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The high species richness of tropical forests has long been rec-
ognized, yet there remains substantial uncertainty regarding the
actual number of tropical tree species. Using a pan-tropical tree
inventory database from closed canopy forests, consisting of
657,630 trees belonging to 11,371 species, we use a fitted value
of Fisher's alpha and an approximate pan-tropical stem total to
estimate the minimum number of tropical forest tree species to
fall between ∼40,000 and ∼53,000, i.e. at the high end of previ-
ous estimates. Contrary to common assumption, the Indo-Pacific
region was found to be as species rich as the Neotropics, with
both regions having a minimum of ∼19,000-25,000 tree species.
Continental Africa is relatively depauperate with a minimum of
∼4,500-6,000 tree species. Very few species are shared among
the African, American and the Indo-Pacific regions. We provide a
methodological framework for estimating species richness in trees
that may help refine species richness estimates of tree dependent
taxa.

Diversity estimation | Fishers's log-series | Pan-tropical | Spatial rich-
ness patterns | Tropical tree species richness

Significance statement People are fascinated by the amazing
diversity of tropical forests and will be surprised to learn that
robust estimates of the number of tropical tree species are lack-
ing. We show that there are at least 40,000, but possibly more
than 53,000 tree species in the tropics, in contrast to only 124
across temperate Europe. Almost all tropical tree species are
restricted to their respective continents, while the Indo-Pacific
region appears to be as species rich as tropical America, with each
of these two regions being almost five times as rich in tree species
as African tropical forests. Our study shows that most tree species
are extremely rare, meaning that they are under serious risk of
extinction at current deforestation rates.

Despite decades of biological inventories worldwide, we still
do not know how many species exist and how they are distributed
(1). Although global patterns of estimated vascular plant species
richness and distribution have become more clear (2-5), no pre-
vious study has focused on trees as a distinct growth form. As
a consequence, our estimation of the number of tree species in
tropical forests still depends on untested expert opinions (6-8),
rather than on an appropriate methodological framework and
data set.

Given the importance of trees as key structural components
of forest ecosystems, sources of timber and non-timber products,
and providers of vital ecosystem services (9, 10), the lack of
reliable estimates of the total number of tropical tree species
represents a critical knowledge gap that has direct consequences
for estimating the diversity of other tree dependent taxa (11).
A classic example is Erwin’s (6) estimate of the existence of 30
million arthropod species, which was based on observed host
specificities of arthropods with individual tropical tree species
combined with an estimate of the total number of tropical tree
species. Global arthropod richness has subsequently been revised
downward (7), but current estimates still suffer from the lack of
information on the number of tropical tree species.

In recent decades, the number of tree inventory plots across
the tropics has grown to such an extent that species richness
estimation at the continental and pan-tropical scale can now be
addressed using standardized species lists with abundance data.
Prior estimates of plant richness at such broad scales have been
based on analyses of incidence data obtained from herbarium
collections and Flora treatments (2-5). However, these methods
are highly sensitive to collecting biases and ignore valuable in-
formation on species’ abundances (12). Abundance data enable
extrapolation of richness from local to global scales using diversity
estimators that fit the observed species rank-abundance data (13-
15).

Results and Discussion
We estimate the number of tropical tree species from a stan-
dardized dataset of old-growth tropical forest tree inventories (in-
cluding gymno- and angiosperms with diameters at breast height
(dbh) ≥ 10 cm). This dataset contains tree species abundance data
for 207 one-degree grid cells (locations) originally dominated by
closed canopy forests across the tropics (Fig. 1). By calculating
Fisher’s-alpha (16) at the pan-tropical scale and combining this
value with the estimated potential number of stems present within
500 km of each location, we arrive at a minimum number of
tropical tree species of at least ∼40,000 and possibly more than
∼53,000 (Table 1), i.e. at the high end of current total estimates
of 37,000 (7), 43,000 (8) and 50,000 (6), which are based on expert
opinion.

When the analysis was restricted to each of the three main
tropical regions, we found that the Indo-Pacific had comparable
tree species richness to that found in tropical America (Table
1). Moreover, these two regions show similar rates of species
turnover for a given increase in geographical distance between
locations (Fig. 2). This result contradicts the widely held view
that the Neotropics are the most diverse and species-rich region
for tropical trees (8, 15, 17, 18). This underestimation of Indo-
Pacific tree species richness, and our inclusion of dry as well as
moist and wet forests, may explain why some of the previous
estimates (7, 8) are lower than ours. Nevertheless, the high species
richness in the Indo-Pacific is understandable given the highly
variable topography, complex geological history, steep environ-
mental gradients, past and ongoingmerging of several contrasting
floras fromMadagascar, India, Southeast Asia, and NewGuinea-
Australia (19, 20), as well as the large current and time integrated
forest area (8).

Tropical continental Africa has a relatively depauperate tree
flora, a finding consistent with earlier studies (21, 22). This re-
gion shows comparatively low species turnover, in other words,
as sample area increases, the number of tree species increases
at a much slower rate than in either the Indo-Pacific or the
Neotropics (Fig. 2). The differences in species richness and spatial
turnover, comparing continental Africa with the other tropical
regions, cannot be explained solely by Africa’s smaller forest area
or lower environmental variability (Table 1; Fig. S2). Rather,
these disparities support the hypothesis that African forests have

Significance

People are fascinated by the amazing diversity of tropical
forests and will be surprised to learn that robust estimates of
the number of tropical tree species are lacking. We show that
there are at least 40,000, but possibly more than 53,000 tree
species in the tropics, in contrast to only 124 across temperate
Europe. Almost all tropical tree species are restricted to their
respective continents, while the Indo-Pacific region appears to
be as species rich as tropical America, with each of these two
regions being almost five times as rich in tree species as African
tropical forests. Our study shows that most tree species are
extremely rare, meaning that they are under serious risk of
extinction at current deforestation rates.
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Fig. 1. Overview of sample locations and their floristic affinities (point colors correspond to scores on the first DCA-axis with similar colours indicating similar
generic composition, while the lines indicate the floristic affinities as determined by cluster analysis).

Table 1. Species richness estimates for the tropics and the three main tropical sub-regions.

Region Species
observed

Stems
observed

Unidentified
stems (%)

Fisher’s-alpha
minimum

Fisher’s- alpha
maximum

Stems
estimated

Species
minimum

Species
maximum

Africa 1376 117902 8.4 218.7 286.6 3.4x1011 4626 5984
America 4375 116754 13.5 897.2 1203.4 8.9x1011 18589 24580
Indo-Pacific 5672 422974 9.6 925.8 1225.2 7.7x1011 19014 24819
Pan-tropical 11371 657630 10.1 1953.0 2607.7 2.0x1012 40517 53345

Observed values represent the numbers in the original dataset. Unidentified stems were excluded from estimation of minimum Fisher’s-alpha, but used to
calculate maximum Fisher’s-alpha. Estimated stems represent the number of stems predicted to occur within 500 km of each of the 207 sample locations.

Fig. 2. Increase in Fisher’s-alpha with (a) increasing numbers of locations
(average of 50 replicates per region with random input order of locations),
i.e. regional diversity and (b) increasing distance around locations (based on
50 replicates per region each with a randomly selected starting location), i.e.
species turnover. Error bars indicate standard deviation among location re-
orderings. Fisher’s-alpha can decline if the number of stems added to the
sample increases disproportionally to the number of new species detected.

experienced severe extinction events due to repeated shrinkage
of forest area during the Pleistocene (19, 23). When these forests
expanded to their present size, they could only be repopulated by
a severely depleted species pool derived from a limited number of
refugia. In contrast, tropical America retained considerable forest

cover and equatorial forests of the Indo-Pacific may even have
expanded during the same period (19, 20, 23, 24).

We provide the first survey-based minimum estimate of trop-
ical tree species richness and its distribution. We acknowledge,
however, that the current estimate is just a first step in an ongoing
effort. Estimates of species richness will become more refined
and increasingly accurate as forest surveys continue to expand.
This study highlights the usefulness and critical importance of
forest surveys, and we emphasize once more the existence of
large numbers of tree species with exceptionally small population
sizes, which may necessitate novel conservation approaches for
effective preservation of current tree diversity (25, 26).

Materials and Methods
Data set. Tree inventory data (gymnosperms and angiosperms only; trunk
diameter at breast height ≥ 10 cm) from old-growth forest plots without
signs of recent human disturbance were compiled from across the tropics and
subtropics (i.e., within 30o north and south of the Equator). Individual trees
from the inventories were pooled within their respective one degree grid
cells (henceforth called locations). Species names were standardized using
‘The Plant List’ <www.theplantlist.org>, ‘Taxonomic Name Resolution Service’
<http://tnrs.iplantcollaborative.org/TNRSapp.html> and ‘The Asian Plant
Synonym Lookup’ <http://phylodiversity.net/fslik/synonym lookup.htm>. Un-
known taxa were not used in diversity and composition analyses. We re-
moved all locations with fewer than 250 identified individuals to minimize
effects of sample size, resulting in 207 retained locations (Dataset S1), each
showing a reasonably high sample coverage (0.96 ± 0.3, mean ± SE) that
did not differ among geographic areas (Table S1), thus suggesting that our
estimations of species richness were not biased by differences in sample
coverage among regions.

Phylogeographic analyses. To identify the main tropical regions for
species richness comparison, we performed ‘Minimum Variance Clustering’
with ‘Squared Euclidean Distances’ on square-root transformed relative
abundance data at the genus level (Fig. S1). These analyses were conducted
at the genus level because virtually no overlap existed between continents
at the species level. We subsequently ran a Detrended Component Analysis
to visualize these floristic patterns across the tropics (Fig. 1). To assess
if difference in species richness and turnover among regions are related
to differences in environmental variability among regions, we performed
a Principal Component Analysis (PCA) of locations versus environmental
variables (climatic data (27) and edaphic data (28)) (Fig. S2).

Sample coverage and non-parametric estimators of species richness. Be-
cause estimates of species richness can be strongly dependent on differences
in inventory completeness (29, 30), we estimated the inventory completeness
for the complete database and for each region separately using the sample
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coverage estimator recommended by Chao & Shen (31), which is a reduced-
bias estimator of sample completeness:

where f1 and f2 are the number of species represented by one (singletons)
and two (doubletons) individuals in the sample, respectively, n is the total

number of individuals in the sample, and is the proportion of the total
number of individuals in an assemblage (observed and not observed) that
belong to the species represented in the sample. Sample coverage was almost
identical in all regions (Table S1), suggesting that our regional comparisons
of species richness were not biased by differences in sample coverage among
regions, nor was our pan-tropical estimate disproportionately influenced by
any one region (30).

Estimates of sample coverage indicated that more than 90% of all the
trees present in the tropics belonged to species included in our recorded
samples (Table S1). We also computed estimates of species richness based
on several non-parametric estimators (Table S2). In particular, we considered
nine of the estimators available in the software SPADE (31), and they
estimated that, on average, we have recorded between 79% and 91% of the
species present in all regions (Table S2). However, consistent with ter Steege
et al. (15), we found that these methods underestimated the species richness,
as estimates for each tropical region (1,539 to 1,680 species in Africa; 4,959 to
5,540 in America; and 6,232 to 6,784 species in Asia) were between one-half
and one-third of previous estimates based on expert opinion and available
floras (6-8). In fact, recent estimates suggest that there are approximately
16,000 tree species in the Amazon (15), so having fewer than 5,540 tree
species in the whole Neotropics is highly unlikely (Table S2). As ter Steege
et al. (15) argued, the failure of these non-parametric methods to yield
plausible estimates arises from fact that these estimators are designed to
estimate the expected number of species at a local scale, based on samples
that are fully representative of the area sampled (15, 32). However, like ter
Steege et al. (15), we are attempting to estimate the number of species for
the whole tropics, including areas that have been poorly sampled.

Selection of species-abundance distribution (SAD) model to predict
species richness. Several models have been proposed to describe observed
species–abundance distributions (SADs) within a community (33). SAD mod-
els allow for an understanding of the abundance structure of biological
communities, and can be useful for predicting unsampled portions of com-
munities. The fit of SAD models to the data depends, among other factors, on
community evenness and sampling intensity (33, 34). For instance, extremely
uneven SADs are predicted by the geometric series (35), while unusually even
SADs are predicted by the broken stick model (36). The log series (16) and log
normal (37) models are intermediate, differing in the assumed proportions of
rare species: Fisher’s log series assumes very high proportions of rare species,
while the log normal model assumes very low proportions of rare species (33).
Regarding sampling intensity, complete surveys usually follow log-normal
types of SADs, whereas incomplete sampled communities usually deviate
from log-normality (34).

Here we used Fisher’s log series to estimate the expected number of
species within each region. The log series distribution is one of the most
frequently used and thoroughly investigated models of the relationship
between species richness and the relative abundance of species (33), and it
has been successfully used to estimate the number of species at different
spatial scales (15, 25), though not previously at an intercontinental scale.
To fit and compare the log series model with other commonly used SAD
models (i.e., log normal, Broken-stick and Pareto [power-law] distributions)
we used maximum likelihood tools with the sads package for R 3.0.3 (38). We
ranked the models from the best to the worst based on Akaike’s information
criterion (AIC). The set of models with a difference in AIC (Δ) < 2 can
be considered to have equivalently strong empirical support and similar
plausibility (39).

Graphical comparison of the models showed that the log series provided
the best fit to our data (Fig. S3); this result was confirmed by the AIC analyses,
in which the log series model had the strongest support (Table S3). The
visual analysis of the frequency of species in octaves of abundance (so-called
Preston plots) predicted by each SAD model also supported the idea that log
series fit the data well and was the best model to predict the proportion of
rare species (Figs. S4 - S7). Therefore, we can conclude that the log series is
an appropriate SAD model to fit our data.

Application of the Fisher’s log-series. Fisher’s-alpha values can be used
to extrapolate species richness of a defined region if the number of indi-
viduals is known. Extrapolations with Fisher’s-alpha, however, rely on two
assumptions: (i) species abundances are distributed in a log-series manner,
and (ii) the plant community is homogeneous at the scale of the sampling.
The first assumption held true in our case and is generally valid even for
small sample sizes in tropical forests (13). The second assumption may be
an adequate approximation at small spatial scales for most lowland tropical
forests (15, 40) but is unquestionably violated at larger spatial scales due
to increasingly biogeographically, environmentally, and spatially structured
plant communities. In such cases a large number of randomly placed sample
sites are needed to capture this heterogeneity, which might adequately

approximate the homogeneity assumption at a large spatial scale. Despite
the large number of plots used in this study, the second assumption was not
completely met at the continental scale, as shown by the incomplete leveling
off of the Fisher’s-alpha curves (Fig. 2a). This means that our regional Fisher’s-
alpha values, and thus our species richness estimates remain minimum
estimates of the true values.

Lower-bound estimation of species richness. For each one degree grid
cell located within 500 km of our 207 locations (excluding major water
bodies), we calculated the total number of stems as the inverse distance-
weighted average of the stem density observed in the five nearest locations,
multiplied by the size of each grid cell (Fig. S8). Latitudinal change in grid cell
size was taken into account. Because our analysis was focused on original (po-
tential) tree species richness, we ignored recent deforestation. Uncertainty
in this spatial extrapolation was assessed with a jackknife approach using
100 runs. Jackknifing removes each data point in turn and re-computes the
spatial surface based on the remaining points. The differences between the
original data values and the cross-validated values indicate the prediction
accuracy of the surface model (Fig. S8).

The lower-bound of species richness at the pan-tropical and continental
scales was then calculated using Fisher’s log series, with Fisher’s-alpha and
total number of stems as input variables at each spatial scale. Since the total
number of stems was upscaled by several orders of magnitudes, one might
expect that this extreme extrapolation could potentially cause a large error
in our species richness estimates. However, a simple sensitivity test, in which
we varied stem numbers between 0.1 and 1.9 times the estimated values for
each spatial scale (a range much larger than the observed error in our stem
number predictions), showed that this extreme perturbation in stem number
resulted in only a 3-11% difference in number of species predicted (Table S4).

Upper-bound estimation of species richness. Our species richness esti-
mates are near the true value if the unidentified species (individual recorded,
but not identified) in the tree inventories, which we excluded from the
analyses, follow the same rank-abundance pattern as the identified species.
However, if rare species are disproportionately represented in the uniden-
tified category, our analyses may have underestimated the true Fisher’s-
alpha and thus the species richness estimates. Because we did not know
the relative abundance of rare species in the category of unidentified
individuals, we selected a dataset of multiple tree inventories with a total
of 10,647 individual trees from eastern Borneo for which this information
was available. All individuals in this dataset were either identified to species
or only to morpho-species (unidentified). A Mann-Whitney W test showed
that, not surprisingly, rare species were disproportionately represented in
the unidentified category (df = 1, N = 1103, W = 194798, p < 0.0001).

Using logistic regression of species square root transformed abundance
versus identification status (identified versus unidentified) we predicted
the probability that a tree species would be classified as identified. This
‘classification probability’ was then assigned to each individual tree be-
longing to that species. After adding a random number between zero and
one to the ‘classification probability’ of each individual tree, to account for
the fact that even individuals belonging to common species may remain
unidentified, we sorted the whole list of individuals from high to low. We
produced ten such sorted lists, each time varying the random number added
to the ‘classification probability’ of an individual tree. For each list we could
then count the number of species present within any level of identified
individuals and calculate a minimum Fisher’s-alpha. The average of these
ten minimum Fisher’s-alpha values could then be compared to the actual
Fisher’s-alpha observed for the whole list. Dividing the actual Fisher’s-alpha
by the minimum Fisher’s-alpha gives an inflation factor with which observed
Fisher’s-alpha values can be multiplied to estimate the upper boundary of
Fisher’s-alpha for any percentage of identified species. The inflation factor
(Y) showed a power-function relationship with ratio of identified individuals
(X) given by: Y = 1.2237 x X-0.767. Using the appropriate inflation factor, we
calculated the maximum expected species richness at all spatial scales (Table
1).
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Figure 1. Overview of sample locations and their floristic affinities (point colors correspond
to scores on the first DCA-axis with similar colours indicating similar generic composition,
while the lines indicate the floristic affinities as determined by cluster analysis).
Figure 2. Increase in Fisher’s-alpha with (a) increasing numbers of locations (average of 50
replicates per region with random input order of locations), i.e. regional diversity and (b)
increasing distance around locations (based on 50 replicates per region each with a randomly
selected starting location), i.e. species turnover. Error bars indicate standard deviation among
location re-orderings. Fisher’s-alpha can decline if the number of stems added to the sample
increases disproportionally to the number of new species detected.
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