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Abstract. We consider the model of random sequential adsorption (RSA) in which

two lengths of rod-like polymer compete for binding on a long straight rigid one-

dimensional substrate. We take all lengths to be discrete, assume that binding is

irreversible, and short or long polymers are chosen at random with some probability.

We consider both the cases where the polymers have similar lengths and when

the lengths are vastly different. We use a combination of numerical simulations,

computation and asymptotic analysis to study the adsorption process, specifically,

analysing how competition between the two polymer lengths affects the final coverage,

and how the coverage depends on the relative sizes of the two species and their relative

binding rates. We find that the final coverage is always higher than in the one-species

RSA, and that the highest coverage is achieved when the rate of binding of the longer

polymer is higher. We find that for many binding rates and relative lengths of binding

species, the coverage due to the shorter species decreases with increasing substrate

length, although there is a small region of parameter space in which all coverages

increase with substrate length.
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1. Introduction

Random Sequential Adsorption (RSA) is a model that has been of interest since the

1939 paper by Flory [11] and 1958 paper by Rényi [24]. Due to its many applications,

RSA is of wide interest in many fields of science, including physics [5, 7, 16], biology

[8], pharmacy [20, 23] chemistry [1, 17] and computer science [21]. Evans [9] gives

an extensive review of the topic. Talbot et al. [27] also review sequential adsorption

processes. As well as covering 1D and 2D cases, they discuss many of the additional
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effects which complicate such processes, with particular reference to applications in

colloidal systems.

An important technique in gene therapy is to deliver DNA into an defective cell’s

nucleus, which can then go on to create a functional protein to treat a disease. DNA

has many features which cause it to be spatially extended, one being the electrostatic

repulsion between phosphates on its backbone. For DNA to be condensed, these negative

charges must be neutralised. The original application motivating this present work is

that of different lengths of positively charged polymers attaching to a negatively charged

DNA to neutralise its charge, allowing it to condense and be transported into the cell’s

nucleus. In experimental work, it has been found that DNA condenses when it reaches

90% neutralisation [12]. Since it is possible to design polymers with specific properties,

our motivation is to design polymer mixtures to maximise coverage.

Figure 1. Diagram of polymer of length r bound to the substrate of length L, and a

polymer of length s attempting to bind in the remaining gap of length L − r − x

RSA is also known as the ”Parking Problem” due to the similarity with trying

to park a car on a street. This can be modelled in two ways: discrete or continuous

substrates, here we focus on the discrete case. Our aim in this paper is to analyse random

sequential adsorption (RSA) processes in which two distinct lengths of ‘polymer’ (r, s)

which are assumed to be straight and rigid bind to a long straight rigid one-dimensional

substrate, of length L (with L ≫ r, s) as summarised in figure 1. We are concerned with

how the coverage (θ, with 0 ≤ θ ≤ 1) depends on the length of the polymers concerned,

and in particular, finite size effects.

In discrete RSA, the substrate has a discrete number of unit binding sites to which

a polymer can bind. Where one polymer lands affects where others can land, as we

assume that they cannot be removed once bound, and cannot overlap. Our main interest

is the total coverage achieved by the polymers, that is, the proportion of the substrate

occupied by polymers. Cornette et al. [6] show that total coverage approaches jamming

exponentially in time. However, the jamming limit is not straightforward, as Bonnier

et al [3] analyse the pair correlation function for the adsorbed sites, revealing complex

structure in the jammed state.

Clearly this basic formulation of RSA has made a number of simplifications which do

not hold in many practical applications. For example, a more accurate model of polymer

binding to DNA would allow both the DNA substrate and the adsorbing polymers to

be flexible, and allow the adsorption to occur in three-dimensional space. A large range
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of generalised RSA systems have been covered: Tarjus et al. [26] have considered the

effect of adding desorption and diffusion of adsorbed species on the substrate to RSA.

They consider hard spheres being adsorbed onto a flat 2D surface. They use distribution

functions to describe the kinetics of the process which, instead of the jamming limit,

now approaches a dynamic equilibrium in which desorption rates balance adsorption.

Maltsev et al. [19] consider reversible adsorption and motion on the substrate, in the

case of a discrete one-dimensional substrate. In this simpler system, it is possible to

analyse how the distribution of gaps between adsorbed polymers changes over time, and

so describe the kinetics of adsorption. The addition of small rate of desorption allows

higher coverages to be attained than in pure RSA.

Complexity above one-dimensional, but below two-dimensional have been

considered by Baram and Kutasov [2], who consider a 2×∞ lattice. By using a

master equation approach, they show that the jamming density is 1

2
(1− 1

2
e−1) = 0.408,

significantly less than the one-dimensional case, which for dimers landing on a 1D

discrete substrate gives φd = 1 − e−2 = 0.86466, or for unit particles adsorbing onto

a continuous substrate gives Rényi’s constant, φc = 0.7476. Feder’s approximation for

dimers on a two-dimensional substrate gives φ2
c

= 0.5589 or φ2
d

= 74765 in the cases of

continuous and discrete substrate respectively.

Various aspects of the case where the binding species includes a mixture of lengths

have been considered by Hassan and Kurths [13], Hassan et al [14], Burridge and

Mao [4], and Purves et al. [22]. Hassan and Kurths [13], study the two-component

RSA system with a continuous substrate. This is simplified by making one of the two

binding species have zero length. They seek solutions for the pdes describing the gap

distribution in terms of a self-similar solution, obtaining the distribution of the form

t2e−xt. A similar system is studied by Hassan et al [14], where now both species have

finite length, σ and mσ with 1 < m ≤ 2. After deriving the pdes for the evolution of

the gap length distribution, they present numerical results showing the total coverage

against the probability of the shorter polymer binding. This is paper is the closest in

spirit to the work we present below in Sections 2 and 3. Burridge and Mao [4] consider

RSA in which the lengths of adsorbing species are drawn randomly from a distribution,

again with the restriction that the longest possible polymer has to be less than twice

the length of the shortest. They find exact analytic formulae for the coverage, whilst

these expressions are confirmed against numerical simulations, they are too complicated

to evaluate analytically.

Purves et al. [22] consider the scaling of coverage with availability of binding sites

(A) in the jamming limit. They consider the case of two distinct lengths of binding

species, hence there are two availabilities, Ar(t) for the shorter species and As(t) for

the longer. In the case of a discrete substrate, Ar(t) ∝ θ(∞) − θ(t), and As(t) ∝

[θ(∞) − θ(t)]n where n depends on the relative rate of binding of the two species and

the difference in their lengths. For the continuous substrate, Ar(t) ∝ [θ(∞)− θ(t)]2 and

As(t) ∝ [θ(∞) − θ(t)]2 exp−κ/[θ(∞) − θ(t)]. These scaling laws carry over to the two-

dimensional system, where simulations of square blocks landing on a two-dimensional
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substrate give A ∝ θ(∞) − θ(t) for the discrete substrate and A ∝ [θ(∞) − θ(t)]2 for

the continuous.

Feder [10] simulated the sequential filling of a surface by disks, and obtained

the limit of 0.55 which is close to the square of Rényi’s constant. Hinrichsen et al.

[15] perform simulations of disks and line segments onto a two-dimensional substrate,

obtaining the hole size distribution and coverage in the jamming limit. Viot et al. [28]

consider the jamming limit for the case of various shapes of 2D objects being adsorbed

onto a 2D surface. The coverage approaches its limit in algebraic fashion, namely

θ(∞)− θ(t) ∼ t−n, with an exponent (n) that depends on the shape of the object being

adsorbed. Whilst circular, and most other shaped objects show a standard asymptotic

behaviour with n = 1/3, they find that for highly elongated shapes, they find the

exponent n = 1/2, together with cross-over behaviour between this exponent and the

standard asymptotic behaviour. Talbot and Schaaf [25] consider the adsorption onto a

continuous two-dimensional substrate of a two-component mixture of circular disks with

vastly differing sizes. By considering exclusion circles around each adsorbed disc, they

deriving odes for the coverage due to each size of disc. These yield the approximate

behaviour of the system in the jamming limit, and in the case of the small discs becoming

vanishingly small, the results are highly accurate.

Variable Typical value Description

L 104 Length of substrate (L ≫ 1)

r 2 ≤ r ≤ 10 Length of shorter polymer

s 5 ≤ s ≤ 100 Length of longer polymer (s > r)

p 0 ≤ p ≤ 1 Probability of the short polymer being chosen for binding

t t < 104 Number of binding attempts (a proxy for time)

N(L) N < L/r Number of polymers attached to the substrate

Nr(L) Nr < L/r Number of short polymers attached to the substrate

Ns(L) Ns < L/s Number of long polymers attached to the substrate

θ 0 < θ < 1 Total coverage

θr 0 < θr < 1 Coverage by the shorter polymers

θs 0 < θs < 1 Coverage by the longer polymers

Table 1. Summary of parameters, variables and notation used in this paper.

In the remainder of this section, we recap the results from the one-component case

of RSA. The notation used throughout this paper is summarised in Table 1. Section

2 contains our theoretical results on the expected outcome of the two component case.

In section 3 we present the results obtained from Monte Carlo (MC) simulations of the

system, together with a numerical solution of a deterministic formulation of the problem

(Section 2), which gives the expected outcome of the MC simulations. In section 4 we

derive the solutions using asymptotic methods for the substrate being much longer than

the polymers; we consider two distinct cases; (i) when the polymers have similar lengths,

and (ii) when one polymer is significantly longer than the other, whilst both are much
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shorter than the substrate. Conclusions are drawn and discussed in section 5.

1.1. One polymer case

The one-polymer formulation of RSA was first proposed by Rényi [24]; in this model,

the substrate is continuous and the expected density of cars parked on a street of infinite

length is 74.75979%. For the case of a discrete substrate, the coverage depends on the

length of binding species. Here we summarise the averaged results for the case of a

single species of length r binding to a discrete substrate of length L.

To form the recurrence relation, we first observe that when the substrate length,

L, is less than that of the polymer, r, no polymers can bind. When L is between r

and 2r, only one polymer is able to bind. Once the length of the substrate reaches and

exceeds 2r, the number of polymers bound, Nr, depends on the location that each prior

polymer has landed on the substrate. This is because the gap each side of the polymer

could have size greater than or less than r. The equations governing jamming coverage

are thus

N(L) = 0, (L < r), (1)

N(L) = 1, (r ≤ L < 2r), (2)

N(L) = 1 +
2

(L − r + 1)

L−r∑

n=r

N(n), (L ≥ 2r). (3)

Rearranging the latter equation yields

(L − r + 1) [N(L) − 1] = 2
L−r∑

n=r

N(n). (4)

Now we apply the transformation L → L + 1 and take the difference of the resulting

equation and (4) to obtain the recurrence relation

(L − r + 2)N(L + 1) = (L − r + 1)N(L) + 2N(L − r + 1) + 1. (5)

The coverage, θ, is defined to be the proportion of substrate sites that have polymer

bound, and is calculated by θ(t) = rN(L)/L.

The first graph in figure 2 shows that once the substrate length passes a certain

length, the relationship formed between the number of polymers bound and the substrate

length is approximately linear. The second graph shows that, again after the substrate

reaches a certain length, the coverages asymptote to just below 80% coverage. This

value corresponds to the gradient of the curve in the first panel.

2. Two polymer case

In the case where polymers of two distinct lengths can bind to the substrate, we require

two variables, Nr and Ns to describe the RSA process. We are interested in how the

coverage is affected by each polymer length, and by the relative rate of binding of the two
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Figure 2. Graphs obtained using the recurrence relation (5) for the one polymer case

when r=5. Left, the number of polymers bound to the substrate as the length of the

substrate varies. Right, the coverage by the polymers as substrate length varies.

polymers. We denote the two lengths of polymer by r and s, and use p for the probability

of the shorter polymer (r) binding, so that the probability of the longer polymer (s > r)

binding is 1 − p. Clearly, a stochastic process will give different coverages on each

realisation; however, averaging over a large number of simulations leads to well-defined

values for the coverage due to each species. We consider the kinetics of the binding

process, using a time unit corresponding to the number of binding attempts. Using an

alternative notation, we could define binding rates Kr for the r-polymers and Ks for

the s-polymers, then p = Kr/(Kr + Ks).

To understand the expected coverage of the stochastic process, we assume there

is no cooperativity between the binding of short and short, or short and long, or long

and long polymers, that is, each binding event is independent of the arrangement of

polymers already bound to the substrate. We also assume that there is no specific

spatial arrangement of bound polymers, so that it is sufficient to keep track of the

total numbers of each type of polymer on the substrate, that is, a spatially averaged

description of the substrate will suffice. These assumptions are similar to those made

in the construction of ‘mean field’ models; hence the system of equations that we derive

can be considered as mean field model of RSA. Whilst both Nr, Ns are functions of L,

r, s and p, we consider r, s, and p as fixed parameters, and focus on describing how

Nr, Ns depend on the substrate length variable, L. Firstly, we formulate equations for

each of Nr(L), Ns(L) when just the r-polymer binds

Nr(L) = 1 +
2

(L − r + 1)

L−r∑

n=0

Nr(n), Ns(L) = 0 +
2

(L − r + 1)

L−r∑

n=0

Ns(n), (L ≥ r).

(6)

Secondly, if we assume instead that a polymer of length s binds, we have the recurrence
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relations

Nr(L) = 0 +
2

(L − s + 1)

L−s∑

n=0

Nr(n), Ns(L) = 1 +
2

(L − s + 1))

L−s∑

n=0

Ns(n), (L ≥ s).

(7)

As well as the clear change in placement of the zero and one terms on the rhss, equations

(6) and (7) differ in the denominator and the limits on the sums.

Multiplying (6) and (7) by p(L − r + 1) and (1 − p)(L − s + 1), respectively, and

adding, we obtain equations for the full process in which polymers are chosen at random

to bind, namely

ΛNr(L) = p(L − r + 1) + 2p

L−r∑

n=0

Nr(n) + 2(1 − p)

L−s∑

n=0

Nr(n), (8)

ΛNs(L) = (1 − p)(L − s + 1) + 2p
L−r∑

n=0

Ns(n) + 2(1 − p)
L−s∑

n=0

Ns(n), (9)

for L ≥ s, and where Λ = (L + 1 − s − ps + pr),

whilst for r ≤ L < s, we have (6a), and for L < r, Nr(L) = 0 = Ns(L). Since r < s, the

sums in (8) can be rewritten as

2p
L−r∑

n=0

Nr(n) + 2(1 − p)
L−s∑

n=0

Nr(n) = 2
L−s∑

n=0

Nr(n) + 2p
L−r∑

n=L−s+1

Nr(n). (10)

Since, in practice, L ≫ r, s, this means that the two sums over large numbers of terms

are replaced by one sum over a large number of elements (0 ≤ n ≤ L− s), and a second

sum, which includes a much smaller number of terms (L − s + 1 ≤ n ≤ L − r).

We transform (8) by making the substitution L 7→ L + 1 and take the difference of

the transformed equation and the original, together with the identity (10), to obtain

2Nr(L − s + 1) − Nr(L + 1) + p

= [L + 1 − s − pr + ps][Nr(L + 1) − Nr(L)]

+ 2p[Nr(L − s + 1) − Nr(L − r + 1)], (11)

A similar method for Ns(L) is used on (9), yielding

2Ns(L − s + 1) − Ns(L + 1) + (1 − p)

= [L + 1 − s − pr + ps][Ns(L + 1) − Ns(L)]

+ 2p[Ns(L − s + 1) − Ns(L − r + 1)]. (12)

The equations (11)–(12), are formally uncoupled, however, solutions to both are required

for a full understanding of this two-component RSA system. Whilst (11)–(12) holds for

L ≥ s, for r ≤ L < s, we have just (6a) together with Ns(L) = 0, and for L < r,

Nr(L) = 0 = Ns(L).

Given a solution for Nr(L), Ns(L), we calculate the coverages as

θr =
rNr(L)

L
, θs =

sNs(L)

L
, and θ = θr + θs. (13)
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As L increases from zero, clearly the first polymer allowed to bind is an r-polymer,

which can only bind once L ≥ r. Once L is of greater length than r, there are two

cases which need to be considered. The first is (a) the possible binding of an s-polymer,

which first occurs when L = s; the second, (b), occurs when L = 2r, at which point it is

possible for two r-polymers to bind, provided the first binds at one end of the substrate.

In the special case s = 2r, both possibilities arise simultaneously at L = s = 2r. If

s < 2r then, as L increases, case (a) occurs before (b), that is, s-binding occurs first;

whereas if s > 2r, then case (b) occurs before (a), and multiple r-polymers can bind

before a single s-polymer. Both scenarios will be considered in the following sections.

3. Numerical simulations

3.1. Monte Carlo Simulations

Monte Carlo simulations are extremely useful for modelling situations such as RSA. At

each step in the simulation we choose either a long or short polymer, according the

probability p, and attempt to land it on the substrate. If it finds a location of sufficient

size, it binds to the substrate, making either r or s consecutive sites unavailable for

binding. Once there are no stretches of free sites of length r or greater, then the

simulation stops, no more binding events are possible, and the substrate is jammed. A

count of the number of binding events is used as an effective time. The simulation is

carried out many times, and an average coverage is calculated, with larger numbers of

simulations leading to increased accuracy.

All five graphs in figure 3 show the coverage increasing as successive binding events

are attempted. The results show similarly shaped curves, converging to the same limit,

though when the substrate length, L, increases, the system takes longer to reach the

final jammed state. In the case illustrated, p = 0.2, meaning that the shorter polymer

has a lower probability of binding, and we note that the coverage by the shorter polymer

takes a longer time to reach steady-state than the longer polymer. This is due to the

short polymer filling in the gaps left by the longer polymer in the final stages of the

transition to the jammed state.

We have performed simulations for a range of values for p, r, and s, recording

the final coverage due to each polymer type. Graphs of coverage against p agree with

the results plotted in figure 5, which is discussed in section 3.2. Figure 6 shows the

coverages θ∗ plotted against substrate length, L, for the Monte Carlo simulations, and

two theoretical techniques: a full solution of the recurrence relation, and an asymptotic

approximation outlined later.

3.2. Numerical solution of deterministic recurrence relation

We observe approximately linear relationships between the numbers of each type of

polymer bound and the substrate length, as in the one polymer case shown in the left

panel of figure 2. In figure 4 we plot the coverage of each type of polymer, θr, θs, θ,
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Figure 3. Graphs obtained using Monte Carlo simulations for different lengths of

the substrate, showing how the coverage by the polymers changes as RSA proceeds.

Parameter values: r = 3, s = 5, p = 0.2, averages are taken over 1000 iterations.

against substrate length for a range of polymer length ratios and relative binding rates,

corresponding to the right panel of figure 2. In the upper panels of figure 4, r = 3 and

s = 5, so that r < s ≤ 2r; whereas in the lower panels r = 3 and s = 30, so that s > 2r.

On the left we have p = 0.2 so the longer polymer binds at a higher rate, and on the

right, p = 0.8 so that the shorter polymer binds more rapidly.

In all cases the coverage due to the longer polymer, θs increase with substrate

length, L, as in the one-polymer case. However, in most cases, the coverage due to the

shorter polymer, θr, decreases with increasing substrate length the dependence is not

clear in the case s = 5, p = 0.8 (the top right panel). The total coverage, θ = θr + θs

increases with substrate length in all cases. In the case of r = 3, s = 5 and p = 0.2, the

total coverage is θ = 0.873, when r = 3, s = 5 and p = 0.8, we have θ = 0.831, thus the

total coverage is higher when the probability of choosing the shorter polymer is lower.

Higher total coverages are also found when the ratio of long to short polymer lengths

is increased, when r = 3, s = 30 and p = 0.2, the total coverage reaches θ = 0.918. These

higher coverages are achieved when p, the probability of the smaller polymer binding,

is small, which leads to an initial period of more rapid deposition of longer polymers.

On a slower timescale, there follows a slower stage in which the smaller polymers fill in

the gaps between the larger polymers.

In figure 5 we plot the total coverage and the coverage due to each polymer species
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Figure 4. Expected coverages θr, θs, θ (13) calculated from the recurrence relations

(11)–(12) plotted as functions of substrate length, L. Upper panels: the case of similar

lengths of binding species, r < s < 2r; lower panels: the case of vastly differing

lengths, s > 2r; left panels: the case of long species binding more rapidly than short;

right panels: the case of short species binding more rapidly than long. Parameter

values: top left: r = 3, s = 5, p = 0.2; top right: r = 3, s = 5, p = 0.8; lower left:

r = 3, s = 30, p = 0.2; lower right: r = 3, s = 30, p = 0.8.

against probability of choosing the shorter polymer, p. On the left we show the results

for the case of similar lengths 1 < s/r < 2, and on the right, the case of vastly

differing lengths, that is, s/r > 2. The two graphs are qualitatively similar, and show

an approximately linear dependence on p. There is a discontinuity at p = 0: when

p = 0, we have a one-polymer system, thus the maximum coverage will be about 75-

80%. However, for 0 < p ≪ 1, there are two polymers, and the longer one binds on a

quicker timescale, and the shorter one on the slower timescale, filling in the gaps left by

the longer polymer, thus leading to significantly higher coverages.

4. Asymptotic Methods

The final method we use to calculate the solution of the recurrence relations (11)–(12)

is asymptotic approximations. We consider two cases for the relative magnitudes of r

and s: (i) significant differences in the magnitudes of polymer lengths, that is, r ≪ s
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Figure 5. Graphs showing how the coverages of each polymer type changes with p, the

probability of choosing r. Left, similar polymer lengths, r = 3, s = 5, and L = 1000;

right, vastly dissimilar polymer lengths, r = 3, s = 30 and L = 1000.

with 1/r ∼ r/s ∼ s/L ≪ 1; and (ii) similar lengths, that is, r ∼ s. Case (ii) follows

the theory outlined in [18] for the single component RSA; however, the addition of

a second binding species significantly complicates the problem. In Case (i), we also

follow the asymptotic approach of [18], but new scalings are required to account for the

significantly different lengths of the binding species.

4.1. Polymers of dissimilar length

Clearly if r ≪ s then the scaling r ∼ s fails, so we require different asymptotic scaling

from those used in [18]. Here, we consider the case where r ∼ s/r ∼ L/s ≫ 1. So we

replace the variables in the recurrence relation (11) with the variables

r =
1

ǫ
, s =

ŝ

ǫ2
, L =

y

ǫ3
, Nr(L) =

1

ǫ2
nr(y), Ns(L) =

1

ǫ
ns(y), (14)

where ŝ, y, nr(y) and ns(y) are all O(1), with ǫ ≪ 1. This is due to our expectation

that, for 0 < p < 1, an O(1) amount of coverage will be due to each of the r- and

s-polymers, thus rNr = O(L) and sNs = O(L). We use primes to denote derivatives

with respect to y. We substitute the ansatz (14) into the governing equation (11) and
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(12), to obtain

2

ǫ2
nr(y − ǫŝ + ǫ3) −

1

ǫ2
nr(y + ǫ3) + p

=

[
y

ǫ3
+ 1 −

ŝ

ǫ2
−

p

ǫ
+

pŝ

ǫ2

]
1

ǫ2
[nr(y + ǫ3) − nr(y)]

+
2p

ǫ2
[nr(y − ǫŝ + ǫ3) − nr(y − ǫ2 + ǫ3)], (15)

2

ǫ
ns(y − ǫŝ + ǫ3) −

1

ǫ
ns(y + ǫ3) + (1 − p)

=

[
y

ǫ3
+ 1 −

ŝ

ǫ2
−

p

ǫ
+

pŝ

ǫ2

]
1

ǫ
[ns(y + ǫ3) − ns(y)]

+
2p

ǫ
[ns(y − ǫŝ + ǫ3) − ns(y − ǫ2 + ǫ3)]. (16)

Next, we Taylor expand these equations using ǫ ≪ 1 which, after much cancellation,

leads to

yn′

r
(y) − nr(y) = −ǫŝ(1 − p)n′

r
(y) + ǫ2

[
ŝ2(1 − p)n′′

r
(y) + p + p n′

r
(y)

]
+ O(ǫ3). (17)

We note that (17) is inhomogeneous at O(ǫ2) but homogeneous at O(ǫ).

Substituting nr(y) = Ar(ŝ, p)y + ǫBr(y, ŝ, p) into (17) means that (17) is satisfied

up to O(ǫ) for any value of the arbitrary ‘constant’ Ar. Expanding and rearranging

at next order in ǫ gives yB′

r
(y) − Br(y) = −(1 − p)ŝAr, which can be solved using the

integrating factor 1/y2 to give Br = −(p− 1)ŝAr, and hence nr(y) = Ary− ǫ(p− 1)ŝAr.

Substituting in the initial variables (14) into this solution, we obtain

Nr(L) =
ArL

r

[
1 +

s(1 − p)

L

]
, (18)

where Ar = Ar(s/r
2, p). Hence the coverage due to the shorter polymers is given by

θr(L; s/r, p) = Ar

(
1 +

s(1 − p)

L

)
, (19)

which decreases with increasing L for all values of p.

For the long polymers, Taylor-expanding (16) and simplifying gives

yn′

s
(y) − ns(y) = ǫ(1 − p)[1 − ŝn′

s
(y)] + ǫ2[(1 − p)ŝ2 − pn′

s
(y)] + O(ǫ3). (20)

The different scalings of r and s, Nr and Ns in (14) results in this differential

equation for ns(y) is quite different to that for nr(y), namely (17). Substituting

ns(y) = Ãs(ŝ, p)y + ǫBs(y; ŝ, p) into (20) leads to yB′

s
− Bs = (1 − p)(1 − ŝÃs), which

yields the solution ns(y) = Ãsy[1− ǫ(1 − p)ŝ/y]− ǫ(1 − p). Substituting in the original

variables using (14) and Ãs = r2As/s, we obtain

Ns(L) =
AsL

s

[
1 +

(1 − p)s

L

]
− (1 − p). (21)
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Comparing (18) with (21), we note that there is an extra term at the end of (21) due

to (20) being inhomogeneous at O(ǫ). The coverage due to the longer polymers is thus

given by

θs(L; s/r, p) = As −
(1 − As)s(1 − p)

L
, (22)

which increases with substrate length, that is, as L → ∞; this result is in contrast with

that for θr (19). Combining (19) and (22), we obtain

θ(L; s/r, p) = A −
s(1 − p)(2A − 1)

L
. (23)

Hence the total coverage will always increase with substrate length, L, since the Rényi

constant for the mixed system, A = Ar + As, must satisfy A > 1/2.

Figure 6. Coverage plotted against substrate length for the case of massively different

polymer lengths. Comparison of average of 100 Monte Carlo simulations with the

asymptotic approximations (19), (22), and the numerical solution of the recurrence

relations (11), (12). Upper left: p = 0.8, s = 100; upper right: p = 0.2, s = 100; lower

left: p = 0.8, s = 15; lower right: p = 0.2, s = 15; in all cases r = 10.
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4.2. Assignment of constants, Ar, As

In the asymptotic solutions (18) and (21), (and later in equations (30), (31)), the

arbitrary constants, Ar(s/r, p), As(s/r, p)), are leading order approximations to the

coverages θr, θs. From the graphs in figure 5, we note that the coverages are

approximately linear in p, and by comparing the two graphs, for s/r = 5/3 and s/r = 10,

we note that the dependence on s/r is reasonably small.

We define φr to be Rényi constant for the discrete one-dimensional, one component

system with polymer length r in the limit L → ∞. As a function of p, the coverage

θs thus takes the value θs = φs at p = 0 and θs = 0 at p = 1; hence θs = (1 − p)φs.

At p = 1, θr = φr; however, in the limit p → 0+ we have θr = (1 − φs)φr, since in

this limit, the polymer will fill with s-polymers, leaving (1 − φs) of the substrate free.

Then a proportion φr of this will be filled with r-polymers. Hence we approximate θr

by θr = pφr + (1 − p)(1 − φs)φr, and simplifying,

Ar = (1 − φs + pφs)φr, As = (1 − p)φs. (24)

In figure 6 we compare all three of the methods used in this paper, namely, Monte

Carlo simulations, a full numerical solution of the recurrence relations (11)–(12), and

asymptotic solutions of these recurrence relations. The upper panels correspond to

r = 10, s = 100, with p = 0.2 and p = 0.8. Clearly in both graphs, the results differ

at small L due to the asymptotic approximations being made on the assumption of

L ∼ r3 ≫ 1. The asymptotic solutions and the numerical solution of the recurrence

relations are difficult to distinguish on the two graphs. At larger values of L, all three

solutions agree well. It is worth noting that in both graphs the coverage due to the

longer species, θs, and the total coverage both increase with L; whilst the coverage due

to the shorter species, θr decreases with L. This is due to the fact that end effects cause

a slight increase in the likelihood of shorter polymers binding.

4.3. Polymers of similar length

For this approximation, where r and s are similar in magnitude, and where L ≫ r we

introduce a small parameter ǫ ≪ 1 defined by ǫ = 1/r. Then we rescale the variables in

the recurrence relation with new variables ŝ, y, nr, and ns, all of which are O(1) and

are defined by

r =
1

ǫ
, s =

ŝ

ǫ
, L =

y

ǫ2
, Nr(L) =

1

ǫ
nr(y), Ns(L) =

1

ǫ
ns(y). (25)
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Using these definitions, the governing equations (11) and (12) become

2

ǫ
nr(y − ǫŝ + ǫ2) −

1

ǫ
nr(y + ǫ2) + p

=

[
y

ǫ2
+ 1 −

ŝ

ǫ
−

p

ǫ
+

pŝ

ǫ

]
1

ǫ
[nr(y + ǫ2) − nr(y)]

+
2p

ǫ
[nr(y − ǫŝ + ǫ2) − nr(y − ǫ + ǫ2)], (26)

2

ǫ
ns(y − ǫŝ + ǫ2) −

1

ǫ
ns(y + ǫ2) + (1 − p)

=

[
y

ǫ2
+ 1 −

ŝ

ǫ
−

p

ǫ
+

pŝ

ǫ

]
1

ǫ
[ns(y + ǫ2) − ns(y)]

+
2p

ǫ
[ns(y − ǫŝ + ǫ2) − ns(y − ǫŝ + ǫ2)]. (27)

In the following, we use prime to denote derivatives with respect to the rescaled

substrate length variable, y. After expanding and much simplification, we obtain

yn′

r
(y) − n′

r
(y) = ǫ [(pŝ − p − ŝ)n′

r
(y) + p] + ǫ2

[
ŝ2 + pŝ2 − p − 1

2
y
]
n′′

r
(y). (28)

Comparing (28) with (17), we note that in (28) we have gained an inhomogeneous term

at O(ǫ). Substituting the ansatz nr(y) = Ar(ŝ, p)y + ǫBr(y, ŝ, p) into (28) leads to (28)

being satisfied at leading order for any value of the arbitrary ‘constant’ Ar. At O(ǫ),

we have

yB′

r
− Br = (pŝ − p − ŝ)Ar + p, (29)

which is solved by Br = −[(pŝ−p−ŝ)Ar+p] and hence nr(y) = Ary−ǫ[(pŝ−p−ŝ)Ar+p].

Substituting back in the initial variables from (25), we find

Nr(L) =
ArL

r

[
1 +

s(1 − p)

L
+

pr

L

]
− p. (30)

The solution for Ns can be obtained by symmetry arguments: mapping p → 1− p,

r → s, s → r and Ar → As, gives

Ns(L) =
AsL

s

[
1 +

rp

L
+

s(1 − p)

L

]
− (1 − p). (31)

Here Ar = Ar(s/r, p) and As = As(s/r, p) can be found from numerical solution of (11)

for specific values of p and s/r. Results of such calculations are shown in figure 5 for

example values of p, r, s.

In the lower panels of figure 6 we show the coverage θr, θs, θ as functions of the

substrate length for the case r = 10, s = 15, p = 0.2 and p = 0.8. We plot the

asymptotic solutions for θ∗ derived from (30), (31), the numerical solutions of (11)–

(12), and the average of 100 Monte Carlo simulations. At small lengths, where L ∼ r,

the asymptotic solutions are not accurate due to the asymptotic approximations being

based on the assumption that L ∼ r2 ≫ 1. The case of smaller p (lower right panel)

yields a higher total coverage than larger p (lower left) due to the substrate being
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predominantly covered by the larger polymers at early times, and the smaller polymers

only binding in significant numbers when most of the gaps are of a size between r and

s. In the lower left panel, when p = 0.8, small polymers land more frequently from the

start, and the system rapidly reaches a state in which all gaps are smaller than s.

We observe that in the case of p = 0.8 all curves θr, θs, θ rise with increasing

L; just as in the one-component case analysed in Section 1.1. However, when p = 0.2,

increasing L causes θr to decrease. We now use the formulae (24) to address this puzzling

phenomenon.

4.4. Reversal of asymptotic behaviour

Calculation of the constants Ar and As (24) enables us to find the correction terms to

Nr(L), Ns(L), and hence, from (30)-(31), we find correction terms for the coverages θr,

θs as

θr = (1−φs+pφs)φr +
φr

L

[
s(1−p)(1−φs+pφs) − pr

(
(1−p)φs +

1−φr

φr

)]
,

(32)

θs = (1 − p)φs −
(1 − p)

L
[s(1 − φs) + (s − r)pφs] , (33)

θ = 1 − (1 − φr)[1 − (1 − p)φs]

[
1 +

pr + (1 − p)s

L

]
. (34)

The formulae for θr, θs and θ all have the form K0 −K1/L: in the case of θs and θ, the

constant K1 > 0, hence θs and θ always increase with L. However, in the formula for

θr, the constant K1 can be positive or negative. For smaller p, K1 < 0, and the curve

θr decreases with increasing L, as observed in the lower right panel in figure 6, and as

seen in the case of vastly differing polymer lengths in Section 4.2. For larger p, K1 may

be positive, in which case θr increases with L, in a similar manner to θs and θ, as in the

lower left panel of figure 6. This occurs if

s

r
<

p[(1 − p)φrφs + (1 − φr)]

(1 − p)φr(1 − φs + pφs)
. (35)

The boundary between the two behaviours in (p, s/r) parameter space is illustrated in

figure 7. Since we require s > r, only the area s/r > 1 is relevant. In the majority of

the region θr decreases with L as in Section 4.2; however, in the smaller region, for p

closer to unity and smaller s/r but still with s/r > 1, we find θr increases with L.

5. Conclusion

We have analysed in detail the random sequential adsorption of two polymer lengths

on a substrate, with varying rates, or probabilities, of binding. Our main interest is

in how the coverage of the substrate at complete jamming changes as a function of

the relative binding rates and length of substrate. A lower probability of choosing
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Figure 7. Illustration of the parameter space (p, s/r). In the region below and to the

right of the thicker line (35), and above the thinner line, both θr and θs increase with

L; above the solid line, θs increases and θr decreases with substrate length, L.

the shorter polymer yields the greatest total coverage as then the large polymers land

frequently, quickly filling the binding sites early in the process, and later, when there

is no room for long polymers to bind, the shorter polymers are able to fill in the gaps.

In this manner, coverages of over 90% can be achieved. We define the Rényi constant

for shorter polymers by φr and that for longer polymers by φs, then if there is a small

probability of the shorter polymer binding, we rapidly find φs of the substrate covered,

leaving 1− φs vacant. If r ≪ s, then over a longer timescale φr(1− φs) of the substrate

will be covered by the shorter polymer. This means the total coverage is φs +φr −φrφs.

If we take the Rényi constant for the continuous system as a typical example, that is

φ = φr = φs = 0.7475979,then we find a total coverage of φ(2 − φ) = 0.936.

We observe different asymptotic behaviour of coverages in the limit of large

substrate lengths. In all cases, the total coverage and that of the longer polymer

behave as in the one-component system, that is, as substrate length L increases, so

does the coverage, approaching a constant as the substrate length, L → ∞, this limit

being referred to as Rényi’s constant. In the two component case, however, typically

the coverage of the shorter polymer tends to its Rényi constant from above rather than

below, thus the coverage due to the shorter polymer decreases with increasing L. If one

were to divide the substrate of length L into two of length L/2, then we might expect

a polymer to be cut, thus some rearrangement of polymers at the new ends would be

required. If the broken polymer was short, then we have lower occupancy of the short

polymers in the L/2 substrates. However, if the broken polymer was long, then on at

least one of the shorter polymers, there will be room for at least one short polymer, thus

the coverage of short polymers may be more on the L/2 substrates than the substrate

of length L. This explanation clearly depends on the relative lengths of polymers and

relative probabilities of them binding. However, this effect is not universal, as shown

in figure 7, there is a small region of parameter space, corresponding to more rapid
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binding of the shorter polymer and where the ratio of polymer lengths is not too large,

in which all coverages increase with substrate length. Asymptotic analysis of the system

has revealed conditions on the parameters under which each form of limiting behaviour

holds.

In future work it would be interesting to investigate the binding of mixtures on

two-dimensional substrates, to see if such more general systems exhibit similar or a

wider variety of behaviours in their large size limits.
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