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We analyze under which dynamical conditions the coherence of an open quantum system is totally
unaffected by noise. For a single qubit, specific measures of coherence are found to freeze under different
conditions, with no general agreement between them. Conversely, for an N-qubit system with even N, we
identify universal conditions in terms of initial states and local incoherent channels such that all bona fide
distance-based coherence monotones are left invariant during the entire evolution. This finding also
provides an insightful physical interpretation for the freezing phenomenon of quantum correlations beyond
entanglement. We further obtain analytical results for distance-based measures of coherence in two-qubit
states with maximally mixed marginals.

DOI: 10.1103/PhysRevLett.114.210401 PACS numbers: 03.65.Aa, 03.65.Ta, 03.65.Yz, 03.67.Mn

Introduction.—The coherent superposition of states
stands as one of the characteristic features that mark the
departure of quantummechanics from the classical realm, if
not the most essential one [1]. Quantum coherence con-
stitutes a powerful resource for quantum metrology [2,3]
and entanglement creation [4,5] and is at the root of a
number of intriguing phenomena of wide-ranging impact
in quantum optics [6–9], quantum information [10], solid-
state physics [11,12], and thermodynamics [13–18]. In
recent years, research on the presence and functional role of
quantum coherence in biological systems has also attracted
considerable interest [19–35].
Despite the fundamental importance of quantum coher-

ence, only very recently have relevant first steps been
achieved towards developing a rigorous theory of coher-
ence as a physical resource [36–38] and necessary con-
straints have been put forward to assess valid quantifiers of
coherence [36,39]. A number of coherence measures have
been proposed and investigated, such as the l1 norm and
relative entropy of coherence [36] and the skew information
[40,41]. Attempts to quantify coherence via a distance-
based approach, which has been fruitfully adopted for
entanglement and other correlations [42–52], have revealed
some subtleties [53].
A lesson learned from natural sciences is that coherence-

based effects can flourish and persist at significant time
scales under suitable exposure to decohering environments.
Recent evidence suggests that a fruitful interplay between
long-lived quantum coherence and tailored noise may be in
fact crucial to enhance certain biological processes, such as
light harvesting [27,28,30,31]. This surprising cooperation
between traditionally competing phenomena provides an
inspiration to explore other physical contexts, such as
quantum information science, in order to look for general
conditions under which coherence can be sustained in the

presence of typical sources of noise [54,55]. Progress on
this fundamental question can lead to a more efficient
exploitation of coherence to empower the performance of
real-world quantum technologies.
In this Letter we investigate the dynamics of quantum

coherence in open quantum systems under paradigmatic
incoherent noisy channels. While coherence is generally
nonincreasing under any incoherent channel [36], our goal
is to identify initial states and dynamical conditions,
here labeled freezing conditions, such that coherence will
remain exactly constant (frozen) during the whole evolution
(see Fig. 1).
For a single qubit subject to a Markovian bit-flip, bitþ

phase-flip, phase-flip, depolarizing, amplitude-damping, or
phase-damping channel [10], we study the evolution of the
l1 norm and relative entropy of coherence [36] with respect
to the computational basis. We show that no nontrivial
condition exists such that both measures are simultaneously
frozen. We then turn our attention to two-qubit systems, for
which we remarkably identify a set of initial states such
that all bona fide distance-based measures of coherence
are frozen forever when each qubit is independently
experiencing a nondissipative flip channel. These results
are extended to N-qubit systems with any even N, for
which suitable conditions supporting the freezing of all

FIG. 1 (color online). Frozen quantum coherence for an
N-qubit system subject to incoherent noisy channels Λ acting
on each qubit.
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distance-based measures of coherence are provided. Such a
universal freezing of quantum coherence within the
geometric approach is intimately related to the freezing of
distance-based quantum correlations beyond entanglement
[50,52,56–58], thus shedding light on the latter from a
physical perspective. Finally, some analytical results for the
l1 norm of coherence are obtained, and its freezing con-
ditions in general one- and two-qubit states are identified.
Incoherent states and channels.—Quantum coherence is

conventionally associated with the capability of a quantum
state to exhibit quantum interference phenomena [9].
Coherence effects are usually ascribed to the off-diagonal
elements of a density matrix with respect to a particular
reference basis, whose choice is dictated by the physical
scenario under consideration [59]. Here, for an N-qubit
system associated with a Hilbert space C2N , we fix the
computational basis fj0i; j1ig⊗N as the reference basis, and
we define incoherent states as those whose density matrix δ
is diagonal in such a basis,

δ ¼
X1

i1;…;iN¼0

di1;…;iN ji1;…; iNihi1;…; iN j: ð1Þ

Markovian dynamics of an open quantum system is
described by a completely positive trace-preserving (CPTP)
map Λ, i.e., a quantum channel, whose action on the
state ρ of the system can be characterized by a set of
Kraus operators fKjg such that ΛðρÞ ¼ P

j KjρK
†
j , whereP

j K
†
jKj ¼ I. Incoherent quantum channels (ICPTP maps)

constitute a subset of quantum channels that satisfy the
additional constraint KjIK

†
j ⊂ I for all j, where I is the

set of incoherent states [36]. This implies that ICPTP maps
transform incoherent states into incoherent states, and no
creation of coherence would be witnessed even if an
observer had access to individual outcomes.
We will consider paradigmatic instances of incoherent

channels which embody typical noise sources in quantum
information processing [10,36], and whose action on a
single qubit is described as follows, in terms of a parameter
q ∈ ½0; 1� which encodes the strength of the noise. The
bit-flip, bitþ phase-flip, and phase-flip channels are
represented in Kraus form by

KFk
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−q=2

p
I; KFk

i;j≠k¼0; KFk
k ¼

ffiffiffiffiffiffiffiffi
q=2

p
σk; ð2Þ

with k ¼ 1, k ¼ 2, and k ¼ 3, respectively, and σj being the
jth Pauli matrix. The depolarizing channel is represented
by KD

0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3q=4

p
I, KD

j ¼ ffiffiffiffiffiffiffiffi
q=4

p
σj, with j ∈ f1; 2; 3g.

Finally, the amplitude-damping channel is represented by

KA
0 ¼

�
1 0

0
ffiffiffiffiffiffiffiffiffiffiffi
1 − q

p
�
; KA

1 ¼
�
0

ffiffiffi
q

p
0 0

�
;

and the phase damping channel is represented by

KP
0 ¼

�
1 0

0
ffiffiffiffiffiffiffiffiffiffiffi
1 − q

p
�
; KP

1 ¼
�
0 0

0
ffiffiffi
q

p
�
:

The action of N independent and identical local noisy
channels (of a given type, say, labeled by Ξ ¼ fFk;D;
A; Pg) on each qubit of an N-qubit system, as depicted
in Fig. 1, maps the system state ρ into the evolved state

ΛΞ⊗N
q ðρÞ¼

X

j1;…;jN

ðKΞ
j1
⊗ � � �⊗KΞ

jN
ÞρðKΞ

j1
† ⊗ � � �⊗KΞ

jN
†Þ:

ð3Þ
Coherence monotones.—Baumgratz et al. [36] have

formulated a set of physical requirements which should
be satisfied by any valid measure of quantum coherence C
as follows.

ðiÞ CðρÞ≥ 0 for all states ρ; with CðδÞ¼ 0 for all incoherent

states δ ∈ I :

ðii aÞ Contractivity under incoherent channelsΛICPTP;

CðρÞ ≥ C(ΛICPTPðρÞ):
ðii bÞ Contractivity under selective measurements on

average; CðρÞ ≥ ΣjpjCðρjÞ; where ρj ¼ KjρK
†
j=pj and

pj ¼ TrðKjρK
†
jÞ; for any fKjg such that ΣjK

†
jKj ¼ I and

KjIKj ⊂ I for all j:

ðiiiÞ Convexity; C(qρþ ð1 − qÞτ) ≤ qCðρÞ þ ð1 − qÞCðτÞ
for any states ρ and τ and q ∈ ½0; 1�:
We now recall known measures of coherence. The l1

norm quantifies coherence in an intuitive way, via the off-
diagonal elements of a density matrix ρ in the reference
basis [36],

Cl1ðρÞ ¼
X

i≠j
jρijj: ð4Þ

Alternatively, one can quantify coherence by means
of a geometric approach. Given a distance D, a generic
distance-based measure of coherence is defined as

CDðρÞ ¼ min
δ∈I

Dðρ; δÞ ¼ Dðρ; δρÞ; ð5Þ

where δρ is one of the closest incoherent states to ρ with
respect to D. We refer to bona fide distances D as those
which satisfy natural properties [10] of contractivity under
quantum channels, i.e., D(ΛðρÞ;ΛðτÞ) ≤ Dðρ; τÞ for any
states ρ; τ and CPTP map Λ, and joint convexity, i.e.,
D(qρþð1−qÞϖ;qτþð1−qÞς)≤qDðρ;τÞþð1−qÞDðϖ;ςÞ
for any states ρ;ϖ; τ; ς and q ∈ ½0; 1�. We then refer to
bona fide distance-based measures of coherence CD as
those defined by Eq. (5) using a bona fide distance D: all
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such measures will satisfy requirements (i), (ii a), and (iii)
[36]. Additional contractivity requirements are needed for a
distanceD in order for the corresponding CD to obey (ii b) as
well [60]. For instance, while the fidelity-based geometric
measure of coherence has been recently proven to be a full
coherence monotone [5], a related coherence quantifier
defined via the squared Bures distance (which is contractive
and jointly convex) is known not to satisfy (ii b) [53].
All of our subsequent findings will apply to bona fide

distance-based coherence measures CD, which clearly
include coherence monotones obeying all the resource-
theory requirements recalled earlier. An example of a
distance-based coherence monotone is the relative entropy
of coherence [36], given by

CREðρÞ ¼ SðρdiagÞ − SðρÞ ð6Þ
for any state ρ, where ρdiag is the matrix containing only the
leading diagonal elements of ρ in the reference basis, and
SðρÞ ¼ −Trðρ log ρÞ is the von Neumann entropy.
We can also define the trace distance of coherence CTr as

in Eq. (5) using the bona fide trace distance DTrðρ; τÞ ¼
1
2
Trjρ − τj. For one-qubit states ρ, the trace distance of

coherence equals (half) the l1 norm of coherence [48,53],
but this equivalence is not valid for higher dimensional
systems, and it is still unknown whether CTr obeys require-
ment (ii b) in general.
Frozen coherence: One qubit.—We now analyze con-

ditions such that the l1 norm and relative entropy of
coherence are invariant during the evolution of a single
qubit (initially in a state ρ) under any of the noisy channels
ΛΞ
q described above. This is done by imposing a vanishing

differential of the measures on the evolved state,
∂qC(ΛΞ

q ðρÞ) ¼ 0;∀ q ∈ ½0; 1�, with respect to the noise
parameter q, which can also be interpreted as a dimension-
less time [61]. We find that only the bit and bit + phase-flip
channels allow for nonzero frozen coherence (in the com-
putational basis), while all the other considered incoherent
channels leave coherence invariant only trivially when the
initial state is already incoherent. We can then ask whether
nontrivial common freezing conditions for Cl1 and CRE exist.
Writing a single-qubit state in general as ρ ¼ 1

2
ðIþP

jnjσjÞ in terms of its Bloch vector ~n ¼ fn1; n2; n3g, the
bit-flip channel ΛF1

q maps an initial Bloch vector ~nð0Þ to an
evolved one ~nðqÞ ¼ fn1ð0Þ; ð1 − qÞn2ð0Þ; ð1 − qÞn3ð0Þg.
As the l1 norm of coherence is independent of n3, while n1
is unaffected by the channel, we get that necessary and
sufficient freezing conditions for Cl1 under a single-qubit
bit-flip channel amount to n2ð0Þ ¼ 0 in the initial state.
Similar conclusions apply to the bit + phase-flip channel
ΛF2
q by swapping the roles of n1 and n2.
Conversely, the relative entropy of coherence is also

dependent on n3. By analyzing the q derivative of CRE, we
see that such a measure is frozen through the bit-flip
channel only when either n1ð0Þ ¼ 0 and n2ð0Þ ¼ 0 (trivial

because the initial state is incoherent) or n2ð0Þ ¼ 0 and
n3ð0Þ ¼ 0 (trivial because the initial state is invariant under
the channel). Therefore, there is no nontrivial freezing
of the relative entropy of coherence under the bit-flip or
bit + phase-flip channel either.
We conclude that, although the l1 norm of coherence can

be frozen for specific initial states under flip channels,
nontrivial universal freezing of coherence is impossible for
the dynamics of a single qubit under paradigmatic inco-
herent maps.
Frozen coherence: Two qubits.—This is not true any-

more when considering more than one qubit. We will now
show that any bona fide distance-based measure of quan-
tum coherence manifests freezing forever in the case of two
qubits A and B undergoing local identical bit-flip channels
[62] and starting from the initial conditions specified as
follows. We consider two-qubit states with maximally
mixed marginals (M3

2 states), also known as Bell-diagonal
states [63], which are identified by a triple ~c ¼ fc1; c2; c3g
in their Bloch representation

ρ ¼ 1

4

�
IA ⊗ IB þ

X3

j¼1

cjσAj ⊗ σBj

�
: ð7Þ

Local bit-flip channels on each qubit map initial M3
2

states with ~cð0Þ ¼ fc1ð0Þ; c2ð0Þ; c3ð0Þg to M3
2 states with

~cðqÞ ¼ fc1ð0Þ; ð1 − qÞ2c2ð0Þ; ð1 − qÞ2c3ð0Þg. Then, the
subset of M3

2 states supporting frozen coherence for all
bona fide distance-based measures is given by the initial
condition [50,52,57],

c2ð0Þ ¼ −c1ð0Þc3ð0Þ: ð8Þ
To establish this claim, we first enunciate two auxiliary

results, which simplify the evaluation of distance-based
coherence monotones (5) for the relevant class ofM3

2 states.
Lemma 1.—According to any contractive and convex

distance D, one of the closest incoherent states δρ to a M3
2

state ρ is always aM3
2 incoherent state, i.e., one of the form

δρ¼
1

4
ðIA⊗ IBþsσA3 ⊗σB3 Þ; for some s∈ ½−1;1�: ð9Þ

Lemma 2.—According to any contractive and convex
distance D, one of the closest incoherent states δρ to a M3

2

state ρ with triple fc1;−c1c3; c3g is the M3
2 state δρ with

triple f0; 0; c3g.
It then follows that any bona fide distance-based measure

of coherence CD for the M3
2 states ρðqÞ, evolving from

the initial conditions (8) under local bit-flip channels, is
given by

CD(ρðqÞ)¼D(fc1ð0Þ;−ð1−qÞ2c1ð0Þc3ð0Þ;ð1−qÞ2c3ð0Þg;
f0;0;ð1−qÞ2c3ð0Þg)¼CD(ρð0Þ);

which is frozen for any q ∈ ½0; 1�, or equivalently frozen
forever for any t [61]. The two lemmas and the main
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implication on frozen coherence can be rigorously proven
by invoking and adapting recent results on the dynamics
of quantum correlations forM3

2 states, reported in Ref. [52].
A comprehensive proof is provided in the Supplemental
Material [64]. This finding shows that, in contrast to the
one-qubit case, universal freezing of quantum coherence—
measured within a bona fide geometric approach—can in
fact occur in two-qubit systems exposed to conventional
local decohering dynamics.
Coming back now to the two specific coherence monot-

ones analyzed here [36], we know that the relative entropy
of coherence CRE is a bona fide distance-based measure;
hence, it manifests freezing in the conditions of Eq. (8).
Interestingly, we will now show that the l1 norm of
coherence Cl1 coincides with (twice) the trace distance
of coherence CTr for any M3

2 state, which implies that Cl1
also freezes in the same dynamical conditions. To this
aim we need to show that, with respect to the trace distance
DTr, one of the closest incoherent states δρ to a M3

2 state
ρ is always its diagonal part ρdiag. The trace distance
between aM3

2 state ρwith fc1; c2; c3g and one of its closest
incoherent states δρ, which is itself a M3

2 state of the form
(9) according to Lemma 1, is given by DTrðρ;δρÞ¼
1
4
ðjsþc1−c2−c3jþ js−c1þc2−c3jþ jsþc1þc2−c3jþ
j−sþc1þc2þc3jÞ. It is immediately seen that the mini-
mum over δρ is attained by s ¼ c3, i.e., by δρ ¼ ρdiag, as
claimed. Notice, however, that the equivalence between Cl1
and CTr does not extend to general two-qubit states, as can
be confirmed numerically.
Similarly to the single-qubit case, we can derive a larger

set of necessary and sufficient freezing conditions valid
specifically for the l1 norm of coherence. Every two-qubit
state ρ can be transformed, by local unitaries, into a standard
form [65] with Bloch representation ρ ¼ 1

4
ðIA ⊗ IBþP

3
j¼1 xjσ

A
j ⊗ IB þP

3
j¼1 yjI

A ⊗ σBj þP
3
j¼1 Tjjσ

A
j ⊗ σBj Þ.

We have then that initial states of this form, with x1, y1, x3,
y3, T33 arbitrary, x2 ¼ y2 ¼ 0, and T22 ¼ uT11 with
u ∈ ½−1; 1�, manifest frozen coherence as measured by
Cl1 under local bit-flip channels; however, the same does
not hold for CRE in general.
Frozen coherence: N qubits.—Our main finding can

be readily generalized to a system of N qubits with
any even N. We define N-qubit states with maximally
mixed marginals (M3

N states) [58,66] as those with density
matrix of the form ρ ¼ 1

2N
ðI⊗N þP

3
j¼1 cjσ

⊗N
j Þ, still speci-

fied by the triple fc1; c2; c3g as in the N ¼ 2 case. We have
then that, when the system is evolving according to
identical and independent local bit-flip channels acting
on each qubit as in Eq. (3) with Ξ ¼ F1, the quantum
coherence of the system is universally frozen according
to any bona fide distance-based measure if the N qubits
are initialized in a M3

N state respecting the freezing
condition

c2ð0Þ ¼ ð−1ÞN=2c1ð0Þc3ð0Þ; ð10Þ
which generalizes (8). This is the most general result of the
present Letter [62], and its full proof is provided in the
Supplemental Material [64]. We observe that, by virtue of
the formal equivalence between a system of N qubits and a
single qudit with dimension d ¼ 2N , our results can also be
interpreted as providing universal freezing conditions for
all bona fide distance-based measures of coherence in a
single 2N-dimensional system with any even N. Naturally,
one may expect larger sets of freezing conditions to exist
for specific coherence monotones such as the l1 norm, like
in the N ¼ 2 case; their characterization is outside the
scope of this Letter.
We further note that no universal freezing of coherence is

instead possible for M3
N states with odd N, whose dynami-

cal properties are totally analogous to those of one-qubit
states.
Coherence versus quantum correlations.—The freezing

conditions established here for coherence have been in fact
identified in previous literature [50,52,56–58], as various
measures of so-called discord-type quantum correlations
were shown to freeze under the same dynamical conditions
up to a threshold time t⋆, defined in our notation [61] by the
largest value of q such that jc3ðqÞj ≥ jc1ðqÞj, forM3

N states
evolving under local bit-flip channels. Focusing on the two-
qubit case for clarity, we note that for M3

2 states with
jc3j ≥ jc1j, and for any bona fide distance D, the distance-
based measure of coherence CD, defined by Eq. (5) and
evaluated in Eq. (10), coincides with the corresponding
distance-based measure of discord-type quantum correla-
tionsQD, formalized, e.g., in Ref. [52]. Hence, the freezing
of coherence might provide a deeper insight into the
peculiar phenomenon of frozen quantum correlations under
local flip channels (see also Ref. [67]), as the latter just
reduce to coherence for t ≤ t⋆ under the conditions we
identified.
More generally, measures of discord-type correlations

[46,68,69] may be recast as suitable measures of coherence
in bipartite systems, minimized over the reference basis,
with minimization restricted to local product bases. For
instance, the minimum l1 norm of coherence [36] yields the
negativity of quantumness [48,70,71], the minimum rela-
tive entropy of coherence [36] yields the relative entropy of
discord [45,70,72,73], and the minimum skew information
[40] yields the local quantum uncertainty [74]. Our result
suggests, therefore, that the computational basis is the
product basis which minimizes coherence (according to
suitable bona fide measures) for particular M3

2 states
undergoing local bit-flip noise ΛF1 up to t ≤ t⋆, while
coherence is afterwards minimized in the eigenbasis of σ1,
which is the pointer basis towards which the system
eventually converges due to the local decoherence [75];
similar conclusions can be drawn for the other k-flip
channels [62].
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We finally remark that, unlike more general discord-type
correlations, entanglement [44] plays no special role in
the freezing phenomenon analyzed in this Letter, as the
latter can also happen for states that remain separable
during the whole evolution, e.g., the M3

2 states with initial
triple f1

4
;− 1

16
; 1
4
g.

Conclusions.—We have determined exact conditions
such that any bona fide distance-based measure of quantum
coherence [36] is dynamically frozen: this occurs for an
even number of qubits, initialized in a particular class of
states with maximally mixed marginals, and undergoing
local independent and identical nondissipative flip channels
(Fig. 1). We have also shown that there is no general
agreement on freezing conditions between specific coher-
ence monotones when considering either the one-qubit case
or more general N-qubit initial states. This highlights the
prominent role played by the aforementioned universal
freezing conditions in ensuring a durable physical exploi-
tation of coherence, regardless of how it is quantified, for
applications such as quantum metrology [2] and nanoscale
thermodynamics [17,18]. It will be interesting to explore
practical realizations of such dynamical conditions [75–80].
Complex systems are inevitably subject to noise; hence,

it is natural and technologically crucial to question under
what conditions the quantum resources that we can extract
from them are not deteriorated during open evolutions [81].
In addressing this problem by focusing on coherence, we
have also revealed an intrinsic physical explanation for the
freezing of discord-type correlations [52], by exposing and
exploiting the intimate link between these two nonclassical
signatures. Providing unified quantitative resource-theory
frameworks for coherence, entanglement, and other quan-
tum correlations is certainly a task worthy of further
investigation [5].
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