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Abstract— The manufacturing of customised products is a
driver in the trend of incorporating intelligence in the sys-
tem. This intelligence is required to enable the system to
self-configure processes to meet the requirements of unique
products. This work deals with the quality testing phase in a
production system. A method of controlling testing functionality
for leak test process is presented utilising a multi-agent ap-
proach. A means of controlling agent execution by expressions is
discussed. Two types of expressions; operational and conditional
expressions are conceptualised. An experimental use case is
demonstrated to validate the approach.

Index Terms— leak test, multi-agent, expression driven, in-
telligent manufacturing and industrial control.

I. INTRODUCTION

Product customisation and fast-paced changes in product
demand has forced manufacturers to reconsider their tra-
ditional manufacturing models. Data driven transformation
in manufacturing is driven by new technologies such as
machine learning (ML), reinforcement learning (RL) band
cloud computing [1]. New paradigms such as agent based
modelling, and service oriented architecture (SOA) are being
adopted. The shift is mainly towards replacing centralised
control to a more decentralised and distributed one to ac-
commodate changing product and process requirements .

Reconfigurable Manufacturing Systems (RMS) [2],Bionic
Manufacturing Systems [3],Holonic and Evolvable Produc-
tion Systems [4] present the case for transition to a dis-
tributed environment for production operations. These de-
velopments contribute to dynamic adaptability and recon-
figurability. High product customisation is the driver with
intelligence embedded in the production system being the
main enabler.

Data driven emerging technologies like cloud computing
and agent systems supporting this paradigm shift ensure the
required infrastructure for system interoperability, process
and device integration, and associated data management
is in place. This is necessary to transition the traditional
manufacturing setups through a digital transformation to a
fully digital manufacturing environment.

This digital transformation comes with its own challenges,
one of which is lack of practical applications [5]. Industrial
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adaptation of these technologies will be accelerated if there
exists multiple business and use-cases that demonstrate their
feasibility and achieve their purpose. This insufficiency of
methodologies and their underlying practical applications
acts as a barrier to real-world realisation leaving most of
the work in theoretical abstraction.

This article discusses the implementation of multi-agent
technology in a real-world production system for a product
testing application. For many high-value or highly regulated
sectors it is necessary to check each and every part before
sending it to the following work station to ensure ‘no-faults-
forwards’. High product customisation places additional re-
quirements on testing as it needs to be adapted to the unique
features of the part being tested. This is typically, done
manually.

In this methodology, the multi-agent technology is used to
drive testing based on expressions. Expressions are represen-
tative statements that are used to drive the functionality of
the production system by influencing the agent system. This
implementation case is generalised to be applicable to wide
variety of manufacturing environments. The agents control
and direct the functionality of the testing production system
basing their execution on some expressions obtained through
the user or by a machine learning pipeline. This storage
component service integration provides control “as a service”
to the additional scalablity characterstics inherent in multi-
agent systems.

This paper is organised as follows: Section 2 gives the
relevant background of the technology and, approaches for
this methodology. Section 3 deals with the architecture devel-
oped for testing processes by integrating agents with process.
Section 4 demonstrates the feasibility of the architecture
by practical deployment to an industrial testing system and
finally, section 5 concludes the paper while giving future
research directions.

II. BACKGROUND

Intelligent production systems can reduce setup times,
improve production planning, and decrease the frequency and
severity of breakdowns, by gathering data and implementing
responsive control strategies [6]. This is improved when
these production systems have the capability of tracking and
tracing objects, product control integrated with warehouse
management systems, production monitoring and fast fault
detection [6]. These intelligent production systems have led
to the conceptualisation and development of distributed pro-
duction intelligence and control leveraging their advantage
of modularity, flexibility and reconfiguration. Their use has



seen recent growth especially in applications where rapid
response to unexpected changes is required [7], [8].

Architectures such as ADACOR (Adaptive Holonic Con-
trol Architecture), PROSA (Product Re-source Order Staff
Architecture), HCBA (Holonic Control Based Architecture),
ORCA(Orchestration and Reconfiguration Control Architec-
ture) and POLLUX are developed that use the improved
flexibility, connectivity, adaptability and behaviour for dis-
tributed control applications [4]. Intelligent production sys-
tems can be best realised when coupled with dynamic opera-
tions, dynamic prioritisation and effective task migration [9].
Along with this, intelligent production control requires a con-
sistent adaptive manufacturing system monitoring ensuring
quality requirements are met and faults detected diagnosed
[10].

Intelligent production systems are assumed to perform
their tasks completely or partially independently without
external assistance [11]. A production system is a set of
processes grouped together to achieve an outcome taking
an input and passing the output through each processing
stage [12]. These process stages may be a single production
operation step producing a finished product or a group
of associated processes [6]. In this sense, intelligence in
production systems needs not only to be distributed but
also scalable to accommodate part variation (due to feature
requirements), and process changes at each production step
[9].

The main driver of intelligence in manufacturing is ef-
ficient production execution and productivity improvement
[13]. In this respect it is linked to quality control and
quality assurance [14]. In many sectors, quality testing is too
labour intensive, too complex,has a low degree of automation
and is mostly experience based [15]. This results in lower
efficiency, a higher level of biases, and lower overall quality.

An intelligent testing production system has to support
“four modernisations” that are interconnection, digitisation,
information generation and intellectualisation [15]. This is
important to ensure that the intelligent testing system un-
derstands the tasks, resources and other information in the
platform to make correct inferences. This ability must be
supported by a management system [16] that offers mon-
itoring and traceability of all production stages. This is
complimented with use of computing capability for on-board
or cloud based data processing for real-time analysis [17].

Cloud based technologies enable virtualisation of re-
sources and capabilities in a manufacturing environment [1].
Previous researches have focused on cloud concept in detail
while stressing the need for converting resources to virtual by
service oriented architecture and interoperablity adaptation
[1]. Usually the cloud technologies follow a on-demand use
of resources in a pay-as-you-go-model or deployed-as-you-
need model [18]. Cloud services mainly lie into Platform-as-
a-service(PaaS),Infrastructure as a service(IaaS), Software as
a service(SaaS). Distributed intelligent production systems
use these services for control and execution.

In an intelligent testing production system it is necessary
that the system is able to perceive the system state and

execute control based on that perception [19] so this neces-
sitates automatic collection and transmission of data , data
processing and decision making. Furthermore, an intelligent
testing system needs to consider the level of automation,
standardisation, high efficiency and accuracy required for
‘no-faults-forwards’ production.

A technology to realise intelligence in production systems
is the use of a multi-agent approach [20]. Multi-Agent
Systems (MAS) divides the production system and assigns
autonomous and independent software agents where each
agent achieves its goals by interacting with other agents [20].
MAS supports applications in scalable environments along
with areas where components with conflicting objectives
need to interact [21]. MAS breaks down these component
functionalities of the production system into much simpler
entities.

Agents have been applied in production systems from
supply chains to manufacturing operation scheduling [22],
[23], [24], [25]. Usually coupled with different technologies
like Service Oriented Architecture (SOA) and semantic web
ontologies, they present an effective management approach
used to realise concepts such as Holonic Manufacturing
Cells [26]. Cloud and edge integration, and zero-defect
control paradigm have been drivers for intelligent production
systems [27].Utilising the technologies for a more effective
control is discussed in this research.

III. AGENT ARCHITECTURE FOR EXPRESSION
BASED LEAK TESTING

The architecture for an agent-based deployment for a test-
ing production system is comprised of multiple components,
namely the multi-agent system, the testing production system
and data storage component (local database or cloud-based
service). The expression that drives the agent skill execution
is hosted in the storage component. The expression is sent to
the agent system at the start of each test operation. A brief
of overview of the components and their interaction is given
as follows:

A. Multi Agent System (MAS) for Skill Execution

Fig. 1. MAS architecture for testing production system integrating
expressions

A testing production system needs to execute skills in
a certain order and with specific conditions to account for
part, feature and conditional variations (changing priorities,
testing requirements etc.). Agents can be used to automate
control of this execution. The skill order can be defined in



the operational expression, and conditional expression can
be used to control behaviour of that skill.

Agents are given different roles to enable the system to
function. For testing applications the Executor Agent (EA)
can look-up Skills ‘S’ offered by an Initiator Agent (IA)
based on an operational expression (see Table I). The Initiator
Agent (IA) loads related conditional expression from storage
component depending on information about the product
gathered from EA (EA stores part related information). The
IA executes the skills as per the expressions and confirms
of the execution with EA. The integration with storage
components ensures scalability, modularity and extensibility.
For the purpose of testing simplicity and greater control IA
is considered to be a group of agents where each each agent
represents a skill it can execute (one skill per agent).

TABLE I
AGENT DESCRIPTION FOR TESTING SYSTEM

Agent Description
Initiator Agent
(IA)

Agents containing Skills that can
be offered. IA is a group of agents
offering one skill per agent.IA
loads required conditional expres-
sions for the skill execution

Executor Agent
(EA)

Inquires skills from IA and exe-
cutes the Skills based on opera-
tional expression.

The expressions, stored in a cloud-based or any other
storage component oriented service, can be updated regularly
to account for different requirements. This update can be
carried out by the user or by a machine learning pipeline.
As agents are linked to these expressions so they are also
updated by the virtue of expressions giving an aspect of
dynamicity during testing operation. A more descriptive
respresentation of the architecture is shown in figure 1.

The architecture utilises agent technology to control exe-
cution based on expressions. This approach can be adapt-
able to accommodate different scenarios such as for part
variation, feature variation and conditional variation. Figure
2 illustrates roles of agents in case of different scenarios
and the manner in which they co-ordinate for expression
development during execution operation.

Fig. 2. Role of Agents in Expression Development with changing scenarios;
feature variation, part variation and conditional variation

Fig. 3. Integration of testing process with expression development through
storage component (cloud services)

These agents interact with the test process at different
stages of execution, usually involving a different requirement
to be fulfilled each time. These requirements as they are
fulfilled can be viewed by the operator either by witnessing
the change in configuration values or the result of test. Figure
3 presents this approach in a much descriptive form along
with figure 4 detailing on the behavioural aspect of each
actor during operation.

Fig. 4. Behaviour representation of actors in testing system

B. Expression Concept for Production System

Expressions drive the functionality of the production
system by influencing the agent system. Expressions we
conceptualise are of two types; “conditional” and “oper-
ational”. Conditional expressions govern the behaviour of
the agent when executing a skill while on the other hand
operational expressions are concerned with the behaviour
of the production system itself. At its core the operational
expressions deal with ‘what’ in a system and conditional
expression define the ‘how’ aspect.

Operational expressions, involving the execution or per-
formance of the testing operation, are accompanied by
expressions formulated in a logic-based language that can
be understood by agent systems. These expressions are
responsible for the manner in which the testing production
system carries out its execution for any part.

Let ‘T’ be an operational expression that constitutes of a
set of skills to be executed. These skills are executed se-
quentially, parallel or in interleaved manner. The operational



expression ‘T’ can therefore be considered as a set of skills
and their associated conditions;

T = {C1S1,C2S2,C3S3, ...,CnSn} (1)

The ‘T’ operational expressions is comprised of Skill
‘S’ under condition ‘C’ executed in a mentioned manner.
The behaviours in which these skills under conditions are
executed are represented in expressions given as follows;

Tsequential =CiSi.C jS j (2)

Tchoice =CiSi
⊕

C jS j (3)

Tparallel =CiSi ||C jS j (4)

Tinterleaved =CiSi |C jS j (5)

These expressions can be formulated either to demon-
strate sequential,choice, parallel or interleaved behaviour
individually or in a combination. The interleaved behaviour
represents a case of skill synchronisation where one skill
waits till other skill is ready to be executed.

Operational and conditional expressions are responsible
for agent skill execution for any testing operation carried
out by the production system. An operational expression is
accompanied by multiple conditional expressions for each
skill. These coupled expressions can be loaded into the agent
responsible for execution, as part is identified, for test to
be carried out. These expressions can be housed in storage
component on a scalable, extensible database service that is
queried by the agent system to load best possible expressions
for the identified parts. A depiction of the expression driven
mechanism is shown in figure 5.

Fig. 5. Class Diagram for driving expressions from storage component
(cloud service) for testing

IV. AGENT DEPLOYMENT FOR A LEAK TESTING
USE CASE

To demonstrate the expression-based methodology, it is
demonstrated with a use-case of an industrial dry-air leak
testing production system (Micro Application Leak Test

System). This is used to demonstrate the applicability of
the approach along with providing the direction for deploy-
ing the methodology for other testing production systems.
The industrial testing production system is connected to a
Raspberry Pi. The Raspberry Pi acts as a gateway device
to establish connection with cloud-based services. JADE
(Java Agent Development Framework) is used for agent
development and deployment.

Leak Testing is the process of determining leakage flow
rate from a part under test. The leak testing production
system constitutes of multiple processes. The part under test
process is filled (over-pressure) with a testing medium or
subjected to complete vacuum and allowed to stabilise under
pressure. The pressure change is measured under leakage
flow. This change in pressure or for simplicity proportional
value of leakage flow rate is used as indicator to pass or fail
on part. There are several variations for leak testing such
as differential pressure measurement pressure decay, dosing
leak test, chamber leak test, blockage testing, and coarse or
gross leak test [28].

Testing is carried out at normal room conditions on
a clean, dry, room temperature stabilised product. These
conditions are maintained devoid of excess moisture due
to temperature-sensitive nature of the dry-air leak testing
consideration. Parameters for testing, calibration for attached
instrumentation along with connection settings have been
configured through the interface. This configuration has been
set up to give a pass/fail criteria based on test pressure and
differential pressure readings. JADE framework has been
used to set up agents that control individual skills.

The cloud service, acting as a storage component, used for
testing is by Google Cloud Platform (GCP). Cloud functions
are event trigger functions that listen to agents and send back
respective expressions when requested. The expressions are
stored in data warehouse, that can be extended, to include
more expressions.

Executor Agent (EA1) looks for the skills required for
testing based from an “operational” expression. The “opera-
tional” expression lists down the skill required by part being
tested as well as the sequence of execution for that part. This
expression is stored in cloud based and loaded by EA1 based
on part identification.

TEA1 =Cφ basic.Cφ cond.CST 1 stab.CFA1 f ill.

Cφ param.Cφ iter.TEA1
(6)

The EA1 searches for the agents responsible for these
skills. These agents then look for the “conditional” expres-
sions that define the behaviour on how these skills may be
executed. Cφ is a null condition that means no condition
expression is present for executing the skill.So the expression
may be simplified;

TEA1 = basic.cond.CST 1 stab.CFA1 f ill.param.iter.TEA1 (7)

TI1 agent is responsible for “basic” skill that starts the
connection with the test system, CA1 executes “cond” skill
that uses condition to change test parameters, ST1 changes



the stabilisation time through “stab” skill, FA1 and PA1
induces change to fill time and any parameter (taken as
argument) through “fill” and “param” skill respectively. IT1
is the agent responsible for “iter” skill that gives number
of test iterations to be performed and executes the tests
as per those iterations. Giving each agent responsibility
of individual skill gives capability to define test for each
part driven by “operational” expression. Here, TI1, CA1,
ST1, PA1, FA1, and IT1 are a group of agents previously
established as IA.

These agents once they have received request to execute
a skill look for a conditional expression from cloud service.
This expression is loaded and the skill behaviour modified
as per expression. For the purpose of this test the fill time
and stabilisation time was varied by each increment. The
conditional expressions are;

CFA1 = i∗ f ill (8)

where i = 1...i increments

CST 1 = stabilisation time+ i∗ t (9)

where i = 1...i increments and t = constant

These expressions are loaded from cloud service and
execution of the test carried out. The sequence diagram
along with respective production system execution interface
is given as figure 6 and figure 7. The state transition diagram
for expression execution in leak testing is presented in figure
8.

Fig. 6. The leak testing setup: (a) the cylinder volumes under test (b)
MALT testing production system being a part of test bench for general leak
testing (c) Interface for leak testing; agent system drives the execution by
operational and conditional expressions

V. CONCLUSION AND FUTURE WORK

The research presents an application case for agent integra-
tion in leak testing production systems. This integration leads
to control guided by expressions hosted in cloud services.
The expressions proposed are of two types; operational and
conditional expressions. Operational expressions define the

Fig. 7. Sequence of Agents Execution of Leak Testing Process for 0.1
Litre volume

Fig. 8. State transition diagram for expression execution in leak testing.
Here Ω is an handshake event that is hidden from the operator

skill requirement for the operation along with the sequence
of execution of those skills, Conditional expressions detail
the manner or behaviour of these skill execution. The agents
can get these expressions from cloud service. This approach
makes it suitable for customising operation of each part,
along with scaling test skills as well as conditions as per
requirements. As the expressions are derived from the cloud-
based service so they can be modified, scaled or removed as
per need.

Future work for this approach involves expanding the
cloud based service with other service oriented architecture
components. Machine Learning can be integrated to provide
expressions for self-configurations and optimisation. Agent
functionality will be expanded to factor in negotiation among
agents and competing skill dependencies.

Currently the approach directs the skill selection and
behaviour execution trough pre-loaded expressions made
available to agents. This will be expanded upon to develop
some strategy and methodology to modify the expressions as
per data gathered and state observed. Rules for expressions
will be researched. Logging and monitoring functionality
will be explored.
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