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Abstract
Aim: Accounting for sampling bias is the greatest challenge facing presence- only and 
presence- background species distribution models; no matter what type of model is 
chosen, using biased data will mask the true relationship between occurrences and 
environmental predictors. To address this issue, we review four established bias cor-
rection techniques, using empirical occurrences with known sampling effort, and vir-
tual species with known distributions.
Innovation: Occurrence data come from a national recording scheme of hover-
flies (Syrphidae) in Great Britain, spanning 1983– 2002. Target- group backgrounds, 
distance- restricted backgrounds, travel time to cities and human population density 
were used to account for sampling bias in 58 species of hoverfly. Distributions gener-
ated by bias correction techniques were compared in geographical space to the dis-
tribution produced accounting for known sampling effort, using Schoener's distance, 
centroid shifts and range size changes. To validate our results, we performed the same 
comparisons using 50 randomly generated virtual species. We used sampling effort 
from the hoverfly recording scheme to structure our biased sampling regime, emulat-
ing complex real- life sampling bias.
Main conclusions: Models made without any correction typically produced distri-
butions that mapped sampling effort rather than the underlying habitat suitability. 
Target- group backgrounds performed the best at emulating sampling effort and unbi-
ased virtual occurrences, but also showed signs of overcompensation in places. Other 
methods performed better than no- correction, but often differences were difficult to 
visually detect. In line with previous studies, when sampling effort is unknown, target- 
group backgrounds provide a useful tool for reducing the effect of sampling bias. 
Models should be visually inspected for biological realism to identify any areas of po-
tential overcompensation. Given the disparity between corrected and un- corrected 
models, sampling bias constitutes a major source of error in species distribution mod-
elling, and more research is needed to confidently address the issue.
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1  |  INTRODUC TION

Understanding macro- geographic processes is becoming ever more 
important in the challenges facing biodiversity conservation. The 
threats of climate change, species invasions and continued habitat 
degradation mean we need accurate methods for understanding 
distributions and their responses to changing scenarios (Jeschke & 
Strayer, 2008; Pimentel et al., 2001). Species distribution modelling 
(SDM) aims to relate the occurrence records of a species to abiotic 
variables such as climate and land use (Elith & Leathwick, 2009; 
Phillips, 2004). By effectively describing the environmental niche 
that a species occupies, models can be used to predict geographic 
distributions (Soberón & Peterson, 2005).

Many SDMs used today utilize presence- only data, most notably 
using Maximum Entropy statistical models (Phillips, 2004; Phillips 
et al., 2006). Because it is simple to use and performs well with 
small sample sizes, Maxent has driven the use of SDMs in conser-
vation. An important assumption of modelling with presence- only 
data is that the modelled region has been sampled randomly, with 
environmental conditions represented in terms of their availability 
(Phillips et al., 2009); due to the haphazard sampling of museum re-
cords and citizen science databases, this is rarely the case (Newbold, 
2010; Ponder et al., 2001). Often the locations that are sampled the 
most are in the most accessible areas, in protected areas, or where 
the greatest number of species can be observed (Kadmon et al., 
2004; Reddy & Dávalos, 2003). This in turn can cause distribution 
models to resemble sampling effort more closely than to the true 
distribution, complicating interpretation (Elith et al., 2011; Soberon 
& Nakamura, 2009). This phenomenon is typically referred to as 
sampling bias.

While sampling bias may be a result of geographic features, 
models are typically fitted in environmental space, and so sampling 
bias becomes a problem if the highly sampled regions correlate with 
specific climatic conditions (Phillips et al., 2009). This may be true 
in many instances, such as the proximity of road networks to ridge 
lines, or the association between cities and rivers. In these cases, 
the realized niche of a species is often disguised by the climatic 
variables of over- represented areas. Despite this, sampling bias is 
still often unaccounted for in distribution modelling (Yackulic et al., 
2013).

There are two main methods commonly used to correct for sam-
pling bias. The first is to manipulate the selection of background 
points used to determine environmental variation so that these 
share the same bias; this in effect increases the contribution of envi-
ronmental variation from highly sampled areas (Ponder et al., 2001). 
The second option is to remove presences from highly clustered 
areas, known as spatial filtering (Boria et al., 2014; Veloz, 2009). 
Both methods have been shown to reduce the effect of sampling 
bias. We chose to focus on background manipulation rather than 
spatial filtering for two reasons. First, occurrences may be clustered 
for ecological reasons such as population structure (Dormann et al., 
2007), and so removing records from highly clustered areas may 

disguise the true patterns; second, presence records may often 
be sparse, and thus removing records can reduce the sample size 
unacceptably.

Previous evaluations of methods to account for sampling bias 
either have used simulated datasets with virtual species (e.g. Barbet- 
Massin et al., 2012; Moua et al., 2020; Ranc et al., 2017; Stolar & 
Nielson, 2015), estimations or simulations of sampling bias (e.g. 
Fourcade et al., 2014; Kramer- Schadt et al., 2013), or presence- only 
methods using presence– absence data (Fithian et al., 2015; Syfert 
et al., 2013). By having complete knowledge of the underlying pop-
ulation distribution, evaluating correction methods can be done 
confidently. However, artificially generated sampling bias can be 
simplistic and is often represented as gradients of sampling intensity 
across modelled regions. This does not reflect the complex patterns 
of bias observed in real life.

In contrast to the above studies, we have a dataset of field- 
collected data where the sampling bias is known. We compare 
bias correction methods here using the presence- only data of the 
Hoverfly Recording Scheme (Ball & Morris, 2012), which has a com-
plete record of sampling effort for each 1- km square of the UK. The 
data come from a long- standing National Recording Scheme, with 
records contributed by skilled professionals, amateurs and increas-
ingly by citizen scientists; the data therefore capture the true com-
plexity of bias in sampling, affected by all manner of factors, such as 
accessibility and the site preferences of surveyors.

We used both empirical and virtual species to test three methods 
of bias correction via background manipulation: the use of records of 
similar taxa (the ‘target- group’ method: Phillips et al., 2009; Ponder 
et al., 2001), restricting the available background to a specified dis-
tance from records (Anderson & Raza, 2010; Phillips, 2008) and the 
use of potential covariates of sampling effort, such as human popula-
tion density or the positions of roads (Dubos et al., 2021; El- Gabbas 
& Dormann, 2018; Monsarrat et al., 2019). We used the explicit 
knowledge of sampling effort to factor out bias in real distributions 
as a standard for comparison, and to create biased and unbiased oc-
currences for virtual species. To the best of our knowledge, this is 
the first attempt to evaluate bias correction techniques using real 
data with explicit knowledge of sampling effort and therefore pres-
ents a unique opportunity to test them against the complexity of 
real- life sampling bias.

2  |  METHODS

2.1  |  Empirical data

Our data came from the Hoverfly Recording Scheme (HRS) (Ball & 
Morris, 2012), which now contains more than 1 million records. The 
scheme aims to collate information on the distribution and ecology 
of hoverflies (Diptera, Syrphidae) throughout the UK. We chose to 
model 58 individual species with over 1000 records, spanning 1983– 
2002. The use of higher numbers of records leads to more accurate 
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models (Kadmon et al., 2003; Wisz et al., 2008), and by using multi-
ple species, we aimed to reduce the effect of species- specific rela-
tionships with sampling bias (Fourcade et al., 2014; Stolar & Nielsen, 
2015; Warton et al., 2013). The exact number of occurrences for 
each species is presented in Table 1.

Climatic variables for modelling were sourced from the 
WorldClim database (Version 2.1) (Flick & Hijmans, 2017); all 19 
bioclim variables were initially considered, alongside elevation. Land 
use data were also incorporated, using the Land Cover Map 2000 
(1- km dominant target class), as produced by the Centre for Ecology 
and Hydrology (Fuller et al., 2002). Target classes for each 1- km 
raster cell show 25 land use types representing different habitats 
throughout the UK. We assessed predictor variables for collinearity 
using the r package virtualspecies (Leroy et al., 2015), selecting nine 
independent variables with a Spearman's rank correlation less than 
0.7 (Appendix S1: Figure S1.1) (Braunisch et al., 2013). Information 
on the environmental predictors is available in Appendix S1: Table 
S1.1. All processing of environmental variables and occurrences 

were coded in r version 4.0.5 (R Core Team, 2021) and projected in 
the OSGB 1936 coordinate system.

2.2  |  Maxent settings

All species distribution modelling was performed using Maxent (ver-
sion 3.4.1) in the r package dismo (Hijmans et al., 2017). Because 
we modelled multiple virtual and empirical species across different 
methods, we chose to use Maxent's default regularization and fea-
ture settings to maintain consistency. Tuning individual models can 
improve their predictive ability (Merow et al., 2013; Radosavljevic 
& Anderson, 2014), including their response to sampling bias 
(Anderson & Gonzalez, 2011), which may in our case mask the effect 
of each bias correction method. However, for practical application 
we recommend that Maxent users should always carefully consider 
model settings and visually assess models for biological realism 
(Fourcade et al., 2018).

Species Occurrences Species Occurrences

Baccha elongata 1810 Melanostoma mellinum 3976

Cheilosia albitarsis agg 2471 Melanostoma scalare 5312

Cheilosia bergenstammi 1022 Meliscaeva auricollis 1127

Cheilosia illustrata 2125 Meliscaeva cinctella 1461

Cheilosia pagana 2513 Merodon equestris 1075

Cheilosia variabilis 1221 Myathropa florea 3018

Cheilosia vernalis 1101 Neoascia podagrica 2648

Chrysogaster solstitialis 1633 Neoascia tenur 1385

Chrysotoxum bicinctum 1756 Pipizella viduata 1036

Dasysyrphus albostriatus 1140 Platycheirus albimanus 5925

Dasysyrphus venustus 1288 Platycheirus angustatus 1051

Epistrophe eligans 2021 Platycheirus clypeatus agg 2807

Epistrophe grossulariae 1499 Platycheirus granditarsus 2096

Episyrphus balteatus 7741 Platycheirus manicatus 1635

Eristalinus sepulchralis 1336 Platycheirus peltatus agg 1457

Eristalis arbustorum 4439 Platycheirus rosarum 1269

Eristalis horticola 1940 Platycheirus scutatus agg 2089

Eristalis interruptus 2748 Rhingia campestris 4936

Eristalis intricarius 2280 Scaeva pyrastri 1799

Eristalis pertinax 6787 Sericomyia silentis 2001

Eristalis tenax 5623 Sphaerophoria scripta 2970

Eupeodes corollae 2386 Syritta pipiens 6317

Eupeodes luniger agg 2098 Syrphus ribesii 4769

Ferdinandea cuprea 1064 Syrphus torvus 1357

Helophilus pendulus 5702 Syrphus vitripennis 2860

Lejogaster metallina 1105 Volucella bombylans 2145

Leucozona glaucia 1281 Volucella pellucens 3150

Leucozona lucorum 2575 Xylota segnis 3526

Melanogaster hirtella 1716 Xylota sylvarum 1283

TA B L E  1  The number of occurrences of 
each species of Syrphidae in Great Britain 
used to generate species distribution 
models. Records were collected during the 
period 1983– 2002
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2.3  |  Maxent background

Maxent uniformly samples 10,000 background points to estimate 
environmental variation across the area of interest, which is used 
to determine the habitat preference of species. When sampling is 
concentrated in small areas, most of the environmental variation will 
come from unsurveyed regions, contributing to the effect of sam-
pling bias (Barve et al., 2011). Because many inaccessible regions 
have extreme environmental values, the consequence is to skew en-
vironmental gradients, leading to overestimation where presences 
occur (Lobo et al., 2010). To prevent this, background point selection 
can be influenced using a probability surface that mimics sampling 
bias, so that highly sampled areas receive a greater number of back-
ground points.

For all correction techniques, we sampled 10,000 background 
points without replacement, using the function randomPoints from 
the r package dismo. For models with no bias correction, we used 
a uniform background (Figure 1b), which is the default setting for 
maxent. To effectively counteract bias, we created a background 
based on sampling effort of the hoverfly recording scheme. The 
sampling effort of the HRS is the number of visits to each 1 km². 
To create a background, these data were first converted into a 
continuous surface (Elith et al., 2010). This was achieved using 
2D kernel density estimation in the r package ks (Duong, 2020), 
with cells weighted by the number of visits over the 20- year pe-
riod. Resulting rasters were projected to the same resolution, area 
and coordinate system as environmental variables (Figure 1a). 
Background points for each species were then sampled using the 
probability surface and were supplied to Maxent for use when 
modelling.

2.4  |  Target- group background

The target- group approach to sampling bias is the most prevalent in 
the literature and relies on using the collective records of similar taxa 
to estimate sampling effort for the focal species (Phillips et al., 2009; 
Ponder et al., 2001). The reasoning is that surveyors will display the 
same bias when sampling similar species, and so a larger dataset will 
contain information on general sampling effort for that taxon. It is 
important to carefully decide the scope of the target- group, because 
of changes in locations and seasons, the varying detectability among 
species, and because observers need to use the same methodol-
ogy (Phillips et al., 2009; Ponder et al., 2001; Yackulic et al., 2013). 
Because of this, our aim was to test if target- group methods accu-
rately reflect the distribution of sampling effort, when considering 
varying detectability and underlying patterns of species richness.

To generate a target- group background, we used the collective 
records of all the species of hoverfly within the HRS, following es-
tablished practice (see Elith et al., 2010; Phillips et al., 2009). First, 
we removed duplicate records for each species, so that each cell 
value represented the total number of species sampled. We then 
followed the same processing steps as when generating the sample 

effort background, using a 2D kernel density estimation to convert 
single points into a continuous probability surface that could be used 
to weight background point selection (Figure 1c).

2.5  |  Radius- restricted background

An alternative method of bias correction is to restrict the area that 
Maxent uses to determine environmental variation, normally as 
a pre- specified radius from each record (Anderson & Raza, 2010; 
Phillips, 2008). This means that the model excludes obtaining back-
ground points from further away, focussing on available habitat 
close to sampled locations. This has been shown to improve model 
predictions (Acevedo et al., 2012; Anderson & Raza, 2010; Barve 
et al., 2011), but care must be taken to avoid a resulting lack of model 
accuracy when too few background points are used (Thuiller et al., 
2004; VanDerWal et al., 2009).

Similar to choosing minimum distances for spatial filtering, the 
choice of radius size can be subjective (Aiello- Lammens et al., 2015), 
which can pose a significant dilemma to conservation practitioners. 
We selected 10 km as a potential to correct for sampling bias with-
out excessively reducing the available background, but clarify our 
choice was also subjective. It may have been possible to assess mul-
tiple distances, and select the best for each species, but this infor-
mation is typically unavailable to practitioners, and we wanted our 
assessment to accurately reflect real- world scenarios. Within the 
buffer region, each grid cell was equally likely to be selected as a 
background point. The background was created using the package 
raster (Hijmans, 2020) (Figure 1d).

2.6  |  Covariates of sampling effort

In the case when a focal species lacks appropriate target- group data 
or has too few presence points for background restriction to be 
viable, another option is the use of potential covariates of sample 
effort. Maps of human population density and road networks can 
provide an alternative means of estimating sampling effort, and can 
be incorporated into SDMs (Guerra et al., 2013; Kadmon et al., 2004; 
Monsarrat et al., 2019). While accessibility maps may work well in 
some scenarios (Dubos et al., 2021), there is currently no review of 
their effectiveness against other bias correction methods.

Human population density was sourced from the Socioeconomic 
Data and Applications Center (SEDAC). The Gridded Population of 
the World (GPWv4) (CIESIN, 2016) models the distribution of human 
population as a smooth continuous surface, based primarily on pop-
ulation census tables. Trials showed that using population density in 
its raw form resulted in severe overcompensation, and therefore, the 
data were transformed to logarithms to reduce the scale of change 
between the most and least densely populated areas. The values of 
all pixels were shifted to positive values by adding the minimum cell 
value, to remove the negative logs of the smallest population densi-
ties. The resulting probability surface is shown in Figure 1e.
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Travel time from the major cities was used as an alternative proxy 
for sampling effort. This is based on similar assumptions of sampling 
bias being shaped by population density, but also including accessi-
bility via road and river networks. A gridded surface of accessibility 
to cities with more than 50,000 people in the year 2000 was created 
by the European Commission (Nelson, 2008), defining accessibility 
as travel time to a location using land or water. As with population 
density, using travel time in its raw format led to similar overcom-
pensation, and hence, values were transformed by logarithm, multi-
plied by −1 (to make remote locations less likely to be sampled) and 
shifted to positive values. The resulting spatial pattern of accessibil-
ity is shown in Figure 1f.

2.7  |  Virtual species

To validate the results of bias correction on empirical species, we 
also modelled virtual species where the true distribution is known. 
We first created 50 random species using the generateRandomSp 
function from the virtualspecies r package (Leroy et al., 2015), which 
used the same predictor variables to create unique habitat suitability 

maps (Appendix S1: Table S1.1). The habitat suitability of each ran-
dom species was converted to a probability of occurrence and bi-
nary presence- absence raster using the logistic conversion method 
of virtualspecies. We generated threshold values by allowing beta to 
vary randomly between 0.3 and 0.7, while keeping alpha constant 
at −0.1 and setting niche breath to ‘wide’. This generated a random 
species prevalence for each virtual species, so bias corrections were 
tested over a wide range of possible scenarios. The exact beta and 
prevalence values for each virtual species are available with gener-
ated distributions in Appendix S3.

To create a set of biased and unbiased occurrences, we sampled 
each virtual species using two sampling regimes. For our unbiased 
dataset, we simply sampled each presence- absence raster randomly, 
taking 1000 presence points. To create a biased dataset, we used 
the sample effort from the hoverfly recording scheme (Figure 1a) 
to weight our sampling regime. This allowed us to test models with 
a realistic sampling bias pattern. To test bias correction, we used 
the same backgrounds generated with empirical species for target- 
group, population density and travel time (Figure 1). For distance- 
restricted backgrounds, we created a unique background for each 
virtual species, using the same 10- km radius.

F I G U R E  1  Backgrounds generated as 
probability surfaces using different bias 
correction methods. Scales represent the 
relative probability of selecting a cell as 
a background point for use in sampling 
environmental variation for distribution 
models. Each background aims to 
emulate the relative sampling effort of 
the Hoverfly Recording Scheme in Great 
Britain during the period 1983– 2002. (a) 
Sample effort. (b) Uniform background. (c) 
Target group. (d) Radius restricted (using 
Baccha elongata as an example). (e) Human 
population density. (f) Travel Time
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2.8  |  Statistical analysis

As with colour patterns, comparing maps is a difficult challenge 
(Fourcade et al., 2014; Warren et al., 2008); to test for bias removal, 
most analyses compare the ability to predict occurrences, a method 
that is counter- intuitive when the occurrences contain the sampling 
bias that we hope to remove. When using discrimination metrics 
such as area under the receiver- operating curve (AUC), the Kappa 
statistic and the true skill statistic, biased models can even perform 
better than their bias- corrected counterparts (Fourcade et al., 2014; 
Leroy et al., 2018; Veloz, 2009).

For this reason, we chose to rely on similarity metrics between 
reference distributions and different bias corrections for both em-
pirical and virtual species. For empirical data, these were species- 
specific distributions created using known sampling effort to factor 
out sampling bias (Figure 2a). Because each sample effort corrected 
distribution is only a best estimate at correcting bias, we repeated 
the same comparisons for virtual data, by testing the similarity be-
tween each correction and a model built using unbiased occurrences 
(Figure 3a). This meant we could confidently assess over-  and un-
derprediction rates. Before assessing corrections, we validated the 
effectiveness of background manipulation to remove bias, using 

virtual data. We found that sample effort corrected models per-
formed as well as unbiased models (Appendix S2), and therefore, we 
were confident that our sample effort distributions were an accept-
able standard for comparison.

Distributions were compared by looking at three indices (niche 
overlap, centroid shift, and range size changes). Schoener's D 
(Distance) (Schoener, 1968) was chosen as a measure of niche over-
lap because it has been suggested as the best measure of similarity 
between niches in reviews (Rödder & Engler, 2011; Warren et al., 
2008) and has been an effective metric in studies of sampling bias 
(Fourcade et al., 2014; Ranc et al., 2017; Stolar & Nielsen, 2015). 
Centroid shift was computed as the Euclidean distance from the 
suitability- weighted centroid of the sample effort corrected distri-
butions. Centroids were calculated using the r package SpatialEco 
(Evans, 2020), and Schoener's Distance using the r package ENMtools 
(Warren et al., 2019).

Range size changes were calculated using the r package Biomod2 
(Thuiller et al., 2020), which allowed us to look at both range gains 
and losses in different parts of the same distribution. We converted 
all distributions to binary maps using a threshold of 0.5. We chose a 
constant of 0.5 because trialling thresholds that minimized gains and 
losses generated extreme thresholds. For instance, if a distribution 

F I G U R E  2  Predicted distributions 
of Baccha elongata in Great Britain, 
generated using occurrences during the 
period 1983– 2002. Maps were generated 
using 6 different bias correction methods. 
(a) Sample effort. (b) No correction. (c) 
Target group. (d) Radius restricted. (e) 
Human population density. (f) Travel Time. 
Values range from 0 (no probability of 
occurrence) to 1 (certain probability of 
occurrence)
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severely under- predicted suitability compared to the reference, 
thresholds would be typically around 0.8– 0.9 to minimize losses, 
even if the two maps were vastly difference in reality.

After generating comparison metrics, results were grouped by 
the method of bias correction, and by species, to account for species- 
specific effects. A Friedman test was performed to test for signifi-
cant differences among correction methods, and post- hoc Wilcoxon 
signed- ranks tests were performed on pairwise comparisons apply-
ing a Bonferroni adjustment to p- values to account for the multiple 
tests. We understand that using traditional statistical tests can be 
inappropriate for virtual species (Meynard et al., 2019); however, 
we decided to report test statistics alongside empirical species and 
focus on clear differences in results rather than specific p- values. 
In addition, we visually inspected the predicted distributions of 
each species, using expert knowledge to critically assess hoverfly 
distributions.

3  |  Result s

While we used all species for our data analysis, for demonstrative 
purposes we have shown the first species Baccha elongata, and the 

first random species, which should provide a typical representation 
of how sampling bias changed predicted distributions. The distribu-
tions of each empirical and virtual species is available in Appendices 
S4- S5.

3.1  |  The effect of sampling bias

Without applying any bias correction, the cells with high habitat 
suitability are densely clustered in central and southern England 
for both empirical and virtual species (Figure 2b; Figure 3b). This is 
highest in and around London, but other cities in central England are 
also hotspots, closely reflecting the distribution of sampling effort 
(Figure 1b). In contrast, Scotland has very low levels of predicted 
habitat suitability across nearly the whole region. This is particularly 
apparent for virtual species, as unbiased models predict high suit-
ability in northern regions (Figure 3a), but predictions without cor-
rection are only concentrated in the south (Figure 3b).

When true sampling effort was used to sample background 
points, there was a clear and strong effect on the predicted habitat 
suitability (Figure 2a); distributions no longer had a strong bias for 
population centres and were instead were distributed more evenly. 

F I G U R E  3  Predicted distributions 
of an example virtual species in Great 
Britain, generated using both unbiased (a) 
and biased (b- f) occurrences. Maps were 
generated using 6 different bias correction 
methods. (a) Unbiased occurrences. (b) 
No correction. (c) Target group. (d) Radius 
restricted. (e) Human population density. 
(f) Travel Time. Values range from 0 (no 
probability of occurrence) to 1 (certain 
probability of occurrence)
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The greatest change was around London and regions directly south, 
which were predicted to have more isolated areas of highly suit-
able habitat, rather than one continuous block. Habitat suitability 
showed moderate increases in suitability in Scotland, but these were 
generally quite small, with one exception of the western coastline, 
which showed a much higher predicted suitability in line with previ-
ous knowledge of hoverfly habitat preference.

3.2  |  Similarity metrics

As calculated using Schoener's D, there was a significant difference 
between distributions created using each bias correction technique 
when compared against the reference distribution for both empiri-
cal and virtual species (Table 2). For empirical species, pairwise tests 
showed that all correction methods had higher overlap values than 
no correction (Figure 4a). For virtual species, all corrections were 
significantly higher than no correction and showed the same pat-
tern between correction methods (Figure 5a). For both empirical 
and virtual species, target- group backgrounds generated the highest 
Schoener's D values.

There was a significant difference in the magnitude of the cen-
troid shift of each bias correction technique, for both empirical and 
virtual species (Table 2). Pairwise tests showed there were signifi-
cant differences between no correction and other all bias correction 
methods (Figure 4b; Figure 5b). Target- group backgrounds gener-
ated the smallest centroid shifts, and no correction generated the 
largest shifts, with the same pattern for both empirical and virtual 
species.

There was a significant difference between range gains and 
losses for both empirical and virtual species (Table 2). All correction 
methods had similar range losses and gains, except for models made 
with target- group backgrounds (Figure 4c,d; Figure 5c,d). Target- 
group models had the highest range gains, which is a sign of over-
compensation. In comparison, target- group models had the lowest 
rates of range loss, whereas other correction methods had similar 
levels of underprediction to no correction.

4  |  DISCUSSION

4.1  |  The effect of sampling bias

There was a clear and substantial effect of sampling bias in generat-
ing models (Figure 2; Figure 3). Without correcting for sampling bias, 
highly suitable areas were concentrated in central England, where 
the most sampling took place, while much of the rest of Great Britain 
was considered poor habitat. The same pattern of high suitability 
was prevalent in virtual species, despite the fact that virtual species 
had randomly generated habitat suitability that should differ from 
empirical data, demonstrating that the same sampling bias is present 
in both datasets.

When true sampling effort was used as part of the modelling 
process, distributions were typically more evenly spread, with 
higher habitat suitability in the south and coastal regions. This re-
flects a realistic distribution of hoverflies in the UK, which are more 
abundant at lower latitudes and altitudes. Strong biases towards 
central England were down weighted, leading to a smaller potential 
area of occupation in this region. Some areas of Scotland showed 
high habitat suitability, particularly the western coastline, which 
matches previous knowledge that hoverflies favour habitats with 
higher moisture.

Interestingly, for virtual species, the true probability of occur-
rence is still visible in the biased predictions (Figure 3b; Appendix 
S5), denoted by slightly lighter areas in the northernmost regions 
where there should be high predicted occurrence. However, the 
high suitability in the south caused by sampling bias completely 
overshadows this pattern, creating distributions that appear vastly 
different. In general, we were surprised by the stark difference 
between biased and unbiased models. It may be that the hoverfly 
recording scheme is particularly biased in sampling; however, con-
servation practitioners need to be careful that their distributions do 
not typically map sampling effort as ours did.

When assessing maps using similarity metrics, no- correction 
maps consistently performed poorly for both empirical and virtual 
species. Moreover, all metrics displayed a very large range of values, 

TA B L E  2  Results of Friedman tests between correction methods for different similarity metrics, controlling for the effect of repeated 
measures for each species. All tests were highly significant

Data Similarity metric n X2 df p- value Effect size Magnitude

Hoverfly Schoener's Distance 58 216.58 4 1.02E−45 0.93 Large

Hoverfly Centroid Shift (km) 58 207.35 4 9.86E−44 0.89 Large

Hoverfly Range Gain (%) 58 123.05 4 1.19E−25 0.53 Large

Hoverfly Range Loss (%) 58 164.43 4 1.64E−34 0.71 Large

Virtual Schoener's Distance 50 174.70 4 1.02E−36 0.87 Large

Virtual Centroid Shift (km) 50 179.31 4 1.05E−37 0.90 Large

Virtual Range Gain (%) 50 97.49 4 3.36E−20 0.49 Moderate

Virtual Range Loss (%) 50 167.73 4 3.21E−35 0.84 Large
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F I G U R E  4  Similarity metrics for each bias correction compared to sample effort models for 58 species of hoverfly (Syrphidae). (a) 
Schoener's Distance, a similarity measure of overall spatial correlation. (b) The distance between centroids of each distribution. (c,d) Range 
size changes as a percentage, after converting maps to a binary raster using a threshold of 0.5. Changes do not represent total change, but 
changes by pixel, so single distributions may simultaneously display high gains and losses. Significant results of pairwise Wilcoxon tests with 
a Bonferroni correction are denoted as: * <0.05; ** <0.01; *** <0.001. Only pairwise comparisons against no correction are shown
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F I G U R E  5  Similarity metrics for each bias correction compared to unbiased models for 50 virtual species. (a) Schoener's Distance, 
a similarity measure of overall spatial correlation. (b) The distance between centroids of each distribution. (c,d) Range size changes as a 
percentage, after converting maps to a binary raster using a threshold of 0.5. Changes do not represent total change, but changes by pixel, 
so single distributions may simultaneously display high gains and losses. Significant results of pairwise Wilcoxon tests with a Bonferroni 
correction are denoted as: * <0.05; ** <0.01; *** <0.001. Only pairwise comparisons against no correction are shown



138  |    BARBER Et Al.

demonstrating that individual species respond differently to sampling 
bias. This suggests that in most scenarios any attempt at bias correc-
tion will bring the result closer to the true estimate of sampling effort, 
and hence a more accurate representation of the true distribution 
(Phillips et al., 2009; Ranc et al., 2017; Stolar & Nielson, 2015).

4.2  |  Target- group correction

Target- group backgrounds aim to use the occurrences of similar taxa 
to estimate sampling effort and were a highly successful method 
of counteracting sampling bias. They consistently performed well 
in terms of all similarity metrics, whether using empirical or virtual 
data. Furthermore, when visually inspecting maps, target- group 
corrections were the only method that produced distributions that 
appeared similar to sample effort corrections in empirical data, and 
unbiased models for virtual species. Given that visual inspection is 
often the primary assessment by conservation practitioners, this 
was perhaps the most important result.

Concerns that differences in detectability and species richness 
may lead to a dissociation between sampling effort and target- group 
occurrence records were unfounded. This demonstrates that when 
sampling effort is unknown, using presence records of similar taxa 
can produce results almost as good as the use of true sampling ef-
fort, and this supports previous reviews of bias correction, which fa-
vour target group as an effective method of bias correction (Phillips 
et al., 2009; Ranc et al., 2017; Syfert et al., 2013).

The only negative of using target- group as a bias correction is 
that in many species, there were signs of overcompensation in the 
most under- sampled areas of the distribution, echoing past studies 
that observe increases in false positives (Syfert el al., 2013). This 
was apparent in both empirical and virtual species, as target- group 
models had the largest range size gains of any method (Figure 4c; 
Figure 5c). This is most apparent in the northernmost parts of the 
distribution (Figure 2c; Figure 3c) and demonstrate that target- group 
backgrounds are not a perfect bias correction. Still, these changes 
are minor compared to the underprediction of other correction 
methods, which performed similarly to no correction (Figure 4d; 
Figure 5d).

4.3  |  Background restriction

Restricting background points to within a 10- km radius of occur-
rences produced distributions that were moderately successful at 
counteracting sampling bias (Figure 2d; Figure 3d; Figure 4). When 
considering niche overlap, distributions performed significantly 
better than unbiased models; however, maps often appeared simi-
lar to no- correction models during visual inspection. This is sup-
ported when looking at range loss metrics, which were similar to 
no- correction models, especially for empirical species.

While there have been many reviews on the effectiveness of 
restricting background areas in terms of increasing model accuracy 

(Acevedo et al., 2012; Anderson & Raza, 2010; Barve et al., 2011), 
there has been limited focus when correcting sampling bias is the 
main objective. To the best of our knowledge, there has only been 
one review by Fourcade et al. (2014). While our models were some-
what successful at correcting bias, they found that restricting the 
background area in geographical space led to some of the worst per-
forming models. This disparity is also apparent in our results, with 
10- km buffers generating the greatest variation in bias correction 
performance. The main reason for this is that restricting background 
points seemed to perform gradually worse with denser occurrences. 
This is because limiting the background more severely runs the risk 
of reducing model accuracy as species appear to utilize all available 
environment (Thuiller et al., 2004; VanDerWal et al., 2009) and so 
should only be done when the occurrence records are extensive 
enough.

It is also worth noting that the variation in performance be-
tween species was partially a result of the subjective choice of 
radius size. This may be the greatest barrier to using distance- 
restricted backgrounds, as without explicit knowledge of sampling 
effort it is not possible to easily assess different radius sizes. A 
similar method for restricting the background was recently pro-
posed by Vollering et al. (2019), using the spatial autocorrelation 
of environmental variables to determine radius size. A key differ-
ence was that they account for denser occurrences by summing 
overlapping radii, which they refer to as ‘background thickening’. 
When assessing the method, they found thickening performed 
better than target- group methods, but importantly they used indi-
vidual target- group occurrences rather than a continuous surface 
of species richness, so a direct comparison of the two methods is 
still needed to draw firm conclusions.

4.4  |  Population density and travel time

Using a potential covariate of sampling effort is an appealing con-
cept to simplify distribution modelling, especially when records 
of similar taxa are lacking, or there are too few points for restrict-
ing background points. A recent paper by Monsarrat et al. (2019) 
showed that accessibility maps were able to predict sampling- effort 
biases in historical data, and as our results showed an improvement 
over no correction, this also suggests that accessibility is a factor in 
sampling bias.

However, while human population density and travel time pro-
duced models that were significantly better than no correction, the 
visual differences were often barely noticeable (Figures 2e- f, 3e- f). 
The inclusion of access in the form of travel time slightly improved 
models, but not to significant degree, suggesting that a large pro-
portion of accessibility is already accounted for in the distribution 
of samplers. There was also a large degree of variation between 
species, similar to previous reviews of accessibility (Dubos et al., 
2021). Therefore, we are hesitant to recommend using covariates 
of sampling effort as a bias correction method when alternatives are 
available.
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5  |  CONCLUSION

Choosing a bias correction method is a difficult choice, but one fun-
damental to the accuracy of species distribution modelling (Merow 
et al., 2013; Newbold, 2010). While there are many options available 
for modelling species, if the data have an inherent bias any distri-
butions generated will always be an inaccurate representation. This 
becomes an issue of great importance when species distribution 
modelling is frequently used to plan and manage conservation pro-
jects around the world (Loiselle et al., 2003).

We found that using target- group sampling to generate back-
grounds was the most effective method of estimating bias when 
the sampling effort is unknown. In this scenario, every care should 
be taken to make sure that the target- group taxa demonstrate the 
same sampling bias, and that sampling methods and detectabil-
ity are consistent among species. This assumption was easily met 
when using target- group data from the same recording scheme and 
so may be particularly useful to other large citizen science projects. 
Furthermore, as target- group data are also determined by species 
richness, it is possible that sampling bias is being counteracted by a 
bias for species richness, which may not be appropriate for all taxa or 
situations (El- Gabbas & Dormann, 2018; Warton et al., 2013). Users 
should therefore always provide strong evidence of any assumptions 
made when justifying which taxa to include for background samples 
(Merow et al., 2013).

Throughout this study, the issue of overcompensation and sub-
jectivity became increasingly apparent. This was most obvious when 
deciding radius size for distance- restricted backgrounds, but also 
became apparent when creating backgrounds using travel time; ini-
tial backgrounds caused such overcompensation that only the most 
inaccessible areas were considered suitable habitats. This effect 
was also apparent to a lesser extent when looking at distributions 
generated by the target- group approach. It is almost certain that 
some areas received inaccurately inflated habitat suitability scores 
as a result of reducing biased regions. Modifying population density 
and travel time backgrounds to reduce their overcompensation pro-
duced more realistic maps but introduced a subjective process that 
may lead to users to create distributions that they feel are correct, 
rather than accurately predicting the underlying pattern of suitabil-
ity. Recent work has shown that overprediction can be addressed by 
incorporating dispersal constraints into models (Mendes et al., 2020) 
and should be used in concert with bias corrections to provide the 
most accurate distributions.

Advances in technology such as remote sensing and machine 
learning mean we are supplied with increasing amounts of high- quality 
data, ideal for modelling species distributions. At the same time, cli-
mate change and other human stressors are dramatically increasing 
our need for sophisticated methods of conservation. As a result, it is 
becoming more and more important to base our decisions on accurate 
estimations of species distributions, and paramount that we address 
the issue of sampling bias. Our results show that sampling bias can 
have a serious effect on predicted distributions. As we, and others, 
have demonstrated, sampling bias correction can greatly increase the 

accuracy of species distribution models, and should be used wherever 
possible to generate effective tools to aid in conservation.
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