing 1% bovine serum albumin, 0.1 % Triton X-100 and 0.01% 

sodium azide. Following rinsing in PBS with 0.1 % Triton X-100 (PBST), sections 

were incubated in secondary biotinylated goat anti rabbit antibody (Sigma UK, 1:500) 

in PBST) for 1-2 h at room temperature. The sections were rinsed in PBST, and 

incubated in streptavidin-conjugated peroxidase (Sigma UK; 1:1000 in PBST) for 1-2 

h, and visualized with 3,3-diaminobenzidine (0.015 %; Sigma UK) and glucose 

oxidase (G-0543, 10000units/1.8ml; Sigma UK). Finally, all sections were mounted 

onto gelatine ⁄ chrome alum-coated microscope slides and coverslipped with DPX 

mountant. 

 

Cell counting 

All spinal cord sections were scanned at low magnification for identification of 

Fos-like immunoreactive nuclei (FLI) in the dorsal horn and of ~100 sections per 

animal, the 10 most heavily labelled sections were identified and total FLI counted. 

We and others have previously used this method to determine maximum fos induction 

across all spinal segments under study [7,28,67]. Numbers of FLI dorsal horn neurons 
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in laminae I, II, III IV-V, X and the lateral spinal nucleus were then counted at higher 

magnification in these sections and their locations assigned to the appropriate laminae 

of the spinal cord as distinguished under dark field illumination, as described 

previously [28]. Data are presented as the total number of FLI-nuclei counted in each 

animal to give a value to the overall FLI, not the mean number of FLI-nuclei per 

section, which might not account for variation between different spinal segments.  

 

Data analysis 

Mean withdrawal thresholds in primary and secondary hyperalgesic animals were 

compared to naïve animals receiving the same stimulus (A- or C-nociceptor 

stimulation) using ANOVA followed by planned Dunnett’s tests for comparison to 

naïve controls. For some comparisons of numbers of FLI-neurons, data sets were log 

transformed prior to analysis as not all groups met standard conditions for parametric 

analyses. Comparisons of FLI-positive neurons in each spinal cord lamina between 

groups in A) inflamed but un-stimulated animals and B) normal A- or C-nociceptor 

stimulated animals (Figure 2) were made using two-way mixed design ANOVA 

followed by Dunnett’s tests, with lamina as the within-subject variable, and A) 

inflammation state (hind paw or knee) or B) stimulation modality as the 

between-subject variable. Two-way ANOVA was performed on raw untransformed 
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data, and Gaussian distribution was therefore assumed. This was because some 

control animals exhibited no FLI in some laminae, log transformation therefore 

resulted in incomplete data sets and within-subjects repeated measures comparisons 

could not be made.  

Altered FLI (neuronal activation) resulting from stimulation in primary or secondary 

hyperalgesia (Figures 4 and 5) was determined by comparison of: naïve + stimulation, 

inflamed + no stimulation and inflamed + stimulation groups in specific laminae, 

using between-groups one ANOVA followed by Bonferroni or Dunnett’s planned 

comparisons as stated. Data are shown as mean±SEM unless otherwise stated. 

Statistical analyses were performed using GraphPad Prism 5.0/6.0. Alpha was set at 

0.05.  
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Results 

Withdrawal thresholds to C- and A-nociceptor activation in areas of primary and 

secondary hyperalgesia 

C-nociceptor-evoked withdrawal thresholds were significantly reduced, indicating 

sensitisation, in the area of primary inflammatory hyperalgesia (ANOVA F 

(2,39)=4.184, p=0.023, n=14/group) but were unaffected in arthritic secondary 

hyperalgesia. In cutaneous inflammation C-nociceptor thresholds decreased 

significantly from 51.1±0.2 to 49.9±0.5 ºC (mean ± SEM, p<0.05 compared to naïve 

animals), whereas thresholds in secondary hyperalgesia were 51.2 ± 0.3 ºC (Fig. 1A).  

In contrast, A-nociceptor-evoked thresholds were unaltered in primary hyperalgesia 

(ANOVA F(2, 39)=5.842, p=0.006, threshold 52.7±0.4 in naïve compared to 52.6 ± 

0.4 oC in primary hyperalgesia, Fig. 1B), but were significantly lower in arthritic 

secondary hyperalgesia, being reduced from 52.7 ± 0.4 to 51.1 ± 0.2 ºC (p<0.05, Fig. 

1B) compared to naïve animals.  

 

FLI-positive spinal dorsal horn neurons following 7 days of hindpaw or knee joint 

inflammation.   

Cutaneous and arthritic inflammation had different effects on spinal FLI. Seven days 

of cutaneous inflammation of the hindpaw resulted in an increase in FLI in ipsilateral 
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L3-5 lamina I whereas 7 day knee joint arthritis had no effect in this lamina (naive: 

total FLI-nuclei = 23±3, cutaneous: 54±11, arthritis: 26±3, significant effect of lamina 

F(5,70)=32.9, p<0.0001; non-significant (ns) effect of inflammatory state 

F(2,14)=0.14, p=0.14, significant interaction F(10,70)=4.93, p<0.0001, Fig. 2A). 

Although neither dorsal hindpaw inflammation nor knee joint arthritis had any 

significant effect on FLI in any other laminae, in laminae IV-V there was a trend for 

an increased in FLI in arthritis (Fig. 2A. Naive 14±0.5, cutaneous: 9±2, arthritis 

20±4).  

Generally, there were greater numbers of FLI-positive neurons in lamina I than in all 

other laminae, under all conditions (Figs. 2 & 3).  

 

FLI-positive spinal dorsal horn neurons following A- and C-nociceptor stimulation 

in naïve animals. 

A- and C-nociceptor stimulation in naive animals evoked FLI in multiple laminae 

(Figure 2B, 3A-C, J, L, N, 2 way ANOVA effect of stimulation type F(2,11)=13.2, 

p=0.0012, effect of lamina F(5,55) = 98.07, p<0.0001), interaction F(10, 55) = 19.67, 

p<0.0001). In the ipsilateral lamina I of L3-5, both C- and A-nociceptor activation of 

the hindpaw dorsum evoked significantly more FLI-positive neurons than in 

un-stimulated naïve rats (un-stimulated (control), 23±3; C-fiber stimulated, 131±14 
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(p<0.0001); A-fiber stimulated, 82±2 (p<0.0001, Fig. 2B, 3A-C, J, L). C-nociceptor 

activation also increased the number of FLI-positive neurons in lamina II (p<0.0001) 

with no effect in deeper laminae (Fig. 2B, 3E, H, J, K). There was a trend for an 

increase in lamina III attributable to a single outlier in this group (44 FLI neurons 

compared to the group mean 13.6 ± 7.6). When compared with un-stimulated animals, 

A-nociceptor stimulation had no effect on FLI-neurons in any area other than lamina I, 

(Figures 2 and 3). 

 

FLI-positive spinal dorsal horn neurons following A- and C-nociceptor stimulation 

in areas of primary and secondary hyperalgesia  

Primary hyperalgesia.  

In lamina I, both A- and C-nociceptor activation in the area of primary hyperalgesia 

resulted in significantly more FLI-positive neurons compared with non-inflamed 

animals, indicating a greater spinal activation to both C- (naïve-stimulated total: 

131±14, inflamed-stimulated 243±26, F(3,18)=43.77, p<0.0001, Fig. 3B, E, J, K, 4A) 

and A-nociceptive inputs (naïve-stimulated: 82.2±2, inflamed-stimulated: 154±20, 

F(3,17)=26.5, p<0.0001, Fig. 4B, 3C, F) in primary hyperalgesia. There were no 

changes in FLI in response to either A- or C-nociceptor activation in other laminae, 

(Fig. 4C & D laminae IV-V shown for comparison). In primary hyperalgesia, there 
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was, therefore, increased spinal activation only in lamina I neurons in response to 

both A- and C-nociceptor stimulation.  

Secondary hyperalgesia.  

Both C- and A-nociceptor stimulation of the hindpaw (in the area of secondary 

hyperalgesia) evoked significantly more spinal FLI-positive neurons in laminae I & II 

in animals with knee joint arthritis when compared to the unstimulated arthritic 

controls (e.g. in lamina I, Fig. 5A. C-nociceptors: arthritis-unstimulated total: 26±3; 

naïve-stimulated: 131±14; arthritic-stimulated: 184±23, F(3,18)=62.99, p<0.0001. Fig 

5B. A-nociceptors: arthritis- unstimulated: 26±3; naïve-stimulated: 82±2; 

arthritic-stimulated: 179±19; F(3,17)=69.13, p<0.0001). When C-nociceptors were 

stimulated in the area of secondary hyperalgesia, although there was a trend for an 

increase of ~30% in FLI this did not reach significance compared to stimulation alone. 

The effect on spinal lamina I FLI can therefore be considered equivalent to that seen 

when C-nociceptors were stimulated in naïve animals (Fig. 5A). In contrast, there 

were significantly more FLI neurons in lamina I after A-nociceptor stimulation in 

secondary hyperalgesia than after A-nociceptor stimulation alone (Fig. 5B), 

supporting the hypothesis that spinal neurons are sensitised to A-nociceptor inputs in 

secondary hyperalgesia.  

In lamina II, C-, but not A-nociceptor stimulation resulted in significantly greater FLI 
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than in arthritic animals alone (Fig, 5C, F(3,18)=7.73, p=0.0016), but the effect of 

C-nociceptor stimulation was equivalent in both naïve and arthritic animals, 

indicating no additional sensitisation to C-inputs in secondary hyperalgesia. 

A-nociceptor stimulation had no overall effect in lamina II compared to arthritis alone 

(Fig. 5D, F(3,17)=2.3, p>0.05). The effect of A-nociceptor stimulation in arthritic 

animals was slightly but not significantly greater than in arthritic animals alone (Fig. 

5D) but was not greater than in stimulated naïve animals, again indicating no 

additional sensitisation in lamina II neurons in secondary hyperalgesia. In deeper 

laminae IV-V, C-nociceptor stimulation had no effect on spinal FLI (F=2.47, p=0.1) 

whereas A-nociceptor stimulation in arthritis had equivalent effects to arthritis alone. 

A-nociceptor stimulation alone (Fig. 5E) evoked significantly less spinal FLI than 

either arthritis, or arthritis plus A stimulation (Fig. 5F & 3M, O, F=6.69, p=0.0035). 

In secondary hyperalgesia there was therefore an increased activation of lamina I 

spinal neurons as a consequence of A-nociceptor stimulation, but no effect following 

stimulation of C-nociceptors.  
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Discussion: 

Chronic pain and hyperalgesia are disabling and extremely difficult to treat, 

particularly secondary hypersensitivities such as allodynia and hyperalgesia, which 

occur in areas remote from the site of injury. Secondary hyperalgesia is usually 

reported as being evoked by mechanical but not thermal stimuli, in contrast to primary 

heat and mechanical hyperalgesia [4,49], although some early studies did report 

secondary thermal hyperalgesia (e.g. [19]). Our approach of preferential activation of 

A- and C-heat nociceptors [34,42] allowed us to compare hypersensitivity and spinal 

activation to A and C-nociceptor stimulation in areas of primary and secondary 

hyperalgesia, without the confound of a sensory modality-specific change 

(mechanical versus thermal stimulation).  

 

In arthritic secondary hyperalgesia we observed sensitisation to thermal stimulation of 

A- but not C-nociceptors. Although A-nociceptor sensitivity in secondary 

hyperalgesia can also be regulated through peripheral mTOR-dependent translational 

mechanisms [45], there is no strong evidence to support peripheral nociceptor 

sensitisation in areas of secondary hyperalgesia ([6,9,29,58] see also [53]). As a result 

of a series of elegant experiments, secondary hyperalgesia has been hypothesised to 
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result from central sensitisation, driven by C-nociceptors [68,72] which sensitise 

spinal neuronal responses to capsaicin-insensitive A-nociceptors [29,37,60]. For 

example, selective block of A-fiber afferents attenuates mechanical secondary 

hyperalgesia [58,73]. Here we have shown for the first time that spinal nociception is 

facilitated in response to a thermal A-nociceptor stimulation in the area of secondary 

hyperalgesia, indicating that secondary hyperalgesia is actually A-nociceptor-, rather 

than stimulus-modality (mechanical versus thermal), dependent. 

 

Given that sensitisation of A-nociceptor driven reflexes occurs through central 

mechanisms, sensitised spinal neurons might be expected to show enhanced responses 

to A-nociceptor but not to C-nociceptor stimulation in arthritic secondary 

hyperalgesia. We show increased FLI in both superficial and deep laminae in 

response to A-nociceptor stimulation in arthritis after seven days, indicating relatively 

early onset of central sensitisation compared to previous reports. In studies where 

stimuli did not discriminate between C- and A-nociceptor inputs, mechanical or 

thermal stimulation in secondary hyperalgesia increased FLI in superficial [2] and 

deep dorsal horn [2,51] but significant changes were seen after approximately 3 

weeks in monoarthritic rats. There were however no changes in spinal FLI following 

additional mechanical stimulation in secondary hyperalgesia resulting from deep 
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muscle inflammation [54]. Sensitisation of spinal neurons to A-nociceptor input may 

result from the unmasking of silent A-nociceptive inputs by C-nociceptor activation, 

which can occur within 7 days of inflammation onset, and/or by modulation of 

descending controls [21,61]. For example, descending inhibitory control from the 

PAG has differential effects on A- versus C-nociceptor-evoked spinal events [28,41], 

preferentially suppressing C-fiber-mediated inputs, while preserving 

sensory-discriminative input conveyed by A-nociceptors [21]. The observations that 

the PAG differentially inhibits A- versus C-fiber-evoked responses in deep dorsal 

horn, but inhibits both in superficial dorsal horn, and that functional effects of 

PAG-evoked descending controls depend on the nature of the peripheral stimulus [39], 

may explain the differences in FLI/neuronal activation in our study compared to 

others. There was, interestingly, a trend for an increase in response to 

C-nociceptor-evoked spinal FLI in lamina I (Fig. 5A). Although this did not reach 

statistical significance it is an intriguing observation that supports previous reports of 

descending inhibition of C-nociceptor inputs. This trend may indicate that spinal 

neurons are sensitised to C-nociceptor inputs from areas of secondary hyperalgesia, 

but that they are modulated by descending inhibitory controls. Variable engagement 

of such descending inhibitory controls over C-nociceptor inputs may explain the 
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variable nature of secondary behavioural thermal hyperalgesia 

[13,25,30,31,37,38,48,50,69,73].   

 

In contrast, in primary hyperalgesia in man where withdrawal thresholds to 

C-nociceptor stimulation are decreased, selective block of A-fiber afferents had little 

effect [58,73]. Both cutaneous and articular C- and A-nociceptors are sensitised in 

primary inflammatory hyperalgesia [5,44,52,65], but only C-nociceptor-evoked 

reflexes were sensitised herein. The increased FLI to both A- and C-nociceptor 

stimulation in spinal lamina I in primary hyperalgesia (Fig. 4A&B), together with the 

lack of sensitisation of A-nociceptor reflexes also suggest that there is differential 

spinal processing/descending control of A and C-nociceptor inputs in cutaneous 

inflammation/primary hyperalgesia. Dorsal hindpaw inflammation is subject to potent 

descending inhibitory influences [50,62], which could explain the lack of 

A-nociceptor-evoked reflexes. In acute inflammatory hyperalgesia (up to 3 hours) and 

following acute PAG stimulation, there is greater inhibition of C-nociceptor compared 

to A-nociceptor-evoked reflexes [17,24]. Our findings could therefore indicate a 

differential inhibition of A-nociceptor-evoked spinal nociception in more chronic 

cutaneous inflammation [28,40,47]. 
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Neurons in the superficial dorsal horn receive and process both A- and C- nociceptor 

inputs from the area of primary hyperalgesia [21,43]. On-going firing in cutaneous 

nociceptors, such as occurs in cutaneous inflammation [18,27], is thought to drive 

spinal neuronal sensitisation and activation, and to result in increased numbers of FLI 

neurons in the superficial dorsal horn [8]. Additional peripheral stimulation would be 

expected to activate these sensitised nociceptors [35] and further increase activation 

of spinal neurons [33,51]. Indeed mechanical stimulation of arthritic ankle joints and 

low intensity touch stimuli in an area of cutaneous inflammation both increase the 

number of FLI neurons in both superficial and deep dorsal horn [2,33]. In contrast, 

our results indicate that additional A- and C-nociceptor stimulation increases FLI in 

the superficial dorsal horn alone. This suggests that spinal neuronal activation evoked 

from the area of primary hyperalgesia is restricted to the superficial but not the deep 

dorsal horn when selectively activating either A- or C-nociceptors, when any 

confound due to the concurrent activation of both A- and C-fibers activating local 

spinal networks and descending controls is removed [21,28,43].  

 

The expression of Fos protein has been widely used as a marker of neuronal activation 
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in nociception [20], in identifying populations of neurons activated by acute 

peripheral nociceptive input [23] or inflammation [8,32]. Cutaneous inflammation (7 

days), without additional stimulation, activated neurons in only lamina I, and not deep 

laminae, consistent with previous findings after two weeks of cutaneous inflammation 

[32,36] and following acute thermal and chemical stimulation [16,23]. In contrast, 

CFA-induced arthritis alone had no effect on FLI in spinal dorsal horn, again 

consistent with previous findings, where changes in deep dorsal horn at 1 week were 

lower, or absent compared with earlier (1-2days) or later (>3 weeks) time points 

[1,3,32]. There are therefore spatiotemporal differences in spinal cord neuronal 

activation between hindpaw cutaneous and knee arthritic inflammation. The lack of 

increased FLI in spinal cord of arthritic rats may be attributable to engagement of 

multisynaptic networks, resulting in spinal inhibition.  

 

In control animals, the distribution of FLI neurons activated by A- versus 

C-nociceptor stimulation is consistent with our previous study where the majority of 

FLI neurons are located in the superficial dorsal horn. Both A- and C-nociceptors 

synapse in this region, but there were more neurons activated by C- as opposed to 

A-nociceptor stimulation [28]. Although a limited number of A-nociceptors also 

terminate in deep dorsal horn [36,57], there was no significant difference in the 
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number of activated neurons evoked by A- and C-fiber stimulation in control animals. 

Also, repeated noxious stimulation in naïve animals can evoke potent descending 

inhibition (diffuse noxious inhibitory controls, DNIC) [63] which could result in the 

lower FLI-levels seen in these animals. DNIC has been hypothesised to “…constitute 

both a filter which allows the extraction of the signal for pain and an amplifier in the 

transmission system which increases the potential alarm function of the nociceptive 

signals.”[63]. This hypothesis is supported by our finding that activation of the 

protective ‘position-sense’ A-nociceptors alone activates many fewer spinal neurons 

than the same stimulation in secondary hyperalgesia (Fig 5F), as we hypothesise that 

the need for an ‘alarm function’ would be greater in the face of existing damage, such 

as arthritis.   

 

Taken together, our results identify distinct roles for A- and C-nociceptors in 

signalling inflammatory primary and secondary hyperalgesia. Importantly, we provide 

direct evidence that in secondary hyperalgesia thermal responses to A-nociceptors are 

facilitated. We therefore conclude that secondary hyperalgesia is A-nociceptor-, rather 

than stimulus-modality (mechanical vs. thermal) dependent, and that it is underpinned 

by spinal neuronal sensitisation to A-nociceptor inputs in laminae I and IV/V. In 

contrast, only C-nociceptor-evoked reflexes were sensitised in primary hyperalgesia. 
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Our data suggest that neurons in the superficial dorsal horn receive and process A- 

and C-nociceptor inputs from the area of primary hyperalgesia (Fig. 6). C-nociceptor 

inputs drive the spinal hyper-excitability in superficial laminae, activating spinal and 

bulbo-spinal circuitry that results in a facilitation to A-nociceptor inputs in both the 

superficial and deep dorsal horn to mediate secondary hyperalgesia, and to 

C-nociceptor inputs in primary hyperalgesia.  
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Figure legends 

Figure. 1. Withdrawal thresholds in response to A- and C-nociceptor stimulation 

in primary and secondary hyperalgesia.  

A) Thresholds for C-nociceptor-stimulated noxious withdrawals were lowered only in 

the area of primary hyperalgesia in animals with hind paw inflammation, and were 

unaltered in an area of secondary hyperalgesia in animals with knee joint arthritis. 

B) Thresholds for A-nociceptor-stimulated noxious withdrawals were lowered only in 

the area of secondary hyperalgesia in knee joint arthritis and not in the area of primary 

hyperalgesia in animals with hind paw inflammation. 

(Data are mean+95%CI, *p<0.05, **p<0.01, planned Dunnett’s tests, n=14 all 

groups). 

 

Figure 2. Different effects of inflammation or thermal stimulation on spinal 

c-fos-like immunoreactivity (FLI). 

A) Cutaneous and arthritic inflammation have different effects on spinal FLI. Dorsal 

hind paw cutaneous inflammation resulted in an increase in FLI in lamina I, but in no 

other laminae (data are mean+95% confidence interval, ****p<0.0001 c.f. naïve, 

mixed design two way ANOVA, planned Dunnett’s tests. n=5 naïve, 6 cutaneous 

inflammation, 6 knee joint arthritis). B) C- and A-nociceptor stimulation have 
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different effects on FLI expression in nociceptive spinal laminae. Dorsal hind paw 

stimulation with heat ramps that preferentially activate either C- or A-nociceptors 

significantly increased FLI in lamina I. In the same animals, C-nociceptor activation 

also increased FLI in lamina II, whereas A-nociceptor activation had no effect in this 

or other laminae of the spinal cord (****p<0.001, ns not significant compared to 

naïve, planned Dunnett’s tests. n=5 naïve, 5 C-stimulation, 4 A-stimulation). 

 

Figure 3. c-fos-like (FLI) immunoreactivity in spinal cord. 

A) Photomicrographs of representative images showing FLI in naïve rat; and B) the 

effect of C-nociceptor, and C) A-nociceptor stimulation on FLI immunoreactivity. 

Note that data shown in Figures are the sum of FLI-nuclei in 10 sections of spinal 

cord, hence in each section the number of FLI-nuclei is approximately one tenth that 

in the associated graph. Both C- and A-nociceptor stimulation increased FLI in 

laminae I and II in naïve rats. D) In primary hyperalgesia, hindpaw C-nociceptor 

stimulation resulted in increased FLI in lamina I, but not in other laminae. E) 

C-nociceptor stimulation in primary hyperalgesia increased FLI, as did F) 

A-nociceptor stimulation. G) Knee joint arthritis had no effect on FLI compared to 

un-inflamed animals, and H) C-nociceptor stimulation in the area of secondary 

hyperalgesia did not increase the FLI compared to C-nociceptor stimulation alone (B). 
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I) A-nociceptor stimulation in the area of secondary hyperalgesia evoked a larger 

increase in FLI than the inflammation alone.  

J & K) High power image of the effect of C-nociceptor stimulation alone in laminae I 

and II in naïve animals, and in primary hyperalgesia. L & M) A-nociceptor 

stimulation alone in laminae I and II in naïve animals, and in secondary hyperalgesia. 

N & O) A-nociceptor stimulation alone in laminae IV-V in naïve animals, and in 

secondary hyperalgesia. 

 

Figure 4. Spinal activation to both A- and C-nociceptor input is greater in 

primary inflammatory hyperalgesia than in naïve rats.  

A) C-nociceptor stimulation in hindpaw inflammation resulted in an increased number 

of FLI lamina I neurons than stimulation in naïve animals, as did B) A-nociceptor 

stimulation. Cross hatched bars show naïve and inflamed animals with no additional 

stimulation for comparison. C) & D) in laminae IV-V, neither C- nor A-nociceptor 

stimulation had any effect on FLI (*p<0.05, ****p<0.0001 compared to stimulation 

in naives; †p<0.05, ††p<0.001 compared to both nociceptor stimulated groups, 

Bonferroni planned comparisons, n=6 hind paw inflammation, 4/5 naïve + 

A/C-nociceptor stim. 6 inflamed + A/C-nociceptor stim.) 
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Figure 5. Spinal activation to A- but not C-nociceptor input is greater in 

secondary inflammatory hyperalgesia than in naïve rats.  

A) C-nociceptor stimulation resulted in greater FLI in lamina I than that caused by 

knee joint arthritis, but had equivalent effects on both naïve and arthritic animals, 

whereas B) A-nociceptor stimulation in arthritic animals evoked significantly greater 

FLI than in naïve animals. Cross hatched bars show naïve and inflamed animals with 

no additional stimulation for comparison. C) In lamina II, C-nociceptor stimulation 

resulted in greater FLI than in arthritic animals, with no difference between these two 

groups whereas D) only arthritis plus A-nociceptor stimulation had any effect on FLI. 

E) C-nociceptor stimulation had no effects in deep laminae IV-V. F) A-nociceptor 

stimulation in arthritic animals evoked significantly greater FLI in deep laminae IV-V 

than in naive animals. This was due to lower FLI in stimulated naïve animals than 

arthritic or stimulated arthritic animals. Unlike in more superficial laminae, arthritis 

alone evoked similar FLI to arthritis + stimulation. (*p<0.05, **p<0.01 indicated 

groups; **p<0.01, ****p<0.0001 compared to both nociceptor stimulated groups. 

Bonferroni planned comparisons, n=6 knee joint arthritis, 4/5 naïve + A/C nociceptor 

stim., 6 arthritic + A/C nociceptor stim.). 

 

Figure. 6. A model for inflammatory primary and secondary hyperalgesia. 
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A model to explain how the neurons in superficial dorsal horn receive and process 

nociceptive input from the area of primary hyperalgesia, this leads to central 

sensitisation and enhanced activation of superficial and deep dorsal horn neurons to 

A-nociceptor input from the area of secondary hyperalgesia. 1° and 2° represent 

primary and secondary hyperalgesia, respectively. Solid lines and black triangles 

represent excitatory synapses, grey dotted lines and triangles represent inhibitory 

connections. 
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Figure 6 


