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ABSTRACT

In this paper we investigate a multi-objective portfolio
selection model with three criteria: risk, return and
liquidity for investors. Non-probabilistic uncertainty
factors in the market, such as imprecision and
vagueness of investors’ preference and judgement are
simulated in the portfolio selection process. The
liquidity of portfolio cannot be accurately predicted in
the market, and thus is measured by fuzzy set theory.
Invertors’ individual preference and judgement are
cooperated in the decision making process by using
satisfaction functions to measure the objectives. A
compromise based goal programming approach is
applied to find compromised solutions. By this
approach, not only can we obtain quality solutions in a
reasonable computational time, but also we can achieve
a trade-off between the objectives according to
investors’ preference and judgement to enable a better
decision making. We analyse the portfolio strategies
obtained by using the proposed simulation approach

subject to different settings in the satisfaction functions.

INTRODUCTION

The foundation of the modern portfolio selection
theory originated from Markowitz’s mean-variance
model (Markowitz 1952), which formulates the trade-
off between return and risk of portfolios. The essence
of portfolio selection problem (PSP) can be described
as finding a combination of assets that best satisfies an
investor’s needs.

To make a proper investment decision, along with the
trading constraints, another important factor faced by
the investors, i.e. decision makers, is the market
uncertainty. Random uncertainty factors of the market,
i.e., in terms of asset prices and currency exchange
rates, etc. have been investigated using probability
theory based techniques. A wide variety of stochastic
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programming approaches have been employed to
support investment decisions making and simulation
under random market uncertainty (Gaivoronski, Krylov
et al. 2005, He and Qu 2014).

In addition to random uncertainty, many non-
probabilistic factors in the securities market have also
been investigated by researchers using fuzzy
techniques. Fuzzy set theory has been applied to
determine a rough estimation for the security’s
turnover rate (Gupta, Mehlawat et al. 2008).
Knowledge and preferences of experts have also been
integrated in decision making (Bilbao-Terol, Pérez-
Gladish et al. 2006) . A flexible goal programming
decision-making simulation model has been designed
in (Bilbao, Arenas et al. 2007) for portfolio selection,
where expert’s knowledge and imprecise preferences
were considered. We refer to a survey by (Aouni,
Colapinto et al. 2014) for more details.

Expected return and risk are two fundamental factors in
portfolio selection, and thus have been used as the most
common two objectives in the literature. However,
return and risk cannot provide all relevant information
for making a sound investment decision. In addition to
the expected return and variance, other criteria have
also been proposed to make an investment decisions in
recent years (Li and Xu 2013) (Steuer, Qi et al. 2005)
(Arenas Parra, Bilbao Terol et al. 2001) (Fang, Lai et al.
2006) (Gupta, Mehlawat et al. 2008).

In this paper, we propose a constrained multi-objective
portfolio selection model for investors. This model
defines three criteria/objectives, namely return, risk and
liquidity. A compromise based goal programming with
satisfaction function solution approach is designed to
obtain a compromised portfolio strategy. The model
considers investors’ preferences and judgment (fuzzy
information) by introducing satisfaction functions into
the portfolio selection process, thus is able to obtain a
satisfactory personal portfolio selection in accordance
with the attitudes of different investors.

MULTI-OBJECTIVE PORTFOLIO SELECTION
MODEL



In this section, we formulate the portfolio selection
problem as an optimization problem with multiple
objectives.

We have a given set of n assets. Each asset i is
associated with an expected return (per period) r;, and
each pair of assets i, j has a covariance o, .The

covariance matrix ¢, =~ is symmetric and each
diagonal element o, represents the variance of asset i.

In the modern mean-variance portfolio theory, the
variance o, represents the risk of investing asset i

while the covariance o, represents the correlated risks

between pairs of assets. Rational investors should pick
combination of diversified assets, i.e. a portfolio, to
reduce the risk, which is measured by the covariance of
combined assets, whiling achieving a specified return.
A portfolio strategy can be represented by a set X =
{x1, ..., x,}, where x; represents the percentage wealth
invested on asset i.

Objectives

Risk
The value N represents the variance of the
2.2 0%, TP
i=1 j=1
portfolio, and is considered as the measure of the risk
associated with the portfolio.

Return
For a portfolio X = {xi, ..., x,,},the expected return of
the portfolio is expressed as i”' oy

i=1

Liquidity

Liquidity is defined as the degree of an asset or
security that can be bought or sold in the market
without affecting the asset's price significantly.
Liquidity is characterized by a high level of trading
activity. Assets that can be easily bought or sold are
known as liquid assets. Generally, investors prefer to
choose securities with greater liquidity. According to
(Gupta, Mehlawat et al. 2008), the measurement of
liquidity can be simulated on a security’s turnover rate.
However, a security’s turnover rate cannot be
accurately predicted in the stock market. To capture
this imprecise nature of the market in the decision
making, fuzzy set theory (Zadeh 1965, Zadeh
1999)( Coupland and John 2007) is applied in this

paper.
Following the research in (Li and Xu 2013), in this
paper, we assume that the turnover rate of assets is

simulated as trapezoidal fuzzy numbers. A fuzzy
number 4 is called trapezoidal, denoted as

A=(a,b,a, B) with tolerance interval [a, b], left
width ¢ and right width £, if its membership function
takes the following form:

a—t .
l-——if a—a<t<a,
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0, otherwise

Let the trapezoidal fuzzy number Z =(a,b,a,p)

(shown in Fig.1) denote the turnover rate of asset i.
Then the turnover rate of the portfolio X = {xy, ...,

x, } is iil x, - We apply the crisp possibilistic
i=1

mean value of the turnover rate of the portfolio to
measure the portfolio liquidity.
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Fig. 1. The Trapezoidal Fuzzy Membership Function
(Li and Xu 2013)

According to (Carlsson and Fullér 2001), the crisp
possibilistic mean value (denoted by M) of the fuzzy
number defined by the above membership function (1)
is calculated as the following:

M(A)=[ ya+b)dy )

Based on (2) and with the following lemma by (Li and
Xu 2013), we can obtain the possibilistic mean value of
the turnover rate of the portfolio as a rough estimation
for the portfolio’s turnover rate.

Lemma Let the trapezoidal fuzzy number
l: =(a,,b,a,, f)be the turnover rate of asset i with

membership function (1). Then the possibilistic mean
value of the turnover rate associated with portfolio X =
{x1, ..., x, } 1S

O e N ®

Proposed Multi-objective Model

Based on the above discussion, if an investor wants to
minimize the risk, maximize the investment’s expected
return rate, and maximize the portfolio liquidity,
portfolio selection can be modelled as the following
MO-PSP:
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Objectives (4) (5) and (6) describe risk, return and
liquidity of the portfolio that an investor concerns. We
assume that the investor does not invest additional
capital during the period, i.e., we have a self-financed
budget constraint (7). The cardinality constraint (8)
restricts the number of assets included in the portfolio.
Investors can define the number of assets, C, in the
portfolio. n extra binary variables z; are introduced to
indicate if an asset is held or not in the portfolio. z; =1
if the investor hold asset a; (i.e., w; > 0), z; = 0
otherwise. Constraint (9) sets the relation between x;
and z. The minimum position constraint prevents
investors from holding very small amount of assets.
We introduce a prescribed percentage value x,,;,>0.
That is, holding a position strictly less than x,,;, is not
advised. Constraints (9) and (10) together ensure this
minimum position constraint. Domains of the decision
variables are defined by (11).

COMPROMISE BASED GOAL PROGRAMMING
APPROACH WITH SATISFACTION FUNCTION

Goal programming (GP) was first introduced in
(Charnes, Cooper et al. 1955) and (Charnes and Cooper
1961) as a well-known procedure for solving multi-
objective optimisation problems. Many conflicting
objectives are taken into account simultaneously in the
optimisation. The standard mathematical formulation
of the GP model is as follows:

minY (& +5)

i=1
st.fi(x)+6, =6 =g, i=1..m
h(x)<b,k=1,.,K
xeD
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(12)

where x; is the decision variable. D represents the set of
feasible solutions. /4 (x) < b, represents the constraints.
f; is the achievement level of objective i . g; represent
the aspiration level associated with objective i. §* and

o are, respectively, the positive and negative

i

deviations between the achievement level and the
aspiration level. The objective is to minimize the
positive and negative deviations.

It is well known in the literature that a solution of a GP
model is not necessary a Pareto optimal solution. The
GP model produces a solution to a multi-objective
problem with a given level of satisfaction. To reduce
the computational difficulty of evaluating and selecting
the best solution to obtain a Pareto optimal solution,
compromised solution can be applied to resolve the
conflicting objectives.

Compromise Programming (CP) is a multi-objective
decision making technique, proposed in (Zeleny 1973),
to obtain compromise solutions. The basic idea is to
firstly identify an ideal solution as a point where each
single objective under consideration achieves its
optimal value. Then it seeks a solution that is as close
to the ideal point as possible by minimizing the
distance between the achievement level f; (x) and the
ideal values f;* associated with each objective i. The
ideal value f* for objective i can be obtained by
applying the above GP model (12) for the objective
without considering the other objectives. For example,
in case of minimizing objective i, the ideal value can be
obtained as follows:

f=min fi(x) i=1,..,m
sth (x)<b,k=1,..K (13)
xeD

And the CP model can be formulated as follows:

min Y &/

i=1
st.f(x)=08"=f,i=1,..m
h(x)<bk=1,..K (14)
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For our MO-PSP model, we first compute the ideal
values V*, R*, and L* for the three objectives by
considering the following problems, respectively:

f, =min z Z O, XX, 4
i=l j=1
f, =max z X, )
i=1
L a +b. — .
fmmax Y G By
i=1

Here, V'* (respectively R* and L*) is used to denote the
optimal value for problem (4) (respectively (5) and (6))
subject to constraints (7)-(11). Then the ideal solution
point for the MO-PSP model is denoted by (V*, R*
L¥).



After generating the ideal solution point, we can
measure the quality of a feasible solution x with an
achievement function, i.e. metric Q,(x) defined as
follows:

0, (%) ={m (A )=V +[w, (f,(x) = RM]
Hw (/10— L3}

(15)

where w; , w, wj are the weights which represent the
importance of objective risk (4) return (5) and liquidity
(6), respectively. It is assumed that the decision maker
can use their experience to provide the values for these
weights to assign a degree of importance to the
objectives. pe{l,2..«c} defines the type of metric. It

represents the importance of the maximal deviation
from the ideal point. Typically, as p increases, the
weighting of the deviations also increases. When p=1,
G (x) =W (/i(x)=V*) +w,(f,(x) = R*) +wy(f;(x) - L¥)
yields the so-called Manhattan metric. The effects of
different types of metric in generating Pareto optimal
solution for convex and concave problems have been
shown in (Li, Burke et al. 2012). In this paper, we first
test the case of p=1 in the experiment section.
Investigations on different formulations of the metric
0,(x) remain our future work.

With the Q;(x) metric, the MO-PSP model is then
converted to a single objective programming problem
subject to constraints (7)-(11):

min O, (x) (16)

Generally we assume that investors are able to provide
their preferred values for the objectives. However, this
assumption is usually not true in the real-world
investment market. Usually, these objectives are
described by the terms such as “low risk”, “good return”
and “medium liquidity”, etc. What is more, usually
different investors have different preferences over the
conflicting objectives. One may prefer higher return
over lower risk, but the other may prefer lower risk.
When making the investment decisions, investors have
different sensitivity to the deviation of the goals. In
order to incorporate explicitly all of these factors to
select the best multi-criteria portfolio, we apply the
satisfaction functions, first introduced by (Martel and
Aouni 1990).

The degree of satisfaction of the decision maker will be
maximized to provide the most satisficed solution. By
employing the satisfaction functions, the decision
makers are able to explicitly introduce their preferences.

EXPERIMENTAL RESULTS

In this section, we illustrate the proposed simulation
model and show the effectiveness of the proposed
solution method based on 31 selected assets from the
FTSE stock market. The historical price data of 261

weeks have been collected to determine the return rate,
covariance matrix and also turnover rate. The
compromise based goal programming model (16) is
implemented in C++ with concert technology in
CPLEX on top of CPLEX12.3 solver. All experiments
have been carried out on an Intel Core Duo machine
with CPU @ 3.16GHz 3.17GHz and 2.97GB memory.

Parameter setting

We assume the turnover rate for the assets to be
trapezoidal fuzzy numbers, denoted by

I.=(a,b,a., ). We apply the method in (Li and Xu

2013) to set the values for the four parameters, i.e.
a,b,a, and g, based on the histograms of turnover

rates of the assets. For example, we exam a stock
where its daily turnover rates are collected from the
above mentioned historical data. It was found that most
of the data were concentrated around an interval of [0%,
4%], as shown in Fig.2. In order to set the left width
and right width, we manually divided the interval [0%,
4%)] into smaller intervals for every 0.2% unit. Based
on this, we set the left endpoint of the tolerance interval
at ¢=0.5% and the right endpoint of the tolerance
interval at 5=2.2%. The left width is set at ¢= 0.4%
and the right width is set at g =0.8%. Similarly, the

turnover rates of all 31 stocks are determined. The
setting of these four parameters is subjective. They
may be set to different values by individual investors
according to their preferences. We will test different
turnover rate sets in the following sections.
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Fig.2. The histogram of thee historical turnover rate
Portfolio strategy analysis

In this section, we compare and analyse different
aspects of the portfolio strategies and their sensitivity
to different factors in the model. Here are the aspects of
the portfolio strategies we concern: (1) The
achievement objective values of portfolios, i.e., risk,
return and liquidity (f; defined in (14)). (2) The
satisfaction value F(d;) of the decision maker for each
objective.

We will compare the sensitivity of the above aspects to
the decision maker’s attitude expressed by the logistic
satisfaction functions.



The logistic satisfaction function is given by

F(5)= 1 . The functions (i.e. for risk,

1+exp(s, (0, —mid,))
return and liquidity) rely on the set of shape parameter
values s; and the middle satisfaction values mid;. We
take two hypothetical situations to test the results. The
first situation is that the investor purses an aggressive
investment strategy, i.e. prefers higher level returns and
liquidity even though it may imply higher risks.
Conversely, the second situation is that the investor
purses a conservative investment strategy, preferring
lower risk even though such a strategy may imply
lower return and liquidity. These two situations can be

described by the parameter values of §; and mid; shown

in Table 1. The corresponding logistic satisfaction
functions with parameters given in Table 1 for risk,
return and liquidity are plotted in Figs 3-5.

In Fig.3, function f (200, 0.016) and £ (100, 0.016) are
satisfaction functions for an aggressive investment
strategy with different shape parameters, i.e. s,;, =200
and s, =100 (shown in Table 1.). On the contrary,
functions (200, 0.012) and f (100, 0.012) are from a
conservative investment strategy. The middle
satisfaction values of functions /' (200, 0.016) and {100,
0.016) is higher than that of (200, 0.012) and f (100,
0.012). This indicates that f (200, 0.016) and f (100,
0.016) represent an aggressive investment strategy
comparing against f (200, 0.012) and £ (100, 0.012).
The above same philosophy applies to Fig.4 and Fig.5.

Table 1. The attributes of parameters in the logistic
satisfaction function F{J;)

Aggressive Conservative
investment strategy investment strategy

mid;  mid, g =0.016 mid,g. =0.012
Mid e =0.00525 Mmid,epm =0.002
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Fig.5. The logistic satisfaction functions for liquidity

For the investor that takes aggressive and optimistic
investment strategies, we take the following middle
satisfaction values: mid,;; = 0.016, mid, ., = 0.00525,
and midjguan, = 0.7. The computational results are
summarized in Table 2.

Table 2. The portfolio obtained for two aggressive
investment strategies (row 1 and row 2)

Achievement value Satisfaction value
Risk Return Liquid | Risk Return Liquid
0.002627  0.008358  0.8896 | 1 1 0.796
0.0033352 0.0093586 0.7675 | 1 1 0.392

S; Syisk =200 Syisk =200
(set1)  Sreturn =2000 Sreturn =2000
SliqLditv :40 Sliquiditv :40
S; Syisk =100 Syisk =100
(set2)  Sreturn =1000 Sreturn =1000
Sli_qLditv :]0 Sli_qLdif :10

Logistic satisfaction function for portfolio
risk f(a, mid)
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Fig.3. The logistic satisfaction functions for risk

For the investor that takes conservative and pessimistic
investment strategies, we take the following middle
satisfaction values: mid,; = 0.012, mid,eppm = 0.002,
and midjguian, = 0.5. The computational results are
summarized in Table 3.

Table 3. Portfolio obtained for conservative investment
strategies (row 1 and row 2).

Achievement value Satisfaction value

Risk Return  Liquid | Risk Return Liquid
0.000953  0.006358 0.8489 | 1 1 1
0.002610 0.008331 0.893 | 1 0.657 1

A comparison of the solutions listed in Tables 2 and 3
highlights that if the investor chooses an aggressive
strategy a higher level of expected return will be
obtained than choosing conservative strategy, but with



a higher risk level too. On the other hand, if the
investor prefers conservative strategy a lower level of
the expected portfolio return will be chosen but with a
lower level risk too.

Now we analyse the weight to the individual objective
in (15) on the portfolio strategy information.

Decision maker can express his preference by setting
different weights to individual objectives. Fig.6. shows
the structures and composition of four portfolios, Port 1
- Port 4, constructed by our model with different
weights for the objectives. In Port 1, Port 3 and Port 4,
the investor assigns higher weights on risk and return
than on liquidity, and in Port 2 a higher weight is given
on liquidity. Fig.6 illustrates the structure and the
compositions of the four portfolios. From Fig.6 we can
see that the structures of the portfolios are not sensitive
to the weights of the objectives. This may be due to
that the preferences of objectives are structurally
controlled by the satisfaction functions of individual
objective which will be investigated in the following
section. However, the compositions of the portfolios
are sensitive to the weights of the objectives.

Compositions of four portfolios
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Fig.6. Comparison of structures and compositions of
four portfolios different weight sets.

Based on this we can conclude that the proposed model
has the ability to consider the preferences and
judgment (fuzzy information) by employing the
satisfaction functions in the portfolio selection process,
and to obtain a satisfactory personalised portfolio in
accordance with the attitudes of different investors.

CONCLUSIONS AND FUTURE WORK

In this paper, we propose a constrained multi-objective
portfolio selection model which includes three criteria,
namely return, risk and liquidity. A compromise
approach based goal programming (GP) solution
approach is proposed to obtain a compromised
portfolio  strategy.  Satisfaction functions are
incorporated into the portfolio selection process to
introduce decision maker’s preferences. We observe
from experiments that the approach can generate

satisfactory personal portfolios in accordance with the
attitudes of different investors.

In the model, the investor’s preferences, attitude and
judgement are explicitly expressed by satisfaction
functions, which are represented by fuzzy functions.
Fuzzy information is thus incorporated into GP for
portfolio selection analysis. The decision maker can
establish preferred satisfaction level for relevant
achievement functions.

In this paper, we primarily consider the fuzzy
information in financial market. In a complicated
financial market, some variables can exhibit random
uncertainty properties and others can exhibit fuzzy
uncertainty properties. Because random uncertainty and
fuzzy uncertainty are often combined in a real world
setting, the portfolio selection process should
simultaneously consider twofold uncertainty. A fuzzy
stochastic programming approach will be investigated
in our future work.
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