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Abstract 

Temperature measurement of internal components of a jet engine is a crucial control parameter to 

ensure its component life and efficiency. Particularly for thermal analysis of internal components 

of jet engines, irreversible thermochromic paints (TPs) have been developed at Rolls-Royce plc. 

to evaluate the surface temperature of engine components where it is otherwise impossible. TPs 

change color with respect to an increased temperature whereby the resulting change in the TP color 

corresponds to the maximum temperature experienced by the surface of engine components during 

testing.  To improve the reliability and reproducibility of the temperature measurement by TPs, 

this work explored the potential use of diffuse reflection Fourier-transform infrared spectroscopy 

(DRIFTS) combined with partial least squares regression (PLSR) analysis. The outcome of the 

prediction of the raw and pre-processed datasets was compared and discussed. The major 

contributors to the prediction models were the change in the property of the surface M-OH bonds, 
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the structural change of the inorganic pigments and fillers, and their solid-state reaction at a higher 

temperature. The result showed improved reliability of the prediction model after the combined 

pre-process treatments with reported RMSEC of 4.5 °C and RMSECV of 13.0 °C using 3 latent 

variables.  

Introduction 

Temperature measurement control is an important parameter to ensure component life and to 

improve the performance efficiency of machinery and engines operating at high temperature. To 

acquire the surface thermal information of turbine jet engine components, irreversible 

thermochromic paints (TPs) have been developed at Rolls-Royce plc (RR).1, 2 The surface thermal 

profile is obtained utilizing temperature-dependent color change, which is mostly due to 1) thermal 

decomposition of pigments, 2) structural changes of the inorganic pigments and fillers, and 3) 

high-temperature solid-state reaction of inorganic pigments resulting in new spinel species.3-6 The 

series of TPs at RR incorporates various thermochromic pigments such as ultramarine violet 

(Al6Na6O24S(3-4)Si6) and cobalt ammonium phosphate, to obtain the most optimal color changes 

on the applied surface. The surface temperature is determined by applying TP on engine 

components before an engine test and comparing the changed colors of the surface of disassembled 

engine components to the calibrated color-temperature reference of TP.   

Although the use of TPs provides detailed thermal information of the surfaces of the engine 

components with a temperature range from 300 to 1200 °C, the performance capability of TP 

depends on its color change that is examined by the human eye. Hence, there has been a continuous 

effort to improve the precision of the temperature measurement, where it is currently limited to the 

visible color change of TP. One approach to refine existing TP technology is the use of non-contact 

and non-destructive spectroscopic surface analysis techniques. Specifically, temperature 
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measurement using TP may improve by capturing spectroscopic information outside of the visible 

spectrum and correlating the chemical information to the temperature at which TP was exposed. 

The spectral information collected from a sample surface can be analysed with multivariate 

analysis to highlight the most important spectral information related to the variable factors of 

interest. The use of chemometrics techniques in combination with spectroscopy, namely diffuse 

reflection infrared Fourier-transform spectroscopy (DRIFTS), has been widely applied in many 

fields such as geological analysis, art conservation, and food science to monitor the chemical 

change of samples to discover otherwise elusive information.7-10  Data collection by DRIFTS is 

also both fast and non-destructive, which is beneficial for inspection and temperature measurement 

of TPs on post-test engine components.  

A widely used data processing method for spectroscopy is partial least squares regression (PLSR). 

One of the main benefits of PLSR is that it enables correlation of observed information in a dataset 

with the independent variable(s) to develop a quantitative prediction model. It is a rapid, 

interpretive method that utilises the most important chemical information from a material of 

interest, and its statical analysis allows the user to comprehend the most significant contributing 

factors to the predicted outcome. The use of DRIFTS combined with chemometrics technique to 

determine the temperature of TP has never been reported. Therefore, the present work explores the 

potential application of DRIFTS-PLSR analysis to predict the temperature of a TP after thermal 

treatment. The raw and pre-processed datasets were compared to improve the prediction model 

and the statistical information obtained from PLSR was used to interpret the spectral dataset in 

relation to the thermal behavior of the TP.  

 

Theory 

Partial Least Square Analysis 



4 

 

Spectral information is often processed using multivariate analysis to reveal relationships between 

the sample and changing variables or processing methods. PLSR works by using regression of a 

dataset whose mathematical process is expressed as:11 

𝑿 = 𝑻𝑷′ + 𝑬    (1) 

where X is the original matrix of the spectral data, T and P are the score values and loading 

spectrum of a latent variable (LV), or a dimension of the dataset, respectively, and E is the residual 

matrix obtained after regression of each LV, which is used as the matrix for the succeeding LV. In 

spectroscopic applications, T values are often used to describe the level of similarity or differences 

of a sample within the whole population. It is a useful value to observe the trends of the collected 

spectral sample to the developed model. P is used to determine which component(s) of a spectrum 

had contributed to the development of a model in each LV.12 For a further explanation, refer to the 

paper by Wold, et. al.11 

 

Pre-Processing 

To acquire the most relevant information of interest, it is a common practice to treat the dataset 

with pre-processing algorithms. This step often excludes unwanted information such as baseline 

shifts and noises to highlight more relevant information, which depends on the physical and 

chemical nature of the sample as well as the end goal of the analysis. In this work, the following 

pre-process treatments were applied to maximise the use of chemical information of the TP from 

the spectra: standard normal variate transformation (SNV), autoscale, and orthogonal signal 

correction (OSC). These pre-processing were applied in the respective order to the X-block 

(spectral data) and the Y-block (temperature of TP) were mean-centred.  

SNV is a process in which the spectra are normalised by the standard deviation of the intensity 

values at each spectral index, expressed as: 
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𝑆𝑁𝑉𝑖 =
(𝑥𝑖−�̅�)

√∑(𝑥𝑖−�̅�)
2

𝑛−1

   (2) 

Where SNVi is the transformed intensity value at each ith wavenumber index, x is the original 

intensity value at i, x̄ is the average intensity of all spectra at i, and n is the number of spectra 

collected. In the context of a spectroscopic application, SNV normalises each spectrum to its 

standard deviation; each spectrum weighs in equally to the model.13 

Autoscale was then applied after the SNV treatment. Autoscale is arguably one of the most used 

pre-processing methods, which mean-centres the dataset and normalises to its new standard 

deviation: 

𝑀𝐶𝑖 = 𝑥𝑖 − �̅�, 𝐴𝐶𝑖 =
(𝑥𝑖−�̅�)

√∑(𝑀𝐶1−𝑀𝐶̅̅ ̅̅ ̅)2

𝑛−1

  (3) 

 where MCi is the new spectral intensity after the mean-centring process and ACi is the new 

spectral intensity after the autoscaling process at each spectral index. The mean-centred spectrum 

possesses a unique identity within the dataset, and by normalising the spectrum by its standard 

deviation of mean-centred spectra, the value at all wavenumbers of a spectrum holds equal 

importance. Ultimately SNV normalises the spectral dataset per spectrum and autoscale per 

wavenumber.  

Finally, orthogonal signal correction (OSC), which is a powerful tool to reduce background 

noise,14 was applied to the dataset.  After this process, the first LV contains the minimal covariance 

between the changes in the spectra to increasing temperature, therefore, extracting the maximum 

correlated spectral information with respect to the increasing temperature. The resulting dataset 

contains a highly linear relationship between X-block and Y-block. OSC works in such a way that 

it finds information of X that is orthogonal (unrelated) to the trend of Y: 
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𝑻∗ = (1 − 𝒀(𝒀′𝒀)−1𝒀′)𝑻    (4) 

where the T* is the updated orthogonal score vector, whose predicted response is calculated in the 

same manner as PLSER. By applying OSC after SNV and autoscale, which highlights all the 

important spectral information for prediction, the outcome of the prediction can be improved 

drastically as compared to the outcome using the raw data.  

 

Statistical Analysis 

To evaluate the quality and fitness of the developed model, it is important to evaluate the statistical 

analysis to determine any outliers, trend, or bias caused by the model development. Q-residuals 

and Hotelling's T2 are two reliable statistic values to find data points that could ultimately affect 

the model quality significantly due to the unique properties of which a data point may contain.15 

Q-residual evaluates the fitness of the data points to the developed model using the residual matrix 

of each latent variable (LV). An abnormal value of Q-residual of a data point in comparison to the 

sample population may indicate that the sample may contain a systematic or random error from 

data collection or pre-processing. 

Hotelling's T2 indicates the fitness of the correlation between samples and the prediction model.  

Note that, unlike Q-residual statistics, Hottelings’ T2 incorporates the score matrix, T, that is used 

to explain the nature and behavior of the samples within the model, rather than evaluating the 

residual vector of each LV.15 Ultimately, Hotelling's T2 describes the variation of the samples 

within the model. The outcome of the statistical methods above was used to describe the models 

of raw and pre-processed data and to compare the effect of pre-processing.  

 

Materials and Method 
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Thermochromic Paint (TP) 

Samples of TPs were prepared at Rolls-Royce PLC, Derby, United Kingdom. TP calibration 

coupons were prepared by cold-spray painting the TP on coupons (15 × 25 × 2 mm) of Nimonic75, 

cured at 300 °C for an hour, and left to cool at room temperature for an hour. Each coupon was 

then heated to the desired temperature in a Thermal Cycling furnace (Carbolite, UK) in the air for 

3 minutes. After 3 minutes, the coupon is cooled to room temperature.  A set of calibration coupons 

were prepared in the range of 470 to 1260 °C with 10 °C incrementations. The thickness of the TP 

layer on the coupons was measured by a PosiTector® 6000 (DeFelsko®, USA), to ensure 

consistent thickness for all coupons (see Table S1). 

A gradual color change of TP was obtained by heating a bowtie-shape Nimonic75 sample with a 

customized induction heater (Bowyer Engineering, UK). Three bowtie samples were prepared by 

spray painting the TP onto a bowtie shaped Nimonic75 (50 × 180 × 2 mm) and the samples were 

cured at 300 °C for an hour. The bowtie samples were cooled for an hour at room temperature then 

heated for 3 minutes at the highest temperature of 1200 °C at the narrowest point of the sample 

where thermocouples were welded. (Fig 1 & Fig2). The bowtie samples were used for line-scan 

measurement to test the prediction model on a surface with gradual and continuous color change. 

 

Fig 1: An image of the bowtie sample painted with TP, prepared as shown by a customized 

induction heater. The hottest temperature was set to be 1200 °C where the TP turned black. The 

spectra used for prediction were collected along a straight line in the middle with increments of 

5mm. 

 

Diffuse Reflection Infrared Fourier-transform (DRIFT) Spectroscopy 
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Diffuse reflection infrared Fourier-transform (DRIFT) spectroscopy allows the collection of 

structural information of the surface of TP in a non-destructive manner with minimal sample 

preparation. It is also beneficial for analysis of non-smooth surface as the process considers both 

absorption and scattering of the incident light by the surface using Kubelka-Munk transformation, 

which is approximately proportional to the absorption spectra:16  

𝐾

𝑆
=

(1−𝑅
∞
)2

2𝑅
∞

     (5) 

where R∞ is the reflection of the surface, which is the ratio of the absorption coefficient, K, and 

the scattering efficient, S. The IR spectra of the calibration coupons and bowtie samples were 

collected using ALPHA FT-IR spectrometer (Bruker, Germany) equipped with the UP-DRIFT 

module (Bruker, Germany). The spectra were obtained in the Kubelka-Munk with atmospheric 

compensation mode from 400 to 4000 cm-1, with the sample scanning number of 32 and resolution 

of 4 cm-1. Each spectrum is the average spectrum of three measurements at different locations of 

the coupon to simulate random sample collection. The line measurement of the bowtie was taken 

by obtaining a spectrum at every 5 mm in the centre line (Fig 2).  

 

Fig 2: The scheme of the resistance heater testing of a painted bowtie. Thermocouples were welded 

at the narrowest position of the bowtie (noted as “location of highest temperature”). The 

temperature decreases toward the edge. 
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Data processing and PLSR analysis were executed using MATLAB 2017b and its PLSTtoolbox 

7.0 by Eigenvector (The MathWorks Inc., USA). 

Results and Discussion 

Spectroscopic Analysis 

To develop a prediction model from spectroscopic data, understanding the original dataset (i.e. the 

chemical change over increasing temperature) is crucial to optimise the model specifically for the 

materials of interest. The raw spectra of calibration coupons, which were thermally treated by 

increments of 10 °C, are presented in Fig 4a. In the spectral region above 3000 cm-1, there were 

two different bands associated with -OH stretching, which were at 3357 cm-1 assigned to the 

surface M-OH stretching from ultramarine violet, silica, and alumina pigments (Fig 3b - d),17, 18 

and at 3242 cm-1 from -OH group present in the paint resin (Fig 3e). The intensity of the M-OH 

band of the inorganic pigments increased at around 580 °C whereby the maximum intensity was 

observed at 610 °C and the peak decreased at higher temperatures. This is correlated to the increase 

of the M-OH bounding site on the surface of the pigments upon heating where the band decreases 

thereafter due to thermal dehydroxylation.19 Further, its band maxima position shifted to 3617 cm-

1 at around 860 °C, which corresponds to the structural change of alumina pigments leading to 

altered vibrational activities of Al-OH stretching on the surface.17, 20 The M-OH stretch band 

completely disappears by 980 °C, which is also observed in the corresponding O-H bending peak 

at 1628 cm-1. 

The sharp peaks at 3073, 3052, 2959, 2926, and 2854 cm-1 are attributed to stretching modes of C-

H bonds of the resin mixture which burns off by 620 °C. In the same region, there was N-H 

stretching band from cobalt ammonium phosphate (Fig 3a), which overlaps with spectra of the 
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resin. The impact of the presence of these organic peaks on the prediction model will be discussed 

later. 

After the disappearance of the M-OH bands at around 980 °C inorganic pigments of alumina, silica, 

and ultramarine pigments show spectroscopic activities of thermal decomposition, solid-state 

reaction and structural transformation. One of the two most notable peaks is observed in the region 

of 1200 – 1350 cm-1 after the disappearance of organo-silicone resin. These intense peaks can be 

assigned to the overlapping of P-O, Si-O-Si, and Si-O-Al bands from the inorganic pigments and 

fillers, which remain in the TP above 1000 °C.19, 21, 22 The peaks remaining at higher temperature 

are attributed to the silicate glass surface that melted on the coupon surface, which was observed 

under SEM (see Figure S2).  
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Fig 3: DIRFT spectra of a) cobalt ammonium phosphate; b) ultramarine violet; c) silica; d) 

alumina; e) paint resin. The materials were not thermally treated. See S1 for measurement 

parameter.  

As described above, the pre-processing method was applied to improve the prediction outcome. 

The pre-processed spectra (Fig 4b) were difficult to interpret, but some key features were linked 

back to the raw spectra, such as the change in the M-OH band in the region of 3000 to 3500 cm-1. 

It was noted that that the pre-processing method highlighted the shift in the baseline for the samples 
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treated above 1000 °C. Another strong feature in the pre-processed spectra was the presence of the 

silica peaks at 1991, 1869, and 1793 cm-1, which was more distinguished in the TP spectra at 

higher temperature region (> 1100 °C). 

 

Fig 4: DRIFT spectra of TP collected from UP-DRIFT apparatus. Each presented spectrum was 

an average of 3 spectra per coupon, and every 3rd spectrum (i.e. temperature increment of 30 °C) 

is presented for clarity. a) Raw spectra b) Spectra after SN-autoscale-OSC pre-processing 

treatment.  

 

Temperature Prediction Model Development 

After pre-processing, the spectral data were used to create a model to predict the temperature at 

which the TP has been exposed. The quality of the calibration curve from the pre-processed data 
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was evaluated by the value of root mean squared error of calibration (RMSEC), which is reported 

in Fig5. 6 LV was used for the model developed with the raw dataset and 3 LV for the model 

developed with the pre-processed dataset. The developed models were validated using the 

Venetian blind cross-validation method with the number data splits of 10 and 1 sample per blind. 

This means that every 10th spectrum was taken out, the model was developed and tested. The 

RMSEC of the model developed with pre-processed dataset significantly improved, which is 

7.3 °C as compared to that of the raw spectra, 48.5 °C. The root mean squared error of cross-

validation (RMSECV) was found to be 49.3 °C for the raw data model and 9.07 °C for the pre-

processed model. Another notable result was the difference in LV1 Y-block cumulative value of 

pre-processed data, which was 99.6%, as compared to the raw data, which was 11.9 %. This is the 

major effect of OSC where the spectral data were orthogonalized to Y-block variable to exclude 

as much of unrelated spectral data as possible in the first LV, which also resulted in a lower number 

of LV needed to obtain lower error values, which contributed to the robustness of the model. Lastly, 

the improvement in the linearity of the calibration curve was especially remarkable in the 

temperature window above 1100 °C, where very few spectral activities were observed in the raw 

data. 
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Fig 5: The calibration curves of a) raw spectral dataset and b) pre-processed spectral dataset. 

Linearity of calibration curves (R2 values) were reported to be 0.933 and 0.997 for the raw and 

pre-processed dataset, respectively.   

 

Table 1: The model quality result of the first 5 LVs of the raw and pre-processed data. RMSECV 

were determined by Venetian-blind cross-validation. Pre-processed data contained 99.6% of Y-

block information in LV1, demonstrating the effect of OSC.  

LV 

X-block LV 
X-block 

Cumulative 
Y-block LV 

Y- block 

Cumulative 
RMSECV 

Raw 
Pre-

process 
Raw 

Pre-

process 
Raw 

Pre-

process 
Raw 

Pre-

process 
Raw 

Pre-

process 

1 91.8 49.8 91.8 49.8 11.9 99.6 11.9 99.6 217.2 19.9 

2 5.1 31.9 96.9 81.1 59.5 0.3 71.4 99.90 124.0 14.2 

3 1.6 8.4 98.5 89.5 13.5 0.06 84.8 99.96 91.1 12.9 

4 0.8 2.9 99.3 92.4 3.2 0.01 88.1 99.97 82.5 12.8 

5 0.3 3.3 99.6 95.7 3.4 0 91.5 99.97 71.8 12.9 

 

Statistical Analysis 

After developing the prediction model, it is important to identify any outliers that may affect the 

quality of the model and prediction. The Q-residuals and Hotteling’s T2 are two reliable statistic 

values to determine data points that could be considered as outliers or of which may possess a 

unique property that ultimately affects the model significantly. In Fig6a, the reported Hotelling’s 

T2 of the pre-processed data show more closely gathered values as compared to the model of the 
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raw data, except for samples of the spectral from higher temperature coupons. This suggested that 

after pre-processing, the samples below about 1100 °C were relatively more compatible with the 

new model than the samples of higher temperature. Similarly, the overall Q-residual values of the 

pre-processed data decreased, meaning that samples became more fitted to the model itself. As for 

the robustness of the pre-processed data, it is seen in Fig6b and Fig6d that the Y-student residual 

of pre-processed data showed more randomly spread values as compared to the raw data, where 

the raw data showed a trend in the increasing and decreasing Y-student values in certain 

temperature windows. The more randomly spread Y-student values of the pre-process data 

suggested that the data became more prone to the effect of temperature-depended spectral behavior, 

improving the robustness and fitness of the prediction model. 

 

Fig 6: Q residual, Hotelling's T2, and Y-student residual values of the raw spectral dataset (a & b) 

and pre-processed dataset (c & d). The blue dash-lines indicate a 95% confidence level calculated 

by the software. 
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Scores and Loadings 

Scores and loadings provide a useful insight as the information represent which behavior of the 

dataset have been captured and used to generate the outcome. For the simplicity of interpretation 

and comparison, only the scores and loadings of the first three LV are presented. The loading 

spectra showed the main spectral activities that were correlated to the increasing temperature. In 

Fig 7a, the most notable features were the decrease of the intensities of the (Si-, Al-)OH region of 

3357 cm-1 and 1620 cm-1, as well as P-O, Si-O-Si, and Si-O-Al region in 1200 cm-1 to 1350 cm-1. 

The same phenomenon was observed in the region below 1000 cm-1 where the peak intensity 

decreases over the temperature window. These activities were positively correlated, which 

suggested that dehydroxylation and the break down of the silicate-based pigments were the largest 

contributors to the development of the prediction model. The LV2 (Fig 7b) also showed similar 

spectral behavior, however, the peaks from silica 1991 cm-1, 1869 cm-1, and 1795 cm-1 showed a 

negative correlation relative to the M-OH peak. This suggested that the increase in the silica peak, 

which was due to the shift of the baseline from the morphology change of the surface at higher 

temperatures (>1100 °C), had a major contribution to the model development. Likewise, the 

increase in the intensity at 812 cm-1 appeared to have the same effect as it is also negatively 

correlated to the M-OH peak, whose band intensity decreased over increasing temperature. Lastly, 

the score and loading spectrum from LV3 (Fig 7c & f), which only captured 1.57% of total 

information, showed the spectral activities of sharp peaks from 2854 cm-1 to 3073 cm-1 as well as 

1430 cm-1 that correspond to the organic resin components, whose rapid decomposition was seen 

between 470 °C to 600 °C. Further, the M-OH band in LV3 shows a negative correlation with M-

O peaks indicating that LV3 also included the structural change of the inorganic pigments and an 
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increase in hydroxyl site in the silica, alumina, and ultramarine violet upon heating to around 

600 °C.  

The score plots and loading spectra of the pre-processed data show significant differences as 

compared to the raw dataset (Fig 7g - l). The most notable difference was seen in the LV1 score 

plot (Fig 7j), which showed great linearity with the increasing temperature of TP, accounting for 

99.58% of Y-block. OSC extracted the linear relationship of the given samples and variables, 

however, applying SN and autoscale before OSC further improved the prediction model. As seen 

in the LV1 loading plot (Fig 7g), the pre-processing treatment highlighted the information of M-

OH bands and P-O, Si-O-Si, and Si-O-Al peaks, whose relative intensities were much closer than 

the raw data. This was the result of the OSC process where the new weight vector was calculated 

to include the maximum covariance of X-block and Y-block, and the loading showed the most 

important spectral features of the TP. In Fig 7k, LV2 contributed 0.32% to the prediction model 

where spectral activities were captured in three main temperature windows: 470 °C to 590 °C, 

590 °C to 1080 °C, and 1080 °C to 1260. These temperature windows were assigned to the 

decomposition of the organic resins, M-OH band change and baseline shifting, and the activity of 

inorganic components in the far spectral region (< 1000 cm-1), respectively. In LV3, although there 

were important spectral features observed such as the Si-O peak, the loading spectra modified 

beyond a comprehensive interpretation.  
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Fig 7: Loadings and score plots of raw (a - f) and pre-processed (g - l) datasets. Only the first three 

LVs of each dataset were presented for the simplicity of comparison. The spectral region of 

atmospheric CO2 was excluded for both models.  

 

Model Testing 

To determine the applicability of the model, a separate set of calibration coupons made from a 

different batch of the same TP were prepared and used for the prediction test. The results are 

reported in Table 2. The comparisons of raw and pre-processed data showed improved prediction 

outcome by the pre-processed data. The improvement is especially notable in the temperature 

region of 640 °C to 940 °C where the difference between the treated and predicted temperatures 

was within 25 °C. This was most likely due to the various spectral activities that took place within 

this temperature window as previously discussed. However, the prediction model still suffered to 

produce an accurate outcome for coupons heated at 1140 and 1240 °C, which was probably due to 
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the lack of spectral activities of the TP temperature at high temperature, which was observed in 

the unprocessed spectra. 

Table 2: The prediction results of the calibration coupons by increments of 100 °C. The presented 

predicted values were the average of three measurements of the same coupon and standard 

deviation was calculated from the results of the repeated trial. 

Coupon 

Temperature 

 Temperature Predicted   

Raw Data St. Dev Pre-processed St. Dev 

540 511.7 6.1 548.8 4.4 

640 638.3 8.7 643.9 0.5 

740 773.7 2.1 737.1 6.6 

840 905.3 17.5 846.9 3.8 

940 911.4 18.0 940.8 5.5 

1040 1021.8 25.0 1033.1 10.8 

1140 1183.4 30.8 1122.9 3.1 

1240 1087.9 5.3 1228.7 1.4 

 

The prediction model was further tested on a bowtie substrate heated by the resistance heater up 

to 1200 °C. The spectra for temperature prediction were collected at every 5 mm of the bowtie, 

where at 0 and 130 mm were the lowest temperature and 90 to 95 mm was the highest (1200 °C). 

Through this test, the applicability of the model on the surface with unassigned temperature with 

a gradual color change was investigated (Fig8). First, the result showed an inaccurate outcome in 

the edges of the bowtie at 0 mm and 130 mm where the predicted temperature was below the 

curing temperature. This may be due to a high concentration of organic resin components still 

present on the lower temperature region of the surface, which was seen in the raw spectra of the 

painted bowtie sample (see Figure S2). The presence of a high concentration of the resin residue 

contributed to the lowering of the prediction outcome, which must be taken into consideration for 

the real application. Secondly, the pre-processed data showed three distinct “phases” of 

temperature change: a sharp change from 0 mm to 20 mm, a gradual change from 20 mm to 60 
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mm, and another sharp change from 60mm to 95 mm. This may be explained by the LV3 score 

plot (Fig 7l), where the scores of the samples between 700 to 900 °C appeared randomly scattered, 

hence the prediction outcome was inconsistent in the corresponding region on the bowtie. 

Although the highest predicted temperature was 1206.9 °C at 85 mm, which was very close to the 

targeted temperature of 1200 °C, this nonlinear prediction outcome along the bowtie surface 

indicated that the model still suffered in the region where the spectral information was not fully 

utilized. 

 

Fig 8: The result from the line measurement temperature prediction of a bowtie sample. The 

location of measurement at around 90 to 95 mm was the hottest area during the thermal treatment 

(1200 °C). The points present the average prediction value of three measurements and error bars 

are the maxim and minimum values of the three trials. 

Conclusions 

This work demonstrated the interpretation of the temperature prediction model and spectral 

contribution of the TP that improved the accuracy of the prediction outcome. The prediction model 

became more robust after pre-processing of the spectral data while the accuracy of prediction 

drastically improved.  Although this was the very first step to explore the potential use of DRIFTS 
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and PLSR analysis to acquire thermal information of TPs, the results appeared to be promising for 

further development and application. Advancement in the present work may lead to an automation 

of temperature reading of TP and the method may be applicable for thermal analysis of other 

coating materials.  
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