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ABSTRACT 

In this paper we investigate a multi-objective portfolio 
selection model with three criteria: risk, return and 
liquidity for investors. Non-probabilistic uncertainty 
factors in the market, such as imprecision and 
vagueness of investors’ preference and judgement are 
simulated in the portfolio selection process. The 
liquidity of portfolio cannot be accurately predicted in 
the market, and thus is measured by fuzzy set theory. 
Invertors’ individual preference and judgement are 
cooperated in the decision making process by using 
satisfaction functions to measure the objectives. A 
compromise based goal programming approach is 
applied to find compromised solutions. By this 
approach, not only can we obtain quality solutions in a 
reasonable computational time, but also we can achieve 
a trade-off between the objectives according to 
investors’ preference and judgement to enable a better 
decision making. We analyse the portfolio strategies 
obtained by using the proposed simulation approach 
subject to different settings in the satisfaction functions. 
 
INTRODUCTION 
 
The foundation of the modern portfolio selection 
theory originated from Markowitz’s mean-variance 
model (Markowitz 1952), which formulates the trade-
off between return and risk of portfolios. The essence 
of portfolio selection problem (PSP) can be described 
as finding a combination of assets that best satisfies an 
investor’s needs. 

To make a proper investment decision, along with the 
trading constraints, another important factor faced by 
the investors, i.e. decision makers, is the market 
uncertainty. Random uncertainty factors of the market, 
i.e., in terms of asset prices and currency exchange 
rates, etc. have been investigated using probability 
theory based techniques. A wide variety of stochastic 

programming approaches have been employed to 
support investment decisions making and simulation 
under random market uncertainty (Gaivoronski, Krylov 
et al. 2005, He and Qu 2014).  

In addition to random uncertainty, many non-
probabilistic factors in the securities market have also 
been investigated by researchers using fuzzy 
techniques. Fuzzy set theory has been applied to 
determine a rough estimation for the security’s 
turnover rate (Gupta, Mehlawat et al. 2008). 
Knowledge and preferences of experts have also been 
integrated in decision making (Bilbao-Terol, Pérez-
Gladish et al. 2006) . A flexible goal programming 
decision-making simulation model has been designed 
in (Bilbao, Arenas et al. 2007) for portfolio selection, 
where expert’s knowledge and imprecise preferences 
were considered. We refer to a survey by (Aouni, 
Colapinto et al. 2014) for more details. 

Expected return and risk are two fundamental factors in 
portfolio selection, and thus have been used as the most 
common two objectives in the literature. However, 
return and risk cannot provide all relevant information 
for making a sound investment decision. In addition to 
the expected return and variance, other criteria have 
also been proposed to make an investment decisions in 
recent years (Li and Xu 2013) (Steuer, Qi et al. 2005) 
(Arenas Parra, Bilbao Terol et al. 2001) (Fang, Lai et al. 
2006) (Gupta, Mehlawat et al. 2008). 

In this paper, we propose a constrained multi-objective 
portfolio selection model for investors. This model 
defines three criteria/objectives, namely return, risk and 
liquidity. A compromise based goal programming with 
satisfaction function solution approach is designed to 
obtain a compromised portfolio strategy. The model 
considers investors’ preferences and judgment (fuzzy 
information) by introducing satisfaction functions into 
the portfolio selection process, thus is able to obtain a 
satisfactory personal portfolio selection in accordance 
with the attitudes of different investors.  

MULTI-OBJECTIVE PORTFOLIO SELECTION 
MODEL 
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In this section, we formulate the portfolio selection 
problem as an optimization problem with multiple 
objectives.  

We have a given set of n assets. Each asset i is 
associated with an expected return (per period) ri, and 
each pair of assets i, j has a covariance 

ij  .The 

covariance matrix 
n n   is symmetric and each 

diagonal element 
ii  represents the variance of asset i. 

In the modern mean-variance portfolio theory, the 
variance 

ii  represents the risk of investing asset i; 

while the covariance 
ij  represents the correlated risks 

between pairs of assets. Rational investors should pick 
combination of diversified assets, i.e. a portfolio, to 
reduce the risk, which is measured by the covariance of 
combined assets, whiling achieving a specified return. 
A portfolio strategy can be represented by a set X = 
{x1, …, xn}, where xi represents the percentage wealth 
invested on asset i.  

Objectives 
 
Risk 

The value 
1 1

n n

ij i j
i j

x x
 
 represents the variance of the 

portfolio, and is considered as the measure of the risk 
associated with the portfolio.  

Return 
For a portfolio X = {x1, …, xn},the expected return of 
the portfolio is expressed as 

1

n

i i
i

r x

 . 

Liquidity 
Liquidity is defined as the degree of an asset or 
security that can be bought or sold in the market 
without affecting the asset's price significantly. 
Liquidity is characterized by a high level of trading 
activity. Assets that can be easily bought or sold are 
known as liquid assets. Generally, investors prefer to 
choose securities with greater liquidity. According to 
(Gupta, Mehlawat et al. 2008), the measurement of 
liquidity can be simulated on a security’s turnover rate. 
However, a security’s turnover rate cannot be 
accurately predicted in the stock market. To capture 
this imprecise nature of the market in the decision 
making, fuzzy set theory (Zadeh 1965, Zadeh 
1999)( Coupland and John 2007) is applied in this 
paper.  

Following the research in (Li and Xu 2013), in this 
paper, we assume that the turnover rate of assets is 
simulated as trapezoidal fuzzy numbers. A fuzzy 
number A  is called trapezoidal, denoted as 

( , , , )A a b    with tolerance interval [a, b], left 

width   and right width , if its membership function 

takes the following form: 
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Let the trapezoidal fuzzy number ( , , , )i i i i il a b  
(shown in Fig.1) denote the turnover rate of asset i.  
Then the turnover rate of the portfolio X = {x1, …, 

xn } is 
1

n

i i
i

l x

  . We apply the crisp possibilistic 

mean value of the turnover rate of the portfolio to 
measure the portfolio liquidity. 

 

Fig. 1. The Trapezoidal Fuzzy Membership Function 
(Li and Xu 2013) 

According to (Carlsson and Fullér 2001), the crisp 
possibilistic mean value (denoted by M) of the fuzzy 
number defined by the above membership function (1) 
is calculated as the following: 

1

0
( ) ( )M A a b d     (2) 

Based on (2) and with the following lemma by (Li and 
Xu 2013), we can obtain the possibilistic mean value of 
the turnover rate of the portfolio as a rough estimation 
for the portfolio’s turnover rate. 

Lemma Let the trapezoidal fuzzy number 

( , , , )i i i i il a b   be the turnover rate of asset i with 

membership function (1). Then the possibilistic mean 
value of the turnover rate associated with portfolio X = 
{x1, …, xn } is  

1

( ( )) ( )
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n
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M l x x
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Proposed Multi-objective Model 
 
Based on the above discussion, if an investor wants to 
minimize the risk, maximize the investment’s expected 
return rate, and maximize the portfolio liquidity, 
portfolio selection can be modelled as the following 
MO-PSP: 
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Objectives (4) (5) and (6) describe risk, return and 
liquidity of the portfolio that an investor concerns. We 
assume that the investor does not invest additional 
capital during the period, i.e., we have a self-financed 
budget constraint (7). The cardinality constraint (8) 
restricts the number of assets included in the portfolio. 
Investors can define the number of assets, C, in the 
portfolio. n extra binary variables zi are introduced to 
indicate if an asset is held or not in the portfolio. zi =1 
if the investor hold asset ai  (i.e., wi > 0), zi = 0 
otherwise. Constraint (9) sets the relation between xi 
and zi. The minimum position constraint prevents 
investors from holding very small amount of assets. 
We introduce a prescribed percentage value xmin>0. 
That is, holding a position strictly less than xmin is not 
advised. Constraints (9) and (10) together ensure this 
minimum position constraint. Domains of the decision 
variables are defined by (11). 
 
COMPROMISE BASED GOAL PROGRAMMING 
APPROACH WITH SATISFACTION FUNCTION 
 
Goal programming (GP) was first introduced in 
(Charnes, Cooper et al. 1955) and (Charnes and Cooper 
1961) as a well-known procedure for solving multi-
objective optimisation problems. Many conflicting 
objectives are taken into account simultaneously in the 
optimisation. The standard mathematical formulation 
of the GP model is as follows: 
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where xj is the decision variable. D represents the set of 
feasible solutions. hk (x) ≤ bk represents the constraints. 
fi is the achievement level of objective i .  gi represent 
the aspiration level associated with objective i.  

i
  and 

i
 are, respectively, the positive and negative 

deviations between the achievement level and the 
aspiration level. The objective is to minimize the 
positive and negative deviations.  

It is well known in the literature that a solution of a GP 
model is not necessary a Pareto optimal solution. The 
GP model produces a solution to a multi-objective 
problem with a given level of satisfaction. To reduce 
the computational difficulty of evaluating and selecting 
the best solution to obtain a Pareto optimal solution, 
compromised solution can be applied to resolve the 
conflicting objectives.  

Compromise Programming (CP) is a multi-objective 
decision making technique, proposed in (Zeleny 1973), 
to obtain compromise solutions. The basic idea is to 
firstly identify an ideal solution as a point where each 
single objective under consideration achieves its 
optimal value. Then it seeks a solution that is as close 
to the ideal point as possible by minimizing the 
distance between the achievement level fi (x) and the 
ideal values fi* associated with each objective i. The 
ideal value fi* for objective i can be obtained by 
applying the above GP model (12) for the objective 
without considering the other objectives. For example, 
in case of minimizing objective i, the ideal value can be 
obtained as follows: 
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And the CP model can be formulated as follows: 
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For our MO-PSP model, we first compute the ideal 
values V*, R*, and L* for the three objectives by 
considering the following problems, respectively: 
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Here, V* (respectively R* and L*) is used to denote the 
optimal value for problem (4) (respectively (5) and (6)) 
subject to constraints (7)-(11). Then the ideal solution 
point for the MO-PSP model is denoted by (V*, R*, 
L*). 
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The logistic satisfaction function is given by
1

( )  
1 exp( ( ))i i

i i i

F
s mid





 

. The functions (i.e. for risk, 

return and liquidity) rely on the set of shape parameter 
values si 

and the middle satisfaction values midi. We 
take two hypothetical situations to test the results. The 
first situation is that the investor purses an aggressive 
investment strategy, i.e. prefers higher level returns and 
liquidity even though it may imply higher risks. 
Conversely, the second situation is that the investor 
purses a conservative investment strategy, preferring 
lower risk even though such a strategy may imply 
lower return and liquidity. These two situations can be 

described by the parameter values of is and midi shown 

in Table 1. The corresponding logistic satisfaction 
functions with parameters given in Table 1 for risk, 
return and liquidity are plotted in Figs 3-5. 

In Fig.3, function f (200, 0.016) and f (100, 0.016) are 
satisfaction functions for an aggressive investment 
strategy with different shape parameters, i.e. srisk =200 
and srisk =100 (shown in Table 1.). On the contrary, 
functions f (200, 0.012) and f (100, 0.012) are from a 
conservative investment strategy. The middle 
satisfaction values of functions f (200, 0.016) and f(100, 
0.016) is higher than that of f (200, 0.012) and f (100, 
0.012). This indicates that f (200, 0.016) and f (100, 
0.016) represent an aggressive investment strategy 
comparing against f (200, 0.012) and f (100, 0.012). 
The above same philosophy applies to Fig.4 and Fig.5. 

Table 1. The attributes of parameters in the logistic 
satisfaction function Fi(δi) 

 Aggressive 
investment strategy 

Conservative 
investment strategy 

midi midrisk =0.016 
midreturn =0.00525 
midliquidity =0.7 

midrisk =0.012 
midreturn =0.002 
midliquidity =0.5 

si 

(set 1) 
srisk =200 
sreturn =2000 
sliquidity =40 

srisk =200 
sreturn =2000 
sliquidity =40 

si 

(set 2) 
srisk =100 
sreturn =1000 
sliquidity =10 

srisk =100 
sreturn =1000 
sliquidity =10 

 

 

Fig.3. The logistic satisfaction functions for risk 

 

Fig.4. The logistic satisfaction functions for return 

 

Fig.5. The logistic satisfaction functions for liquidity 

For the investor that takes aggressive and optimistic 
investment strategies, we take the following middle 
satisfaction values:  midrisk = 0.016, midreturn = 0.00525, 
and midliquidity = 0.7. The computational results are 
summarized in Table 2. 

Table 2. The portfolio obtained for two aggressive 
investment strategies (row 1 and row 2) 

Achievement value Satisfaction value 
Risk Return Liquid Risk  Return Liquid 

0.002627 0.008358 0.8896 1 1 0.796 
0.0033352 0.0093586 0.7675 1 1 0.392 

 

For the investor that takes conservative and pessimistic 
investment strategies, we take the following middle 
satisfaction values:  midrisk = 0.012, midreturn = 0.002, 
and midliquidity = 0.5. The computational results are 
summarized in Table 3. 

Table 3. Portfolio obtained for conservative investment 
strategies (row 1 and row 2). 

Achievement value Satisfaction value 
Risk Return Liquid Risk  Return Liquid 

0.000953 0.006358 0.8489 1 1 1 
0.002610 0.008331 0.893 1 0.657 1 

 

A comparison of the solutions listed in Tables 2 and 3 
highlights that if the investor chooses an aggressive 
strategy a higher level of expected return will be 
obtained than choosing conservative strategy, but with 
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