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Abstract
Aim: Despite males typically exhibiting greater muscle strength and fatigability 
than females, it remains unclear if there are sex-based differences in neuromus-
cular recruitment strategies e.g. recruitment and modulation of motor unit firing 
rate (MU FR) at normalized forces and during progressive increases in force.
Methods: The study includes 29 healthy male and 31 healthy female participants 
(18-35 years). Intramuscular electromyography (iEMG) was used to record indi-
vidual motor unit potentials (MUPs) and near-fibre MUPs from the vastus later-
alis (VL) during 10% and 25% maximum isometric voluntary contractions (MVC), 
and spike-triggered averaging was used to obtain motor unit number estimates 
(MUNE) of the VL.
Results: Males exhibited greater muscle strength (P < .001) and size (P < .001) 
than females, with no difference in force steadiness at 10% or 25% MVC. Females 
had 8.4% and 6.5% higher FR at 10% and 25% MVC, respectively (both P < .03), 
while the MUP area was 33% smaller in females at 10% MVC (P < .02) and 26% 
smaller at 25% MVC (P = .062). However, both sexes showed similar increases in 
MU size and FR when moving from low- to mid-level contractions. There were no 
sex differences in any near-fibre MUP parameters or in MUNE.
Conclusion: In the vastus lateralis, females produce muscle force via different 
neuromuscular recruitment strategies to males which is characterized by smaller 
MUs discharging at higher rates. However, similar strategies are employed to in-
crease force production from low-  to mid-level contractions. These findings of 
similar proportional increases between sexes support the use of mixed sex cohorts 
in studies of this nature.
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1   |   INTRODUCTION

Skeletal muscle contraction is regulated by the coordi-
nated activation of motoneurons and muscle fibres. The 
fundamental neuromuscular element regulating muscle 
contraction is the motor unit (MU), consisting of a motor 
neuron and the muscle fibres it innervates.1 Increases in 
muscle force are largely mediated by two neuromuscular 
recruitment strategies, the recruitment of additional, pro-
gressively larger MUs, and an increase in MU firing rate 
(FR), referred to as MU recruitment and rate modulation, 
respectively.2 Several studies have highlighted adaptative 
remodelling of MUs structure and function in response to 
exercise training, ageing and disease,3-6 which may influ-
ence recruitment strategies, however the majority of data 
are only available in males.

Males generally possess greater muscle strength than 
females in upper and lower extremities, which is largely 
explained by greater muscle size.7 Conversely, although 
task-specific, females are generally more resistant to 
neuromuscular fatigue when assessed at a normalized 
contraction level,8 which in the knee extensors, is likely 
explained by differing fibre type ratios with a 7%-23% 
greater proportion of type I fibres in vastus lateralis (VL) 
in females.9,10 Sex differences of the hormonal milieu also 
influence neuromuscular function; testosterone and oes-
trogen are the major sex hormones in males and females, 
respectively, and each exhibits a range of neuroprotective 
effects in motoneurons, such as dendritic maintenance 
and axonal sprouting.11 Furthermore, hormonal metabo-
lites are associated with the release of brain-derived neu-
rotrophic factors (BDNF),12 which are key mediators of 
synaptic plasticity.13 Acutely, differences in sex hormones 
partly explain the variability in fatigability in females 
across phases of the menstrual cycle.14 Such differences in 
the hormonal milieu are difficult to experimentally con-
trol for and may explain why females are often underrep-
resented in studies of neuromuscular physiology.15

Surface electromyography (sEMG) has been commonly 
applied to study sex-based differences of neuromuscular 
function and recruitment strategies.16,17 However, such 
approaches are limited by the distance between activated 
MUs and recording electrodes,18 offering poor quality sig-
nals in females due to the greater subcutaneous tissues,19 
and in some cases being influenced by adjacent muscles.20 
These limitations can be overcome with the use of intra-
muscular EMG (iEMG), which also has the added bene-
fit of revealing further electrophysiological parameters 

relevant to MU size and complexity.21 Although we have 
previously reported the sex-based divergent trajectory of 
MU FR from middle to older age in long-term trained 
master athletes,22 comparisons of normative values in 
healthy young males and females at differing contraction 
levels are unknown. The aims of the present study were to 
compare individual MU properties and neuromuscular re-
cruitment strategies, as well as the MU number estimates 
(MUNE) in the VL of healthy young males and females. 
We hypothesized motor unit size and firing rate would 
differ at normalized contraction levels, with no sex-based 
differences in recruitment strategies when moving from a 
low- to a mid-level contraction.

2   |   RESULTS

The means and standard deviations for the participant's 
characteristics are given in Table 1. Significant differences 
between males and females were detected for weight, 
height, BMI, peak torque and VL CSA (all P < .05). There 
was no significant sex difference for age (P = .49). There 
was a significant interaction between sex and contrac-
tion level in force steadiness (P = .008). Both males and 
females showed greater improvement in force control 
from low- to mid-level contractions (both P < .001) with 
females exhibiting a slightly greater decrease in force 
fluctuations compared with males. Individual values are 
shown in Figure 1.

At 10% MVC, the mean number of MUs isolated per 
person was 26 in males with a mean of 6 MUs per sam-
pling position, and 17 in females with 4 MUs per sampling 
position. At 25% MVC, the mean number of MUs isolated 

K E Y W O R D S

motor unit, neuromuscular junction, sex differences, vastus lateralis

T A B L E  1   Participant characteristics

Measure
Males 
(n = 29)

Females 
(n = 31) P value

Age (years) 23.7 (5.0) 22.9 (3.6) .490

Weight (kg) 81.2 (11.6) 63.1 (10.1) <.001

Height (cm) 180.3 (7.5) 165.8 (6.8) <.001

BMI (kg/m2) 25.0 (2.9) 23.0 (3.2) .012

Peak Torque (Nm) 251.65 (67.72) 158.95 (46.69) <.001

VL CSA (cm2) 28.35 (6.43) 19.00 (3.90) <.001

Note: Data are reported as mean (standard deviation). Values in bold reflect 
statistically significant (P < .05) results.
Abbreviations: BMI, body mass index; VL CSA, vastus lateralis cross-
sectional area.
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per person was 31 in males with 8 MUs per sampling posi-
tion and, 22 in females with 6 MUs per sampling position. 
A total of 1645 MUPs were inspected and included for 
analysis in males, and 1207 in females. Individual mean 
values for all functional, MU and NFM parameters are 
shown in Figures 1-4. There were no significant interac-
tions between sex and contraction level in any of the MU 

parameters. When interactions were removed from the 
model, multilevel linear regression revealed females had 
greater MU FR at both 10% (mean; M: 8.08 Hz; F: 8.79 Hz) 
and 25% (M: 8.62  Hz; F: 9.20  Hz) MVC (both P  <  .05, 
Table  2, Figure  2A). No sex-based differences (P  >  .10) 
were detected in MU FR variability at either contrac-
tion level (Table 2, Figure 2B). MUP area was smaller in 

F I G U R E  1   Box-and-jitter plots of the individual participant means, and group means (black dot) of (A) peak torque, (B) vastus lateralis 
cross-sectional area, (C) motor unit number estimates (MUNE), and (D) force steadiness at 10% and 25% maximum voluntary contraction 
(MVC), in males (blue) and females (red). CoV, coefficient of variation

F I G U R E  2   Box-and-jitter plots of the individual participant means, and group means (black dot) of (A) motor unit (MU) firing rate and 
(B) firing rate variability in males (blue) and females (red) at 10% and 25% maximum voluntary contraction (MVC)
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females at 10% (M: 741 μV·ms; F: 531 μV·ms) (P = .006), 
with a non-significant trend at 25% MVC (M: 1005 μV·ms; 
F:775  μV·ms) (P  =  .062). MUP duration was shorter at 
10% (M: 8.37 ms; F: 6.61 ms) and 25% MVC (M: 8.24 ms; 
F: 6.84 ms) in females when compared with males (both 
P < .01). There were no significant sex-based differences 
in any other MU characteristic (Table 2, Figure 3).

With increasing contraction level, both males and fe-
males exhibited higher MU FR and MU FR variability, as 
well as greater MUP amplitude and larger MUP area (all 
P ≤  .001, Table 3, Figures 2 and 3). NFM area and NFM 
jiggle were greater, and NFM duration was shorter, with 
the higher contraction level, differing to a similar extent in 

males and females (all P < .001, Table 3, Figure 5). There 
were no interactions between sex and contraction level in 
any of the MU parameters, indicating the difference from 
10% to 25% MVC did not differ between males and females 
(Figure 5).

3   |   DISCUSSION

This is the first study to compare neuromuscular re-
cruitment strategies and motor unit number estimates 
(MUNE) of the VL using iEMG techniques in healthy 
young males and females. Despite males being stronger 

F I G U R E  3   Box-and-jitter plots of the individual participant means, and group means (black dot) of motor unit potential (MUP) 	
(A) Area; (B) Phases; (C) Amplitude; (D) Turns; (E) Duration in males (blue) and females (red) at 10% and 25% maximum voluntary 
contraction (MVC)
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and having larger muscles, there were no differences in 
force steadiness at either low-  or mid-level contraction 
levels between sexes. At each contraction level assessed, 
females displayed smaller markers of MU size and greater 
MU FR, indicating differing recruitment strategies to 
achieve a normalized force. When assessing the differ-
ence between contraction levels, both males and females 
exhibited higher MU FR and greater MUP size, which dif-
fered to a similar extent in both sexes, indicating a similar 
recruitment strategy to generate proportional increases in 
force. In addition, there was no significant sex-based dif-
ferences in MUNE of the VL. These data reveal divergent 

neuromuscular recruitment strategies between sexes to 
achieve a normalized force, which follow similar trajecto-
ries with increasing force.

Consistent with previous studies, females exhibited 
39% smaller muscle size (CSA of the VL), which was re-
flected in a 37% lower strength.7,23,24 The greater MU FR of 
females shown here in VL is in an agreement with some, 
but not all, previously published data and again highlights 
probable muscle-specific confounders. For instance, fe-
males exhibited higher MU FR and MU FR variability 
compared with males in elbow flexors, flexor digitorum 
indicis, biceps, knee extensors and tibialis anterior.25-28 

F I G U R E  4   Box-and-jitter plots of the individual participant means, and group means (black dot) of near fibre motor unit potential 
(NFM) (A) Jiggle; (B) Duration; (C) Segment (Seg) Jitter; (D) Dispersion; (E) Area in males (blue) and females (red) at 10% and 25% 
maximum voluntary contraction (MVC)
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However, others reported no sex difference in knee exten-
sors during 30% MVC29 and significantly greater MU FR at 
100% MVC in tibialis anterior in males.30,31 As expected, in 
the current study MU FR increased with increasing force 
levels to a similar extent in both males and females, ac-
companied by greater MU FR variability. Although dif-
fering at each contraction level, the similar proportional 
increase in MU FR in males and females indicates both 
sexes follow similar discharge pattern increases from low 
to mid-level normalized contractions.

Despite large differences in muscle strength, force 
steadiness—representing the ability to hold a con-
stant force, which is also influenced by MU FR and its 
variability25,32-34—did not differ between sexes at either 
contraction level. Differing from the current findings, 
Inglis28 found that females had a greater MU FR variabil-
ity and greater fluctuation in steadiness than males during 
dorsiflexion in tibias anterior muscles, which may indicate 

a muscle-specific sex difference. In the current study, both 
males and females exhibited greater force steadiness at 
25% MVC when compared with 10% MVC, consistent with 
Inglis' finding that very high- and low-level force outputs 
have greater fluctuations compared with mid-level force 
outputs.28,35

The size of a MU can be estimated by the size of the 
MUP recorded using intramuscular electrodes. As previ-
ously mentioned, males typically exhibit larger muscle 
size than females,9,36 with increases in force mediated by 
recruitment of additional larger MUs and increases in MU 
FR. Here MUP area and duration were smaller in females, 
which reflect smaller MU size. When viewed alongside 
the greater MU FR in females, it suggests that at the nor-
malized force levels assessed here, females are more reli-
ant on MU FR than on recruitment of larger MUs, when 
compared with males. As expected, markers of MU size 
increased with larger contraction levels, as larger MUs are 

Parameter Level Beta 95%CI P value

MU FR (Hz) 10% MVC 0.73 0.14 to 1.32 .018

25% MVC 0.61 0.07 to 1.14 .031

MU FR variability (%) 10% MVC 0.26 −0.74 to 1.25 .617

25% MVC 0.49 −0.72 to 1.70 .433

MUP area (μV·ms) 10% MVC −210.08 −352.90 to −67.27 .006

25% MVC −215.41 −436.82 to 6.00 .062

MUP phases 10% MVC −0.07 −0.46 to 0.31 .707

25% MVC 0.05 −0.38 to 0.48 .823

MUP amplitude (μV) 10% MVC −62.83 −151.27 to 25.61 .170

25% MVC −92.01 −206.31 to 22.29 .120

MUP turns 10% MVC −0.19 −0.73 to 0.35 .500

25% MVC −0.10 −0.60 to 0.40 .691

MUP duration (ms) 10% MVC −1.85 −2.93 to −0.77 .001

25% MVC −1.35 −2.33 to 0.37 .009

NFM Jiggle (%) 10% MVC −0.06 −1.84 to 1.72 .947

25% MVC 0.09 −1.85 to 2.03 .928

NFM duration (ms) 10% MVC −0.16 −0.60 to 0.29 .486

25% MVC −0.02 −0.40 to 0.36 .926

NFM Seg Jitter (μs) 10% MVC −0.22 −4.29 to 3.84 .915

25% MVC 0.47 −3.42 to 4.36 .814

NFM dispersion (ms) 10% MVC 0.08 −0.22 to 0.38 .622

25% MVC 0.03 −0.25 to 0.32 .825

NFM area (kV/s2) 10% MVC 0.001 −0.71 to 0.71 .998

25% MVC −0.22 −0.97 to 0.54 .575

Note: Beta value and 95% confidence interval (CI) represent the model predicted change per unit 
from males to females, shown separately for 10 and 25% maximum voluntary contraction (MVC). All 
statistical analysis was based on multilevel mixed effect linear regression models with each subject as an 
independent cluster. The values in bold reflect statistically significant (P < .05) results.
Abbreviations: FR, firing rate; MU, motor unit; MUP, motor unit potential; NFM, near fibre motor unit 
potential; Seg, segment.

T A B L E  2   Motor unit properties in 
different sexes
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recruited to produce larger forces. Again, the trajectory of 
each was similar for males and females, indicating MU re-
cruitment strategies moving between these force levels do 
not differ between sexes.

A near fibre MUP (NFM) is derived from a MUP, such 
that is primarily composed of contributions from MU fi-
bres close to the intramuscular electrode.21 Here there 
were no sex differences in any NFM parameters at either 
contraction level. When comparing 10% MVC and 25% 
MVC contractions, NFM area increased, while NFM du-
ration decreased, albeit to a similar extent in both sexes. 
These contractions-induced alterations may be the result 
of the activation of larger MU fibres with greater conduc-
tion velocity during higher level contractions.37,38

Increases in NFM instability, as measured by NFM jig-
gle or NFM segment jitter, can reflect increases in neu-
romuscular junction (NMJ) transmission instability with 
age22,39-41 and in diabetic neuropathy.3 In the current study, 

NFM instability, as measured by NFM jiggle, increased 
with contraction level for both sexes, and to similar ex-
tents. NFM jiggle is based on variability in the amplitudes 
of NFM shapes, and although these amplitude changes 
are normalized by the size of the NFM, it is possible that 
these increases with contraction level may be due to the 
recruitment of larger MUs with more MU fibres contrib-
uting to larger NFMs at 25% MVC. Combined with the 
lack of a sex difference in NFM segment jitter, it is clear 
that NMJ transmission instability in the VL is sensitive 
to contraction level and is similar in healthy young males 
and females. However, there were no statistically signifi-
cant contraction-based differences in NFM segment jitter, 
which is based on variability in the occurrence times of 
NFM segments and is not affected by NFM size, indicating 
it is less sensitive to the influences of contraction level.

The mean values of MUNE in males (240  ±  66) and 
females (218 ± 68) reported here are similar to those we 

Parameter Sex Beta 95%CI P value

MU FR (Hz) Males 0.50 0.28 to 0.71 <.001

Females 0.43 0.18 to 0.69 .001

MU FR variability (%) Males 0.99 0.52 to 1.45 <.001

Females 1.18 0.63 to 1.72 <.001

MUP area (μV·ms) Males 273.62 215.81 to 331.43 <.001

Females 199.35 148.13 to 250.56 <.001

MUP phases Males −0.05 −0.14 to 0.04 .302

Females 0.10 −0.02 to 0.21 .098

MUP amplitude (μV) Males 188.21 153.75 to 222.67 <.001

Females 142.40 106.27 to 178.53 <.001

MUP turns Males 0.05 −0.11 to 0.20 .565

Females 0.09 −0.08 to 0.26 .316

MUP duration (ms) Males −0.16 −0.52 to 0.20 .381

Females 0.13 −0.16 to 0.42 .371

NFM Jiggle (%) Males 3.08 2.38 to 3.79 <.001

Females 3.08 2.34 to 3.82 <.001

NFM duration (ms) Males −0.40 −0.54 to −0.26 <.001

Females −0.34 −0.50 to −0.18 <.001

NFM Seg Jitter (μs) Males 0.77 −0.37 to 1.91 .188

Females 0.51 −0.85 to 1.87 .463

NFM dispersion (ms) Males −0.09 −0.23 to 0.05 .228

Females −0.05 −0.28 to 0.18 .655

NFM area (kV/s2) Males 0.98 0.68 to 1.29 <.001

Females 0.72 0.39 to 1.05 <.001

Note: Beta value and 95% confidence interval (CI) represent the model predicted change per unit from 
10% to 25% maximum voluntary contraction (MVC), shown separately for males and females. All 
statistical analysis was based on multilevel mixed effect linear regression models with each subject as an 
independent cluster. The values in bold reflect statistically significant (P < .05) results.
Abbreviations: FR, firing rate; MU, motor unit; MUP, motor unit potential; NFM, near fibre motor unit 
potential; Seg, segment.

T A B L E  3   Motor unit properties at 
different contraction levels



8 of 14  |      GUO et al.

have previously reported in male cohorts,5,41 and high-
light the repeatability of this method in this muscle 
group when applying identical experimental procedures. 
Although the MUNE should be viewed as an index rel-
ative to the number of MUs within a muscle and not a 
true anatomical count, the similar values reported here in 
males and females support minimal sex-based differences 
in the number of VL MUs. Additionally, differences in MU 
size, as reflected by MUP area at 25% MVC, were minimal 
compared with differences in total muscle size, therefore 
the current data support the notion that sex-based differ-
ences in total muscle size are largely explained by greater 
individual fibre size in males.36

Although providing a high level of detail of MU struc-
ture and function via MUPs and NFMs sampled in deep 
and superficial muscle regions, regardless of subcutane-
ous tissue amount, iEMG is sensitive to contraction level 
and reliably identifying individual MU activity at high 
levels in this muscle can be problematic. Therefore, data 
presented here were obtained during low and mid-level 
contractions only. Secondly, we did not control for hor-
monal fluctuations in females naturally occurring during 
the menstrual cycle nor the use of oral contraceptives, the 
latter of which may influence vascular tone.42 Thirdly, the 
limb dominance was not assessed and the right leg was 
uniformly measured across all the participants. This is a 
direct comparison of MU features during sustained con-
tractions in young males and females and it was not pos-
sible to accurately quantify MU recruitment thresholds, 

which may bias findings if they differ according to sex in 
the VL. Further investigations concerning neural drive 
and influence of hormones on neural drive are still re-
quired to further understand the sex-based differences in 
the motor nervous system.

In summary, when compared with males, females exhib-
ited smaller VL MUs with higher MU FR, when assessed at 
a single normalized contraction level. However, both males 
and females showed similar increases in MU size and MU 
FR from a low- to a mid-level contraction, indicating a sim-
ilar neuromuscular recruitment strategy. These results sug-
gest that although sex-based neuromuscular differences are 
apparent at a single contraction level, relative differences be-
tween levels are similar in this widely studied muscle group. 
These data do not support the notion of excluding females 
from studies of this nature.

4  |  MATERIALS AND METHODS

4.1  |  Participants

Twenty-nine healthy male and 31 healthy female par-
ticipants, aged 18-35 years, were recruited via advertise-
ment posters in the local community. All the participants 
volunteered to take part in the studies and provided 
written informed consent. Prior to enrolment, all partici-
pants completed a comprehensive clinical examination, 
and metabolic screening was conducted at the School of 

F I G U R E  5   Forest plots of the standardized regression coefficient estimate for associations between motor unit characteristics and 
contraction levels in males and females models. Beta value and 95% confidence intervals (CI) represent the standardized model predicted 
change per unit from 10% to 25% maximum voluntary contraction (MVC). All statistical analysis was based on multilevel mixed effect linear 
regression models with each subject as an independent cluster. Standardized values of each parameter make the comparisons executable 
between men and women. ‡P < .001
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Medicine, Royal Derby Hospital Centre. All participants 
were recreationally active. Participants with metabolic 
disease, lower limb musculoskeletal abnormalities, acute 
cerebrovascular or cardiovascular disease, active malig-
nancy, uncontrolled hypertension, or those on medica-
tions that impact muscle protein metabolism or modulate 
vascular tone were excluded. Stage of the menstrual cycle, 
or cycle status, was not assessed in the female partici-
pants. Methods or type of birth control was not assessed 
in the female participants.

4.2  |  Anthropometry

Body mass and height were measured using calibrated 
scales and a stadiometer, respectively, for the calculation 
of body mass index (BMI). Ultrasound was used to meas-
ure the cross-sectional area of the VL using an ultrasound 
probe (LA523 probe, B-mode, frequency range 26-32 Hz 
and MyLabTM50 scanner, Esaote, Genoa, Italy) at the 
anatomical mid-point of the muscle, which was identified 
between the greater trochanter and the mid-point of the 
patella with participants lying supine. Ultrasound images 
were acquired aligning the superior edge of the probe fol-
lowing a medial-to-lateral direction position on the skin, 
beginning, and ending the image capture at aponeurosis 
borders. A water-based conductive gel was applied on the 
surface of the ultrasound probe to enhance the fidelity of 
the image without causing excessive contact pressure on 
the skin during the acquisition of the images. Images were 
subsequently analysed using ImageJ software (National 
Institutes of Health, USA) to quantify CSA measure-
ments. The mean area of three images was taken as CSA. 
The CSA of eight female participants was measured using 
magnetic resonance imaging (MRI) with a T1-weighted 
turbo 3D sequence on a 0.25-T G-Scan (Esaote, Genoa, 
Italy). Continuous transversal images with a 6-mm slice 
were acquired and analysed by using Osirix imaging soft-
ware (Osirix medical imaging, Osirix, Atlanta, GA, United 
States) through tracing around the VL following the con-
tour of the aponeurosis. VL CSA values are available for 
23 males and 19 females.

4.3  |  Muscle strength and 
force steadiness

The maximum isometric voluntary contraction force 
(MVC) of the right knee extensor was assessed with the 
participants sitting in a custom-built chair with hips 
and knees flexed at ~90°. The lower leg was securely at-
tached to a force dynamometer with non-compliant 
straps (purpose-built calibrated strain gauge, RS125 

Components Ltd, Corby, UK) slightly above the medial 
malleolus. Surface adhesive electrodes (detailed below) 
were placed on the skin. A seat belt was fastened across 
the pelvis to minimize movement of the upper trunk dur-
ing the test. To obtain the external knee joint moment 
arm, the distance from centre of the force strap to the lat-
eral femoral condyle was measured. After a standardized 
warm-up of submaximal contractions, participants were 
instructed to perform each trial with maximal effort, with 
real-time visual feedback and verbal encouragement. This 
was repeated a further two to three times, with 60 seconds 
rest intervals between each, and if the difference between 
last two attempts was less than 5%, the highest value, in 
Newtons was accepted as MVC. Peak torque during the 
selected MVC was also determined.

Prior to needle insertion and multiple sustained contrac-
tions, a familiarization trial was performed in which par-
ticipants were instructed to match the target force at each 
contraction level for 12-15  seconds. Following the practice 
trial, the intramuscular needle electrode was inserted into 
the mid-point of the VL, and participants were instructed to 
perform between four and six sustained isometric contrac-
tions at 10% and 25% MVC, each lasting 12-15 seconds with 
a target line displayed on the screen and real-time force feed-
back (Figure 6). Participants had 20-30 seconds rest between 
each contraction. Force steadiness was quantified as the co-
efficient of variation of the force [CoV; (SD/mean) × 100]. 
To avoid corrective actions when reaching the target line, the 
first two passes of the target (<1s) were excluded from the 
calculation. The mean CoV at each contraction level was cal-
culated from the middle two contractions.

4.4  |  Surface electromyography

An active recording sEMG electrode (disposable self- ad-
hering Ag-AgCl electrodes; 95  mm2, Ambu Neuroline, 
Baltorpbakken, Ballerup, Denmark) was placed over the 
motor point located around the mid-point of the VL, iden-
tified using a cathode probe (Medserve, Daventry, UK) 
to apply percutaneous electrical stimulation at 400  V, 
pulse width of 50 μs and current of around 8 mA (DS7A 
Digitimer, Welwyn Garden City, Hertfordshire, UK) with 
a self-adhesive anode electrode (Dermatrode, Farmadomo, 
NL) placed over the right gluteus. A reference electrode 
was placed over the patella tendon and a common ground 
electrode placed over the patella. The common ground 
electrode served for both sEMG and iEMG measurements. 
sEMG signals were sampled at 10kHz, and bandpass fil-
tered between 5 and 5  kHz (1902 amplifier, Cambridge 
Electronics Design Ltd., Cambridge, UK) and digitized 
with a CED Micro 1401 data acquisition unit (Cambridge 
Electronic Design) for offline analysis.
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4.5  |  Compound muscle action potential

The compound muscle action potential (CMAP) of 
the VL was evoked by a manually triggered stimulator 
(model DS7A; Digitimer) using percutaneous stimulation 
(Medserve, Daventry, UK) of the proximal femoral nerve 
(approximately halfway between the anterior superior iliac 
spine and the pubic tubercle) with a carbon-rubber anode 
electrode (Dermatrode self-adhering electrode, 5.08  cm 
in diameter; Farmadomo Linde Homecare Benelux Bv, 
Leiden, The Netherlands) placed over the skin overly-
ing the gluteus muscle. The stimulator voltage was fixed 
at 400  V and the pulse width at 50 μs, with the current 
increased incrementally until the M-wave amplitude pla-
teaued. At this point, the current was increased again by 
~30 mA to ensure supramaximal stimulation, ensuring a 
sharp rise time of the negative peak of the m-wave.

4.6  |  Intramuscular electromyography

A 25-mm disposable concentric needle electrode (N53153; 
Teca, Hawthorne, New York, USA) was inserted at the 
muscle belly of VL, adjacent to the recording surface elec-
trode over the motor point, to a depth of 1.5-2 cm depend-
ing on the muscle size. The iEMG shared the same ground 
electrode as the sEMG, which was placed over the pa-
tella. iEMG signals were recorded using Spike2 (Version 
9.06), sampled at 50 kHz and bandpass filtered at 10 Hz to 
10 kHz (1902 amplifier; Cambridge Electronic Design Ltd, 
Cambridge, UK) and stored for future off-line analysis.

Prior to EMG and CMAP assessments, participants 
performed a series of voluntary, low-level contractions 
once the needle was positioned to ensure adequate signal-
to-noise ratio, thus ensuring the recording needle elec-
trode was close to depolarizing fibres. Each participant 
then performed the sustained voluntary isometric con-
tractions as detailed above (Figure 6). After a 10% and 25% 
MVC contraction, to avoid repeat sampling of the same 
MUs, the needle electrode was repositioned by the com-
binations of twisting the bevel edge 180 degrees and with-
drawing by ~5 mm. This process was repeated until four 
to six contractions from spatially distinct areas (from deep 
to superficial portions) and recorded.18 Participants had 
~30 seconds rest between each contraction.

4.7  |  EMG analysis

Decomposition-based quantitative electromyography 
(DQEMG) software was used to detect motor unit poten-
tials (MUPs), extract motor unit potential trains (MUPTs) 
generated by individual MUs from the sustained iEMG 

signals (ramps excluded) and estimate, via ensemble av-
eraging, their corresponding surface MUPs (sMUPs) from 
the sEMG signals.43 MUPTs that were composed of MUPs 
from more than one MU or had fewer than 40 MUPs 
were excluded. The occurrence times of individual MUPs 
within a MUPT were used to trigger and align sEMG sig-
nal epochs for ensemble-averaging to produce an estimate 
of their corresponding sMUPs. All MUP and sMUP tem-
plates were visually inspected and their markers adjusted, 
where required, to correspond to the onset of negative 
phase (sMUP only), end, and positive and negative peaks 
of the waveforms.

MUP amplitude was measured from the maximal pos-
itive and negative peaks, and the MUP area was taken as 
the total area within the MUP duration (onset to end) and 
is indicative of MU size. The number of phases and turns 
are measures of MUP complexity and are classified as 
the number of components above or below the baseline 
(phases) and a change in waveform direction of at least 
25 μV (turns), which indicates the level of temporal dis-
persion across individual muscle fibre contributions to a 
single MUP. MU FR was assessed as the rate of MUP oc-
currences within a MUPT, expressed as the number of oc-
currences per second (Hz). MU FR variability is reported 
as the coefficient of variation (CoV) for the interspike in-
terval (ISI) displayed as a percentage.

A near fibre MUP (NFM) is defined as the acceleration 
of its corresponding MUP (Figure 6) and calculated by ap-
plying a second-order, low-pass differentiator to the MUP 
which effectively reduces the recording area of the needle 
electrode to within ~350 μm, thereby ensuring only poten-
tials from fibres closest to the needle electrode significantly 
contribute to the NFM and reducing interference from dis-
tant active fibres of other MUs. All NFMs (and correspond-
ing MUPs) without clear spikes were rejected from analyses. 
NFM jiggle is a measure of the shape variability of consecu-
tive NFMs of an MUPT expressed as a percentage of the total 
NFM area. NFM segment jitter is a measure of the temporal 
variability of individual fibre contributions to the NFMs of a 
MUPT. It is calculated as a weighted average of the absolute 
values of the temporal offsets between matched NFM seg-
ments of consecutive isolated (ie, not contaminated by the 
activity of other MUs) NFMs across an MUPT expressed in 
microseconds. NFM dispersion is the time, in ms, between 
the first and last MU fibre contributions.21

4.8  |  Motor unit number estimates

The MUNE value was derived by dividing the negative 
peak area of the ensemble averaged mean surface MUP 
(msMUP) from 25% MVC into the negative peak area of 
the CMAP.44 An msMUP is an ensemble average of the 
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negative-peak onset aligned, sMUPs of the MUs sampled 
from a muscle. The negative peak area of the msMUP 
was divided into the negative peak area of the electrically 
evoked CMAP.45 MUNE values are available for 15 males 
and 15 females.

4.9  |  Statistical analysis

All of the statistical analysis was performed using RStudio 
(Version 1.3.959 for macOS).46 Descriptive statistics of 
participant characteristics are presented as mean ± stand-
ard deviation (SD). Student's unpaired t-test was used to 
compare physical parameters (age, BMI, MVC and CSA). 
As multiple MUs were recorded from each participant, 
multi-level mixed-effect linear regression analysis was per-
formed to investigate these MU parameters as well as 
force steadiness with sex and contraction level as factors 
through the package lme4 (Version 1.1.23).47 In the linear 
mixed models, the first level was single motor unit; single 
motor units were clustered according to each participant 
to form the second level, which was defined as the partici-
pant level. This linear mixed-effect modelling framework 
is suitable for data of this nature as it: (i) incorporates the 
whole sample of extracted MUs not just the mean values 
obtained from each participant, which preserves variabil-
ity within and across participants simultaneously to the 
greatest extent; (ii) handles missing data better than an 
analysis of variances (ANOVA) framework as the removal 
of a single missing observation has a much smaller effect 
in the mixed model; and (iii) provides coefficient estimates 
that indicate the magnitude and direction of the effects of 
interest.48 Interactions were first examined and where not 
present they were removed from the model, sex and con-
traction level were explored individually. The results are 
displayed as coefficient estimates, 95% confidence inter-
vals and P-values. Standardized estimates were calculated 
through the package effectsize (Version 0.4.5)49 for forest 
plotting. For data visualization, individual participant 
means and group means were shown in box-and-jitter 
plots. Statistical significance was assumed when P < .05. 
Based on the models used, P values close to .05 were also 
addressed.50
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