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This paper uses a case study of a UK inter-urban road, to explore the impact of extending
the system boundary of road pavement life cycle assessment (LCA) to include increased
traffic emissions due to delays during maintenance. Some previous studies have attempted
this but have been limited to hypothetical scenarios or simplified traffic modelling, with no
validation or sensitivity analysis. In this study, micro-simulation modelling of traffic was
used to estimate emissions caused by delays at road works, for several traffic management
options. The emissions were compared to those created by the maintenance operation,
estimated using an LCA model. In this case study, the extra traffic emissions caused by
delays at road works are relatively small, compared to those from the maintenance process,
except for hydrocarbon emissions. However, they are generally close to, or above, the
materiality threshold recommended in PAS2050 for estimating carbon footprints, and
reach 5–10% when traffic flow levels are increased (hypothetically) or when traffic
management is imposed outside times of lowest traffic flow. It is recommended, therefore,
that emissions due to traffic disruption at road works should be included within the system
boundary of road pavement LCA and carbon footprint studies and should be considered in
developing guidelines for environmental product declarations of road pavement
maintenance products and services.
� 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).
Introduction

The life cycle assessment (LCA) of road pavements has been developing since the 1990s (Hakkinen and Makela, 1996;
Stripple, 2001). The life cycle inventory of pavement materials has been researched thoroughly by material associations
(Marceau et al., 2007; Eurobitume, 2011), compared to early studies of energy consumption only (Zapata and Gambatese,
2005). The work is strengthened by including recycled and secondary materials (Mroueh et al., 2001; Birgisdóttir et al.,
2006), a growing practice in response to stakeholder calls for sustainable construction. More recent LCA research is focused
on the methodological choices, for instance allocation (Chen et al., 2010; Sayagh et al., 2010; Huang et al., 2013), and
comparison of design options (Cross et al., 2011; Santero et al., 2011a).
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It has been noted in the earliest of LCA research that traffic emissions in the use phase can account for the majority of
emissions in the pavement life cycle (Piantanakulchai et al., 1999; Highways Agency, 2003). The proportion has been quan-
tified by recent European research to be in the range of 93–99% (ECRPD, 2010) or even higher (Milachowski et al., 2011).
Because vehicle fuel consumption is largely determined by many factors other than pavement performance
(Hammarstrom et al., 2009; Lepert and Brillet, 2009), traffic emissions are typically excluded from pavement LCA. This is
a limitation, in that pavement maintenance leads not only to additional construction activities, but queuing or diversion
of traffic at road works. A few studies have investigated the additional emissions, but have been limited to simplified traffic
modelling (Huang et al., 2009a) or hypothetical scenarios (Santero et al., 2011b), with no validation or sensitivity check on
the traffic flow or traffic management (TM) options.

These problems are related to system boundary settings. Traffic emissions under the free flow state can be estimated by
multiplying the length of journey with average emission factors (e.g., kg CO2 per vehicle kilometre), typically tied to the age,
engine size and fuel type of the vehicles (DEFRA, 2011), or they can be derived from commercial databases (e.g., Ecoinvent)
(Milachowski et al., 2011). Managed traffic flows are better modelled in micro-simulation coupled with an instantaneous
emissions model, because this type of tool is able to relate the emission rates to vehicle operation (e.g., driving pattern, speed
profile) during a series of short time steps (Barlow et al., 2007), representing the restricted flow or congestion that may be
caused by road works. There remains a need to explore system boundary expansion of road pavement LCA to understand the
importance of this part of the pavement lifecycle.

Using a case study of a UK inter-urban road, this research investigates the emissions from traffic disrupted during pave-
ment maintenance, with various TM options, compared to those from the construction and maintenance activities.

Case study and LCA model

System boundary

The case study site is located in Lincolnshire on the A17 between Sutton Bridge and Kings Lynn, an inter-urban road in the
UK Midlands; with length 720 m including 200 m dual (22 m width) and 520 m single (11 m width) carriageway. While the
results of such studies will vary widely, due to the very wide range of traffic flows on different roads, this site was chosen due
to the appropriate level of construction and traffic flow data available at a location representative of many similar roads, with
a variety of potential TM options.

The system boundary of the pavement construction and maintenance LCA is illustrated in Fig. 1. Construction data on
pavement layout and thickness was provided by Lincolnshire County Council. The pavement consisted of 40 mm surface
course, 60 mm binder course and 200 mm base, all courses being made with bitumen bound materials (asphalt). Material
recipes for asphalt mixtures were based on UK asphalt material specification in compliance with BS EN 13108 (BSI, 2010).
Blast furnace slag (BFS), a by-product from the iron making process, was used as aggregates in DBM base (200 mm thick)
and binder (60 mm thick) courses, and as coarse aggregates (>2 mm) in HRA surface course (40 mm thick). Assumptions
are made on the distance of transport and payload of the trucks. Quarry aggregates and BFS are transported for 50 km, and
bitumen for 200 km, to the mixing plant using 20–28 t truck. New asphalt and milled recycled asphalt pavement (RAP) are
transported for 80 km to site and stockpile, respectively, using 20–28 t truck. Allocation of environmental burdens of iron
making to BFS has followed the zero impact route1 recommended by a UK industry standard tool for asphalt carbon footprinting
(Wayman et al., 2011). No processing energy and emissions were allocated to BFS before transport to the asphalt plant. The
Eurobitume 2011 inventory, which is based on a mixed allocation by mass and economic value (Eurobitume, 2011) between
oil refinery products, was used for bitumen. Asphalt production followed the ‘cut-off’ method for end-of-life (EOL) scenario,2

in compliance with a UK public specification for measuring greenhouse gas emissions of products (BSI, 2011). The impact of
the above allocation methods on the LCA results has been reported (Spray et al., 2012) and thus was not investigated in this study.

Functional unit

Original construction was undertaken in 1989. This case study starts in 2009, when a major rehabilitation was under-
taken. Twenty years was selected as the analysis period to be consistent with the design life of the 2009 rehabilitation. In
other LCA studies, justification of maintenance strategy will need to be provided. This rehabilitation involves milling out
of 200 mm of the old asphalt pavement and replacing with inlay of new asphalt mixtures. The rehabilitation is modelled
using real project data, except that the asphalt mix design uses BSI guide values, to eliminate the variables between
suppliers. All removed materials are assumed stockpiled for reuse. The functional unit (FU) is defined as the carriageway
pavement area of the rehabilitation site, i.e., 520 m single carriageway (11 m width) and 200 m dual carriageway
(22 m width) bearing the design traffic for 20 years, which includes the rehabilitation at end of year 20. The modelling
was carried out in SimaPro using sub-licensed databases, supported by data from contractors and UK specification. The
1 Alternatively, allocation can be made based on mass or economic value of the outputs.
2 In the ‘cut-off’ method, each product is assigned only the burdens directly associated with it; in other words, all benefits of recycling are given downstream

to using the recycled material. ‘Substitution’ is an alternative method of allocation; it gives all benefits of recycling to the original manufacture but requires an
assumption of the EOL recovery rate.
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Fig. 1. System boundary of A17 major rehabilitation with pavement reinforcement.
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FU after expansion of the system boundary includes the additional emissions from traffic which is affected by the road
works.

During rehabilitation a reinforcement system was used, which is a mainly glass fibre textile (GlasGrid™) overlaid by
2 kg/m2 of polymer modified bitumen emulsion, to reduce crack propagation from lower layers. This has additional benefits
of reducing the required asphalt thickness for future rehabilitation to 150 mm, and less excavation waste, at the expense of
additional manufacture and installation of the reinforcement. The reduction of asphalt thickness for future maintenance was
recommended based on an analytical pavement design. A LCA of this reinforcement system was, therefore, included as part
of this case study.
GlasGrid

Primary data was obtained from the manufacturer. GlasGrid is made of 72.9% glass fibre, 2.1% polyester fibre, 25.0%
acrylic coating and trace content (<0.1%) of carbon black. Raw materials are transported for an average distance of
2000 km using 32 t truck to a manufacturing plant in the USA, where natural gas (0.014 m3) and electricity (0.017 kW h)
are consumed in producing 1 m2 of GlasGrid. The product is then shipped using ocean freighter for 5000 km to UK and
50 km using 32 t truck from port to site. The polymer modified bitumen emulsion was transported for 200 km using 32 t
truck. The unit inventory results (CO2e per 1 m2 GlasGrid) calculated using manufacturer’s data, and data in the
Ecoinvent database, are presented in Table 1 for comparison.

Table 1 indicates that the cradle-to-gate CO2e of GlasGrid provided by the manufacturer is 0.75 kg/m2, in other words
37.0% less than 1.19 kg/m2 as calculated using Ecoinvent default data (shaded). The Ecoinvent data for relevant materials
Table 1
Carbon calculation of GlasGrid Cradle-to-Gate (unit: per 1 m2).
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was global average for year 2000; the data from materials supplier was obtained from recent literature and TEAM�

(commercial LCA software). Interestingly, the percentages that activity groups account for were similar between the two
data sources, i.e., 84–88% for materials embodied, and 9–12% for transport and about 4% for manufacture.
Traffic modelling

Microscopic models are considered to be the most accurate and versatile analysis tools to simulate non-free flow traffic
states (i.e., busy and congested). This is because micro-simulation can replicate individual vehicle movements along roads
and through junctions in a network. Road maintenance, as in this A17 case study, is always carried out under TM suitable
to the location and layout of the road. Off peak lane closures with traffic light control are often used in these circumstances.
In some cases, diversion of traffic to adjacent roads is used instead, and the road completely closed. The micro-simulation
model AIMSUN (Advanced Interactive Microscopic Simulator for Urban and Non-Urban Networks) was used in this study
to evaluate the emissions generated by traffic under different TM measures. More specifically, to quantify the effect of
adjusting the timing of lane closure and compare to the impact of diversion.

AIMSUN was selected because of its ability to model the road network geometry, the behaviour of individual vehicles in
response to traffic and signal controls (pre-timed and actuated), and its easy-to-use graphical interface. Also, a particular
feature of AIMSUN is its ability to capture the empirical evidence of changes in driver behaviour depending on local
circumstances, e.g., acceptance of speed limits, influence of gradients, driver interaction while travelling in adjacent lanes.
An AIMSUN micro-simulation model was built for both the site located in Lincolnshire on the A17, and the wider road net-
work highlighted in Fig. 2.

Base Case scenario

To model the Base Case scenario, with no TM, weekly data extracted from the automatic traffic count (ATC) by
Lincolnshire County Council were used, specifically the hourly traffic flow data for the period between May and August
2010 including vehicle class and speed on a daily basis. The model was built to include road layouts, lane allocations, signal
junctions, stop-lines, etc. Statistical analyses were used to produce typical flow profiles for each day of the week in order to
identify the peak and inter-peak periods, thus to identify when is the best time and day to carry out the planned road works.
Traffic emissions were calculated using the AIMSUN embedded instantaneous emissions model; four vehicle types have been
simulated (i.e., car petrol; car diesel; Light Goods Vehicle (LGV) and Heavy Goods Vehicle (HGV)) according to the data
available on fleet composition. The use of the four vehicle types is in line with the guidance from NAEI (2013) which assumes
a basic fleet split according to six national vehicle types namely Car, LGV, HGV (Rigid, Artic), Bus, Motorcycle and London Taxi
and three different types of roads: urban, rural and motorway. Within the paper, emissions for rural road type have been
considered and Bus, Motorcycle and London Taxi vehicle types were assumed to be zero or close to zero, such as for
motorcycle (<0.5%). For the car type, the extra distinction in diesel and petrol was made to improve the quantification of
the impact made by different pollutant emissions. In fact, diesel vehicles traditionally are higher emitters of oxides of
nitrogen (NOx) and particulate matters (PMs), while petrol cars are higher emitters of hydrocarbons (HC) and carbon dioxide
(CO2). The origin–destination (O–D) matrix of trips into, within and outside the modelled area at an hourly resolution was
generated to be consistent with the traffic flows provided.

Road works scenario

The overnight TM simulation consisted of four shifts (phases) in three nights with temporary speed limits on site, see
Fig. 3. In phases 1 and 2 (night 1), work was carried out on the 400 m single carriageway west of the scheme in both direc-
tions. Phase 3 (night 2) dealt with the rest of the scheme (320 m) eastbound including the junction approach; Phase 4 (night
3) dealt with the rest of the scheme (320 m) westbound. The simulation was conducted with two times for the start of TM
from 18:00 and from 19:30. The 19:30 TM start is believed to be more practical, as at this time the traffic flows have
decreased substantially. The impact of the earlier closure with a traffic flow of about 600 veh/h associated with the
18:00–19:00 period, was estimated to explore the importance of this decision.

In order to compare the effects of the proposed traffic management options, it was assumed that the O–D matrix of the
Base Case remained unchanged. In particular, management of the temporary traffic signals during lane closure was modelled
with a specific layout of a set of four coordinated traffic light configurations designed to avoid simultaneous presence of
vehicles coming from different arms of the intersection under study. Three types of road closure have been simulated in this
study. The first considered overnight lane closure for three consecutive days, the second considered a two shift closure of
12 h each and the third a one shift closure of the A17 for 24 h, both closures timed to the lightest traffic periods identified
by scrutiny of the Base Case scenario. The O–D matrices were generated between 6 pm and 6 am for the overnight closure; a
matrix across the wider area covering the three main corridors of A17, A47 and A1101 was created for the two and one shift
road closure, simulating the diversion onto adjacent roads. Validation of the micro-simulation model was carried out, in
order to confirm the replication of the Base Case for both networks. The accuracy of the model prediction was determined
by comparing the Base Case (without road works) with the available ATC data.
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The 24 h TM proposal was the closure of the length of road between A and B with no access to non-work traffic (see
Fig. 2). Instead, closure points will be set up on the primary road as indicated in Fig. 2 with traffic diversion onto the adjacent
road network. The rationale is to complete the work in a single shift when traffic along the ‘triangle’ will be least affected. In
this case an analysis of the hourly traffic flow profile over the entire week has been performed and the best 12 h and 24 h
time windows have been chosen appropriately (see Fig. 4), from 13:00 on Saturday afternoon for 24 h and from 19:00 on



Fig. 3. Phased lane closure in A17 traffic management.

Fig. 4. Weekly traffic flow indicating 24 h and 12 h road closure times.
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Saturday evening for 12 h closure. The potential construction benefits include resource efficiency and staff safety.3 The
impact on additional emissions is modelled and compared with multiple-phased lane closure shown diagrammatically in Fig. 3.

Finally, in order to assess the sensitivity to potential traffic flow variation over the closure period of the first scenario,
namely the temporary traffic signals with overnight lane closure for three consecutive nights, the traffic flows along the
A17 corridor have been increased by 10%, 20% and 30% of the Base Case hourly flows, limiting the maximum traffic flow
on each link to a realistic level of 650 veh/h.

Results and discussion

Results of the pavement construction and maintenance LCA

Table 2 presents the LCA results for (1) the 2009 rehabilitation, which replaced 200 mm old pavement with new asphalt
and laid a Geogrid at a depth of 150 mm, and (2) future rehabilitation at year 20 where the Geogrid remained in place and
only the 150 mm asphalt above it was replaced.

Results of CO2e are presented per m2 pavement area and multiplied by the area to give the whole case study results, i.e., a
total pavement area of 10,120 m2. The results have not been presented broken down into different construction phases
3 Email communication with Neal Sears, Director of Virtus Traffic Management Solutions Ltd. in December 2011.



Table 2
Rehabilitation CO2e.

Life cycle stage Unit

kg CO2e per m2 t CO2e case study t CO2e per km

(1) 2009 Rehabilitation 42.5 430.1 597.4
(2) Year 20 rehabilitation 38.3 387.6 538.3

Total 80.8 817.7 1135.7
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(materials production, paving, etc.), although this has been discussed by others (Huang et al., 2009b; Zapata and Gambatese,
2005).
Results of traffic simulation

Fig. 5 (showing NOx emissions as an example) indicates that the timing of TM could have a significant effect on emissions
from disrupted traffic in all shifts (phases 1–4), assuming 2010 National fleet composition and the five emissions factors
developed in a previous study (Galatioto et al., 2012) representing the five major pollutant emissions according to the
National Atmospheric Emissions Inventory (NAEI). The graph clearly shows that the effect would be more pronounced (from
1.5 to 8 times higher) when the road work was carried out near the junction (phases 3 and 4). Also, Fig. 5 suggests that for
phases 3 and 4 TM implementation after 23:00 would be best, when traffic flows fall sharply, as opposed to 21:00 for phases
1 and 2. In practice however, the start of TM is likely to be earlier (as modelled in this case study from 19:30) because priority
is given to ensure the completion of treatment and safety of the workforce is guaranteed within the night period.

Simulation of the different scenarios described in Sections ‘Base Case scenario and Road works scenario’ was carried out. A
range of traffic and emission outputs have been generated from the AIMSUN model, including speed, queue length, number
of stops, travel delay and emissions (CO2, CO, NOx, HC and PM). Selected outputs are presented in Table 3. The same five
pollutants are given from the rehabilitation LCA for comparison.

Table 3 indicates that the additional traffic emissions due to road works:

1. With start at 19:30 and very low flows overnight, were negligible (i.e., <1% for NOx, PM and CO2) compared to the
rehabilitation emissions. While carbon monoxide was 1.2%, hydrocarbon was more significant at 3.7%.

2. With start of road works at 18:00, the additional traffic emissions rose to more than 3% of rehabilitation emissions with
the exception of PM (1.2%); hydrocarbon increased to nearly 30%. This suggests that if a road closure is needed, the
additional emissions will become significant when the traffic flow is high (e.g., 600 veh/h).

3. When non-work traffic was diverted to adjacent roads allowing the road works to be carried out in one single shift,
additional traffic emissions varied from 1.4% (PM) to 24.5% (hydrocarbon), but consistently higher than the overnight lane
closure options.
Fig. 5. Vehicle NOx emission profiles in A17 traffic management.



Table 3
Additional traffic emissions due to temporary traffic-light and road closure options.

Additional emissions from traffic disruption.

Relative to 2009 rehabilitation emissions.
a Include 128.00 kg (<2.5 lm) and 99.80 kg (>2.5 lm and <10 lm).
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Sensitivity to Flow Variation Analysis

In order to assess the sensitivity of the overnight lane closure to changes in flow, simulation of traffic flow at three dif-
ferent additional increments (10%, 20% and 30%) of flows for each road closure (start 18:00 and 19:30) have been carried out.
Fig. 6 presents the impact on HC emissions in kg for closure starting at 19:30 and during the period 18:00–24:00, when the
emissions are more significant. The increase in traffic flow produces an increase in emissions during the closure and the
duration of the congestion in the network becomes extended.

The results of the sensitivity analysis are presented in Table 4 where the emissions for each scenario have been compared
with the rehabilitation emissions. The average extra travel time incurred traversing the diversion route to circumvent the
roadwork section ranges from 10 to 25 min for the 10% and 30% traffic increase respectively. The travel time without road
works along the longer route via Wisbech, without considering extra travel time due to urban traffic and local traffic lights, is
44 min for cars and 51 for HGVs, while following the A17 shorter route is 22 and 25 min respectively. This means that during
the road works the maximum travel time for a 30% increase in traffic would be 47 (25 + 22) and 50 (25 + 25) min for cars and
HGVs respectively, thus it is reasonable to suggest that no or a small percentage of drivers in the scenario with 30% additional
traffic will opt for the longer diversionary route.

Highlighted in bold in Table 4 are those scenarios when pollutant emissions from traffic relative to rehabilitation are
close to 10% or higher, while for carbon footprint the values above the 1% materiality threshold recommended in
Fig. 6. Vehicle HC emission profiles in A17 traffic management for the sensitivity analysis.



Fig. 7. Relative increase in emissions for HC (left) and CO2 (right).

Table 4
Traffic Emissions due to the overnight lane closures, for the Base Case and the three levels of traffic flows (a) and relative to the 2009 rehabilitation emissions
(b).

CO (kg) HC (kg) NOx (kg) PM (kg) CO2 (t)

(a)
Emissions by the construction process 614.00 36.40 1750.00 227.80 (<10 lm) 430.00
Extra emissions from traffic Start 19:30 Base Case 7.11 1.33 13.31 0.35 1.94

Start 19:30 + 10% BC Flow 12.01 2.18 21.79 0.58 3.43
Start 19:30 + 20% BC Flow 16.37 2.91 29.06 0.79 4.67
Start 19:30 + 30% BC Flow 35.53 6.21 63.76 1.80 10.99
Start 18:00 Base Case 59.65 10.44 97.96 2.69 16.46
Start 18:00 + 10% BC Flow 85.83 15.12 143.62 3.95 23.93
Start 18:00 + 20% BC Flow 113.56 20.10 191.21 5.23 31.73
Start 18:00 + 30% BC Flow 240.29 42.16 408.62 11.38 69.59

CO (%) HC (%) NOx (%) PM (%) CO2 (%)

(b)
Relative emissions of traffic vs. construction process Start 19:30 Base Case 1.2 3.6 0.8 0.2%a 0.5

Start 19:30 + 10% BC Flow 2.0 6.0 1.2 0.3a 0.8
Start 19:30 + 20% BC Flow 2.7 8.0 1.7 0.3a 1.1
Start 19:30 + 30% BC Flow 5.8 17.1 3.6 0.8a 2.6
Start 18:00 Base Case 9.7 28.7 5.6 1.2a 3.8
Start 18:00 + 10% BC Flow 14.0 41.5 8.2 1.7a 5.6
Start 18:00 + 20% BC Flow 18.5 55.2 10.9 2.3a 7.4
start 18:00 + 30% BC Flow 39.1 115.8 23.3 5.0a 16.2

a For PM relative emissions, the rehabilitation process emissions <10 lm only were used.
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PAS2050 (BSI, 2011) have been highlighted. In particular, relative to rehabilitation, HC emissions from traffic for a closure
start at 18:00 are high, ranging between 28.7% and 116%. Similarly for CO with start time 18:00 emissions range from
9.7% to 39.1% as traffic flows increase between Base Case and 30% additional traffic. Other pollutants namely NOx and
CO2 (not PM) also became significant for the earlier start of the closure (18:00) only at higher level of traffic flow namely
+20% and +30%. At a start time of 19:30 a significant increase in HC of 17.1% only occurred with flow increase of 30%.

In Fig. 7 the exponential effect of increased traffic level on the overall emissions for HC (left) and CO2 (right) is evident,
this is due to the increased congestion that builds up for each increment of traffic flow, which has a non-linear trend.

This is likely to generally be the case for busier, strategic roads, although it is possible that where average speeds are
enforced, which are below the Base Case speeds, overall emissions could be reduced (Patey et al., 2008). It is possible that
for minor roads, traffic emissions during road works will be less significant, although it should be remembered that some-
times, only much simpler maintenance operations, with lower emissions are required for these roads and so the relative
impact could remain significant. This should be the subject of further study.
Conclusions and recommendations

This study has explored the implication of extending the system boundary of road pavement LCA, to also include the
impacts of traffic disruption at road works. This has been achieved for a case study, by conducting LCA of pavement
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rehabilitation, and using micro-simulation to estimate extra traffic emissions at road works (compared to a Base Case of traf-
fic emissions without road works).

The modelling confirmed that the type, duration and timing of road works can significantly affect the traffic disruption
and associated emissions. This suggests that LCA modelling of alternative TM arrangements might be used to reduce impacts
during road works. For this case study, increases in traffic levels result in an exponential increase in emissions during road
works due to the oversaturation and delay caused by reduced capacity after the lane closure. This highlights the importance
of considering current traffic levels, and predictions of future traffic levels, in LCA of road pavements which include traffic
disruption during maintenance.

Comparing emissions from traffic disruption and those due to rehabilitation, for this case study, shows that those from
traffic disruption are relatively small, except for hydrocarbons (HC). However, they are generally close to or above the 1%
materiality threshold recommended in PAS2050 for estimates of carbon footprints. Emissions due to traffic disruption at
road works should, therefore, be included in road pavement LCA and carbon footprint studies along with the traffic
modelling necessary to estimate them.

While this case study was chosen partly because its traffic levels are thought to be similar to many other inter-urban
roads in England, the exponential relationship found between traffic levels and emissions during road works, means that
even for less detailed LCA and carbon footprint assessments at early design stages, traffic emissions during road works
should be included within the system boundary. Meanwhile the paper recognised that traffic management and modelling
are specific to the location and nature of the road work. Work of this type should be undertaken for a range of case studies
to better understand where it is most important to extend the system boundary of pavement LCA.

A limitation of this study, as with most road pavement LCA studies, is that the maintenance of the case study is planned in
isolation from the network of which it forms a part. In reality, road maintenance strategies are developed at a network level,
and road works at an individual site may be undertaken at a time which is optimum for the network condition, traffic flows
and maintenance budget. However, this may not be the same time as if the site was considered in its immediate locality. A
second limitation is that only one form of traffic modelling was undertaken. While micro-simulation is considered the most
appropriate for this type of work, it could be that, for some circumstances a nested modelling approach should be used. This
would consider the microscale modelling in the context of the wider more strategic impact using macro modelling con-
sidering link traffic flows rather than individual vehicles, or based solely on queue lengths rather than potential diversion
behaviour which may produce results accurate enough for LCA studies.

It is recommended that a wider range of LCA studies, including traffic disruption at road works, be undertaken at network
level and including different levels of sophistication in traffic modelling. A more complete study of this sort would provide
evidence on which to base requirements for system boundary expansion of road pavement LCA studies to include traffic
disruption at road works. These requirements could form part of product category rules for LCA in this sector (BSI, 2012).
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