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Abstract 

Aims. Alterations in DNA methylation contribute to the abnormal phenotype of 

fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis (RA). Herein, 

we performed genome-wide DNA methylation profiling of RA FLS derived from 

synovial fluid, a more readily accessible source of disease-associated cells. 

Patients & Methods. Synovial fluid-derived FLS were isolated and expanded in vitro 

from 12 patients with RA and osteoarthritis (OA). DNA methylation was interrogated 

using HumanMethylation450 BeadChips and bisulfite pyrosequencing. 

Results. Array analysis identified 328 CpGs, representing 195 genes, that were 

differentially methylated between RA and OA fluid-derived FLS. Comparison with the 

genes identified in two independent studies of tissue-derived FLS revealed 73 genes in 

common (~40%), of which 22 shared identity with both studies. Pyrosequencing 

confirmed altered methylation of these genes. 

Conclusions. Synovial fluid-derived RA FLS show methylation changes across 

multiple genes. A subset of these are common with tissue-derived FLS, supporting the 

use of fluid-derived FLS for future investigations. 
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Introduction 

Rheumatoid arthritis (RA) is an autoimmune inflammatory disease of unknown 

etiology. The hallmark of the disease is synovial hyperplasia, chronic inflammation and 

progressive destruction of the synovial joints. Fibroblast-like synoviocytes (FLS), one 

of the constituent cells of the synovium which envelops the joint, represent one of the 

principal effectors of joint damage in RA [1]. Indeed, these cells are a key component of 

the hyperplastic, inflamed and invasive synovial tissue mass that extends from the RA 

synovium and which promotes persistent degradation of articular cartilage and bone. 

 

In contrast to normal synovial FLS, these cells in patients with RA display an activated, 

aggressive and invasive phenotype, with characteristics of transformed cells [2, 3]. 

Other features of the activated phenotype include increased resistance to apoptosis and 

expression of a myriad of inflammatory mediators, adhesion molecules and matrix-

degrading enzymes that coordinately support local inflammation and the destructive 

process [1, 4, 5]. The factors that contribute to the abnormal FLS phenotype apparent in 

RA are not completely understood. However, emerging data supports an important role 

for changes to the epigenomic landscape in this process [6, 7]. 

 

In disparate diseases, the principal epigenetic mechanisms that are subject to 

inappropriate reprogramming include DNA methylation, histone modifications and 

expression of non-coding RNAs that include microRNAs (miRNAs). These 

modifications frequently impact on gene expression or translational efficiency, and in 

the context of methylation at promoter-associated CpGs, are frequently associated with 

transcriptional repression [8]. RA-derived FLS display global changes in levels of DNA 
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methylation and experimentally-induced global demethylation promotes the transition 

of normal synovial fibroblasts to an RA fibroblast-like phenotype [9]. Gene-specific 

methylation changes are also apparent in RA-derived fibroblasts. In this context, 

aberrant methylation has been described for genes such as the apoptosis-related death 

receptor 3 [10], the miRNA miR-124a [11], implicated in the proliferation of RA 

fibroblasts [12], and for chemokine and TGF-β signalling genes [13, 14]. Moreover, 

recent genome-wide studies have reported hypomethylation and hypermethylation of 

multiple genes in tissue-derived FLS from patients with RA [14-16].  

 

Synovial tissue is the principal source of FLS. However, these samples require invasive 

surgery and are often limited in number making their study technically challenging. In 

contrast, synovial fluid represents a more readily accessible source of FLS. Moreover, 

studies of these cells in RA have revealed morphological and phenotypic characteristics 

consistent with those apparent in their tissue-derived counterparts [17-19], suggestive of 

a role in joint pathology. In this work, we examine for the first time the epigenetic 

profile of synovial fluid-derived FLS by interrogating genome-wide DNA methylation 

in these cells from patients with RA and relative to similar cells from patients with 

osteoarthritis (OA). Since two recent studies [15, 16] have performed broadly similar 

analyses using the same array platform in tissue-derived FLS, we have also been able to 

appraise our findings relative to these reports to determine similarities and differences in 

methylation between fluid-derived FLS and their tissue-derived counterparts. 
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Patients & Methods 

Patients 

Genome-wide DNA methylation was studied in synovial fluid-derived FLS from six 

female Caucasian patients with RA and six patients with OA. RA patients satisfied the 

1987 American College of Rheumatology revised criteria set [20] and had established 

disease (14.1 ± 6.3 years duration, mean ± SD). Patients had been treated with 

methotrexate (n = 4), sulphasalazine (n = 5) and/or gold salts (n = 3), and two were 

rheumatoid factor positive (data on anti-citrullinated peptide antibody status were not 

available for this cohort). Inflammatory markers (ESR) were within the normal range in 

four patients and were raised in two patients. OA patients, diagnosed by a consultant 

rheumatologist based on clinical findings, all had recent-onset disease (duration < 3 

months) and were recruited as a non-inflammatory control group in which the impact of 

disease was minimal. The average ages of the RA and OA groups was 68.7 ± 11.2 and 

66.9 ± 9.1 years, respectively (mean ± SD). All patients were recruited at the Haywood 

Rheumatology Centre in Stoke-on-Trent, UK and gave written informed consent. The 

study was approved by the East Midlands (Derby) Research Ethics Committee. 

 

Culture of synovial fluid-derived FLS 

Synovial fluid samples obtained during routine knee arthrocentesis were processed 

within 1 hour of collection. Cells were pelleted and resuspended in Quantumm-333 

fibroblast culture medium (PAA Laboratories, GE Healthcare) in 25 cm2 tissue-culture 

flasks (PAA Laboratories). Non-adherent cells were aspirated following overnight 

incubation. Adherent cultures (fibroblasts and some macrophage-like cells) were then 

serially passaged and FLS isolated using trypsinization procedures that we and others 
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have previously described [17-19, 21], and in which FLS readily detach whilst non-FLS 

cells remain resistant to trypsinization. Using this approach, homogeneous cultures of 

adherent FLS were achieved by three serial passages, as confirmed by light microscopy. 

Cell cultures were maintained at 37°C in a 5% CO2 humidified atmosphere. 

 

Genomic DNA extraction and sodium bisulfite conversion 

Passage three, fluid-derived FLS were used in all cases. Genomic DNA was extracted 

from homogenized cell lysates (QIAShredder spin columns; Qiagen) using a spin 

column-based format (AllPrep DNA/RNA Mini kit; Qiagen). Genomic DNA was 

further purified and concentrated by ethanol-based precipitation reactions, and assessed 

on a NanoDrop ND-1000 spectrophotometer (Thermo Scientific). Genomic DNA 

underwent sodium bisulfite conversion using an EZ DNA Methylation Kit performed as 

recommended by the manufacturer (Zymo Research). 

 

Genome-wide DNA methylation profiling by HumanMethylation450 BeadChip  

Genome-wide DNA methylation was interrogated at over 480,000 individual CpG 

dinucleotides using an Infinium HumanMethylation450 BeadChip (henceforth referred 

to as “450K array” or “array”; Illumina Inc.). Array design and coverage has been 

described elsewhere [22]. Sample preparation and array hybridization and processing 

was performed by Gen-Probe Life Sciences Ltd (Manchester, UK), according to 

Illumina recommended protocols that we have described previously [23]. A single 

sample failed the manufacturer’s robust internal array quality control assessment and on 

this basis the sample was removed from the study and prior to data analysis. 
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Methylation at individual CpGs is reported as a methylation β-value [22], which fall on 

a continuous linear scale ranging from 0 (unmethylated) to 1 (completely methylated). 

 

Sodium bisulfite pyrosequencing 

Independent validation of array-identified candidates was performed using sodium 

bisulfite pyrosequencing. Prior to this, and to increase template quantity, we conducted 

whole genome amplification of bisulfite converted genomic DNA, as described 

previously [23]. Pyrosequencing assays were designed using PyroMark Assay Design 

software (v 2.0.1.15, Qiagen) and primer sets were purchased from Biomers.net or 

Invitrogen/Life Technologies. PCR amplicons encompassing CpGs of interest were 

prepared using a touchdown protocol, details of which we have recently described [24]. 

Pyrosequencing assays included one or more control dispensations to confirm sequence 

identity and completeness of bisulfite conversion, and were run on a PyroMark Q24 

instrument (Qiagen) according to manufacturer recommendations. Assay details are 

provided in Supplementary Table 1. Pyrograms were analyzed using PyroMark Q24 

software (v 2.0.6., build 20; Qiagen). 

 

Data analysis 

Array data (n = 11, five RA and six OA) were processed and analyzed using NIMBL 

software [25] and passed initial quality control based on the performance of internal 

array controls. We excluded all CpGs for which one or more of the 11 samples had β-

value detection p-values > 0.05, and sites with at least one missing β-value. The 

processed dataset, which consisted of 468,961 CpGs (from a total of 482,421 array CpG 

sites [22]), was adjusted for the reported difference in sensitivity between the two 
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Infinium probe types by performing ‘peak-based correction’ [26]. To identify 

CpGs/genes differentially methylated between RA and OA-derived FLS, we performed 

a series of filtering steps (see Results). We elected to use a minimum β-value difference 

between the RA and OA groups of 0.1, in part to permit comparisons with two recent 

studies of tissue-derived FLS also using the 450K array platform [15, 16].  

 

Coordinated patterns of methylation across RA and OA-derived FLS were examined by 

hierarchical clustering using Genesis (v1.7.6) [27], with Euclidian distance and average 

linkage criteria. Genes associated with differentially methylated CpGs were assessed for 

enrichment of gene ontology terms and biological pathways using DAVID online 

software, where statistically significant ontology terms/pathways were those with a p-

value < 0.05 calculated using the EASE score  [28, 29]. The false discovery rate (FDR) 

[30] was used to adjust for multiple testing. 
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Results 

Genome-wide DNA methylation in RA fluid-derived FLS 

We performed genome-wide analysis of DNA methylation in RA and OA fluid-derived 

FLS using an Infinium-based 450K array that examines over 480,000 individual CpG 

sites. Subsequent to initial data processing, we used a series of stringent filtering criteria 

to identify sites displaying altered methylation between RA and OA FLS (Figure 1). 

We considered a CpG to be differentially methylated if the mean β-value difference 

between the RA and OA groups was ≥ 0.1 and was statistically significant following a 

FDR-adjusted t-test. Using this approach we identified 328 unique CpGs that were 

differentially methylated between fluid-derived FLS from RA and OA patients. Similar 

results were obtained when we performed a technical replicate on a second array (data 

not shown). This, combined with additional independent validation of candidate sites 

(described in a subsequent section), reinforces the robustness of the array dataset.  

 

Of the 328 CpGs identified, the majority of sites were hypomethylated in RA (258 

CpGs; 78.7%). Approximately two-thirds of the sites demonstrated a mean β-value 

difference of at least 0.25 between the groups (205; 62.5%), and in some cases the 

differences were particularly pronounced (β-value differences up to 0.72). The altered 

methylation observed in RA FLS was in fact evident for the majority of the individual 

samples examined. As example, for two-thirds of the 328 CpG sites, four out of five RA 

samples displayed methylation β-value differences that were at least 0.2 greater/lower 

than the average methylation in OA FLS. The 328 differentially methylated CpGs 

represented a total of 195 individual genes. A complete list and annotation for the 328 

identified sites is presented in Supplementary Table 2. 
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To determine whether the methylation patterns across these 328 sites discriminated 

between FLS from RA and OA patients, we performed hierarchical clustering. The 

heatmap in Figure 2 shows that RA and OA-derived FLS possess intrinsically distinct 

methylation patterns across these sites. Moreover, this analysis also shows that there 

was negligible inter-individual variation within each of the patient groups. However, an 

exception to this finding was apparent for one OA sample which clustered with the RA 

group. Gene ontology and pathway enrichment analysis for the 195 genes using DAVID 

[28, 29] identified multiple overrepresented ontology terms (e.g. relating to 

proteoglycan synthesis, catabolic processes). However, enrichment of these terms was 

not statistically significant following adjustment for multiple comparisons. 

 

Fluid-derived FLS display methylation changes both common with and unique 

from tissue-derived FLS 

We next analyzed the 195 genes identified as differentially methylated in fluid-derived 

FLS (Figure 1) relative to recent findings describing DNA methylation in tissue-

derived cells. In these cases, Nakano et al [15] and de la Rica et al [16], also using 

Illumina 450K arrays, examined genome-wide DNA methylation in tissue-derived FLS 

from RA and OA patients. In both these reports and our own study, the selection criteria 

were broadly similar, requiring a minimum β-value difference of 0.1 in combination 

with an adjusted t-test to identify differentially methylated CpGs. Genes represented by 

differentially methylated sites in each of the published studies were obtained from 

supplementary data accompanying each article (for comparison purposes, mean 

differences were calculated for the CpGs reported by de la Rica and colleagues [16]). 
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As shown in the Venn-diagram in Figure 3, comparison of the 195 genes identified as 

differentially methylated in our study with those reported by Nakano et al [15] and de la 

Rica et al [16] identified 50 genes and 45 genes that were common with and 

significantly associated with each study, respectively (p < 1.0 x 10-14; Figure 3). In 

total, 73 genes (~40%) shared identity with at least one of the two studies, and of which 

22 genes were common to all three genome-wide studies (details are provided in Table 

1). For 18 of these 22 genes, at least four of the five individual RA FLS samples 

displayed methylation β-value changes at least 0.2 greater/lower than the average 

methylation observed in OA-derived FLS. Heatmap analysis of the 22 genes revealed 

clear differences in the pattern of methylation between RA and OA-derived FLS 

(Figure 3). However, one OA sample, and consistent with clustering for the original 

328 CpGs, was again found to cluster with the RA group. Moreover, for seven of the 22 

genes, the direction of change in methylation was the same in all three studies 

(hypomethylation for 6 genes and hypermethylation for 1 gene). These seven genes 

were C18orf45, LMO4, MAP3K5, ODZ4, PKNOX2, PRDM16 and SEPT11 (indicated 

by bold font in Table 1). For the remaining 15 genes (with two exceptions), agreement 

in the context of the direction of the methylation change (hypo- or hypermethylation) 

was apparent in our study and in one of the two studies examining tissue-derived FLS. 

 

In addition to the genes described above, our array analyses also identified 122 

differentially methylated genes that are unique to our study of fluid-derived FLS (gene 

details are provided in Supplementary Table 3). Hierarchical clustering of these genes 

revealed distinct methylation patterns between RA and OA-derived FLS, whereby 
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samples segregated into two distinct clusters according to diagnosis (Supplementary 

Figure 1). Gene ontology and pathway enrichment analysis of these genes did not 

identify any statistically significant overrepresented terms (following FDR adjustment). 

 

Amongst the genes that were hypomethylated and unique to RA fluid-derived FLS 

(relative to OA), the largest β-value difference observed (0.72) was in MSRA, a gene 

coding for a methionine sulfoxide reductase involved in the response to oxidative stress. 

Hypomethylation was also observed for a number of other genes relevant to RA, such as 

the metalloproteinase ADAMTS14 (an extracellular matrix degrading enzyme; β-value 

difference 0.36), and MIR155HG, the host gene coding for the immuno-regulatory 

microRNA miR-155 (0.34). 

 

Candidate gene validation by pyrosequencing 

For independent validation of the genome-wide array data, we performed bisulfite 

pyrosequencing for a number of differentially methylated candidate genes/CpGs. 

Validation was conducted across a total of 17 samples, comprising six OA and 11 RA 

samples, and which included a total of eight independent samples (one OA and seven 

RA). We selected the seven genes (C18orf45, LMO4, MAP3K5, ODZ4, PKNOX2, 

PRDM16 and SEPT11) for which methylation changes were observed in the same 

direction (hypomethylation or hypermethylation) in our study and each of the two 

studies of tissue-derived FLS [15, 16]. A further four genes that were unique to our 

study of fluid-derived FLS (ADAMTS14, MIR155HG, RUNX1 and ULK3) were also 

examined (see Supplementary Table 1 for assay details). 
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Array β-values and methylation levels determined by pyrosequencing for candidate 

genes are presented in Figure 4. In each case, the statistically significant methylation 

differences observed between RA and OA-derived FLS by array analysis were 

reproduced by pyrosequencing (SEPT11 is not shown since an assay incorporating the 

array-interrogated CpG site could not be designed). For some genes, for example 

MAP3K5 and RUNX1, pyrosequencing analysis also facilitated interrogation of 

additional CpGs adjacent to the array identified site. In these cases, the data showed 

altered methylation that was consistent with the changes at the array site (one site for 

MAP3K5, and two sites for RUNX1; Figure 5). As has been reported previously by 

ourselves and other investigators [23, 31], methylation levels determined by 

pyrosequencing were generally lower than their respective array β-values. The 

robustness of our array data through validation of multiple candidates is exemplified by 

the strong positive correlation between array β-values and methylation determined by 

pyrosequencing (Spearman’s r = 0.955; Supplementary Figure 2). 
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Discussion 

Synovial tissue from patients with RA is typified by hyperplasia of the lining layer and 

invasion of the articular cartilage and bone. FLS, one of two specialized cell types 

comprising the lining layer, display an activated, aggressive and invasive phenotype [1, 

4, 5] and play a key role in the destructive process, supporting these cells as a potential 

therapeutic target in RA [32]. The origin of FLS within the synovial fluid remains 

unclear, but derivation from the tissue itself or from progenitor cells within the fluid are 

possibilities [17, 33]. Studies of these fluid-derived cells indicate morphological and 

phenotypic characteristics consistent with their tissue-derived counterparts, including 

the capacity to invade and degrade cartilage [17-19]. Epigenetic modifications in 

rheumatoid FLS are important [9-16], but to our knowledge there have been no reports 

describing DNA methylation in fluid-derived FLS. Using high resolution DNA 

methylation arrays, we are, to our knowledge, the first to describe genome-wide 

methylation changes in fluid-derived FLS in RA. Moreover, we have identified subsets 

of genes for which the methylation changes in fluid-derived FLS are either common to 

or distinct from genes previously identified on the same array platform in tissue-derived 

FLS [15, 16]. Our findings, if confirmed by other investigators, would support the use 

of FLS derived from synovial fluid as a more readily accessible and available source of 

material for future investigations of RA synovial fibroblasts in the disease process and 

perhaps for clinical management. 

 

We identified a total of 195 genes which displayed statistically significant methylation 

changes in fluid-derived FLS from patients with RA. A key finding of our study was the 

identification of 73 genes, approximately 40% of our gene-set, which have also been 
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identified as aberrantly methylated in two previous genome-wide investigations of 

tissue-derived FLS [15, 16]. Moreover, of these, a subset of 22 differentially methylated 

genes displayed altered methylation in all three studies. Most notably, seven of the 

genes displayed changes in methylation in RA fluid-derived FLS (for at least four of the 

five individual samples) that were consistent with respect to the direction of change 

reported for tissue-derived FLS (hypomethylation for six genes and hypermethylation 

for one gene). Identification of these candidates in our study, and in two independent 

studies that pre-date our report, supports an important role in the RA synovial fibroblast 

phenotype and associated joint pathology. Moreover, these findings are compelling for 

shared, inappropriate, epigenetic modification in RA FLS irrespective of their origin. 

For one of the genes, MAP3K5, constitutive expression has been shown to promote 

arthritis and synovial fibroblast proliferation [34], whilst suppression inhibits IL-6 

expression and attenuates joint damage [35]. Evidence also supports regulation of 

MAP3K5 expression in activated FLS through reduced expression of specific miRNAs 

[36], highlighting a role for epigenetic control in these cells. Our data now suggest that 

this may also extend to include aberrant hypomethylation of the MAP3K5 gene. 

 

The comparative analysis we conducted between fluid-derived and tissue-derived FLS 

also revealed a significant number of differentially methylated genes that were unique to 

our study of fluid-derived FLS. This included hypomethylation of multiple genes, such 

as ADAMTS14, a member of the ADAMTS (a disintegrin and metalloproteinase with 

thrombospondin motifs) family of proteinases implicated in RA [37], and MSRA, an 

enzyme involved in the response to oxidative damage and for which a recent genetic 

association with RA has been described [38]. Of particular note, we detected 
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hypomethylation of MIR155HG, host gene of the miRNA miR-155 which has 

previously been implicated in arthritis. Indeed, studies have demonstrated elevated 

expression of miR-155 in RA, including synovial fibroblasts and synovial fluid-derived 

cells [39-41], and support an essential regulatory role for miR-155 in animal models of 

arthritis and autoimmunity [41-43]. By array and pyrosequencing analysis, we observed 

aberrant hypomethylation of MIR155HG in RA fluid-derived FLS, suggesting a 

possible role in the regulation of miR-155. Although we are not aware of any prior 

studies describing the methylation status of the miR-155 gene in RA, studies in cancer 

show methylation-dependent regulation of this and other miRNAs [44, 45]. It is unclear 

at this time the reason for the disparity between MIR155HG methylation changes 

observed in fluid-derived but not tissue-derived FLS [15, 16]. Functional studies are 

required to explore the impact of MIR155HG hypomethylation in RA synovial cells. 

 

The majority of differentially methylated sites identified in RA FLS were 

hypomethylated (78.7%) and in some cases the methylation changes were substantial 

(β-value differences up to 0.72). Notably, and as we recently observed for disease-

specific methylation changes in RA-derived T- and B-cell populations (unpublished 

observations), the majority of differentially methylated CpGs were located within the 

body of genes (intragenic). Indeed, these finding are consonant with the differential 

methylation patterns previously identified in tissue-derived FLS from patients with RA, 

where altered gene-body methylation was a common finding [15, 16]. Although not 

specifically addressed in this or previous reports, other studies have described 

associations between gene-body methylation patterns and gene expression [46-48]. In 
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these cases, hypomethylation in RA synovial fibroblasts may well influence gene 

expression in both fluid- and tissue-derived cells, and warrants further investigation. 

 

The candidate genes identified in this study were on the basis of stringent filtering 

criteria. We made comparisons with two recent genome-wide studies that used broadly 

similar criteria, but in these cases of tissue-derived FLS [15, 16]. We are mindful that 

our own study and those that interrogated tissue-derived FLS represent distinct patient 

cohorts using limited sample numbers. These limitations may, in part, explain 

differences in the absolute numbers of CpGs/genes identified. Encouragingly however, 

commonality was apparent for 73 genes (~40%) across the three independent studies. 

Together with validation of our data using an independent technique we are confident 

that the identification of candidate genes in RA-derived FLS is founded on robust 

methods. It will remain important however for these candidates to be verified, and the 

consequences of differential methylation established, in larger patient cohorts. 
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Conclusions 

We provide the first report of genome-wide changes in DNA methylation in FLS 

derived from the synovial fluid of patients with RA. A subset of candidate genes were 

identified and validated in fluid-derived FLS that were common with genes described in 

independent studies of tissue-derived FLS. These data support an important role for 

these genes in the abnormal disease-associated phenotype of RA FLS and demonstrate 

that epigenetic changes in synovial tissue are, at least in part, recapitulated in fluid-

derived cells. Our findings also indicate a role for unique methylation changes in fluid-

derived FLS and support the use of synovial fluid as a viable and more readily available 

alternative for the study epigenetic dysregulation in RA synovial fibroblasts. 
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Executive Summary 

Background 

• Increasing evidence indicates that changes to the DNA methylome contribute to 

the abnormal phenotype of FLS from patients with RA. 

• Synovial tissue is the principal source of RA FLS, although the limited number of 

these samples makes their study technically challenging. FLS are also present in 

the synovial fluid, a more readily accessible source of these cells. 

• This study examined genome-wide DNA methylation in synovial fluid-derived 

FLS from patients with RA. 

Patients & Methods 

• Genome-wide DNA methylation was examined in synovial fluid-derived, passage 

three FLS from six RA and six OA patients using the HumanMethylation450 

BeadChip. 

• Differentially methylated genes were appraised relative to genes previously 

reported in two independent genome-wide studies of RA tissue-derived FLS. 

Validation of candidate genes was performed by bisulfite pyrosequencing (n = 17). 

Results 

• Significant changes in DNA methylation were identified for 195 genes (328 CpGs) 

in fluid-derived FLS from patients with RA (relative to FLS from OA patients). 

• A significant proportion (~40%) of these genes were common with those 

previously reported in two recent studies of tissue-derived FLS, and included 22 

genes common to all three studies. 

• Two of these candidates, MAP3K5 and MIR155HG, have previously been shown 

to play an important role in the pathogenesis of arthritis. 
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Conclusions 

• These findings identify a number of candidate genes and support an important role 

for epigenetic control in the abnormal FLS phenotype observed in RA. 

• Moreover, our findings demonstrate support the use of FLS derived from synovial 

fluid as a viable and more accessible source of FLS for future investigations. 

• Such work should include analysis of paired synovial tissue and synovial fluid 

samples to further explore epigenetic dysregulation in RA synovial fibroblasts. 
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Figure legends 

Figure 1. Filtering criteria for the identification of CpGs differentially methylated 

between RA and OA fluid-derived FLS. The starting number of CpGs (468,961) was 

derived through the removal of unreliable sites (CpGs with detection p-values > 0.05) 

and those with missing β-values in any one of the 11 samples, as described in the 

Methods. The horizontal dashed line after step 3 indicates implementation of a further 

filtering step as required for the identification of differentially methylated genes that 

were common with two other 450K array studies (described in detail in the Results). 

Abbreviations: RA, rheumatoid arthritis; OA, osteoarthritis; FLS, fibroblast-like 

synoviocyte 

 

Figure 2. Heatmap and clustering for the 328 CpGs identified as differentially 

methylated between RA and OA fluid-derived FLS. DNA methylation across the 328 

sites in each of the samples was analyzed by hierarchical clustering using the Euclidean 

distance and average linkage criteria. Each row represents an individual CpG site and 

each column a different sample (indicated beneath the heatmap). RA and OA-derived 

FLS are indicated by the red and green bars, respectively. Color gradation from yellow 

to blue represents low to high DNA methylation respectively, with β-values ranging 

from 0 (no methylation; yellow) to 1 (complete methylation; blue). 

 

Figure 3. Comparison of genes differentially methylated between RA and OA 

fluid-derived FLS with those identified in tissue-derived FLS. A. Venn diagram 

comparison of genes identified as differentially methylated in this study (Step 3, Figure 

1) with those reported to be differentially methylated in tissue-derived RA FLS in the 
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studies of Nakano et al [15) and de la Rica et al [16). Genes identified as differentially 

methylated in those studies were obtained from Supplementary Table S1 and 

Supplementary Table 2, respectively, which accompany their published articles. Genes 

from our dataset that were common with one or both of these studies are indicated by 

light gray and dark gray shading, respectively. The overlap of 50 genes in common with 

Nakano et al [15), and 45 genes in common with de la Rica et al [16), was highly 

significant in each case (p = 1.62 x 10-24 and p = 1.03 x 10-15, respectively; 

Hypergeometric Test based on Fisher’s Exact Test). B. Heatmap and clustering of 

methylation data in this study for the 22 differentially methylated genes that were 

identified as common to all three studies (centre, Figure 3A). For each of three genes 

(KCNMA1, PKNOX2 and PRDM16), two separate CpGs were differentially methylated, 

totalling 25 unique CpGs in the heatmap presented. Each row represents an individual 

gene (with associated cg identifier in parentheses) and each column a different sample 

(indicated beneath the heatmap). RA and OA-derived FLS are indicated by the red and 

green bars, respectively. Color gradation from yellow to blue represents low to high 

DNA methylation respectively, with β-values ranging from 0 (no methylation; yellow) 

to 1 (complete methylation; blue). 

 

Figure 4. Validation of candidate genes differentially methylated between RA and 

OA fluid-derived FLS. Bisulfite pyrosequencing was used to confirm 450K array 

methylation data for multiple candidate genes that were identified as A. common with 

(C18orf45, LMO4, MAP3K5, ODZ4, PKNOX2, PRDM16) or B. unique from 

(ADAMTS14, MIR155HG, RUNX1, ULK3) those genes identified in the studies of 

Nakano et al [15) and de la Rica et al [16). RA and OA fluid-derived FLS are depicted 
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by circles and triangles respectively, and the short horizontal bar in each group indicates 

the mean value. Gene names are shown on the x-axis, and where for each gene 

methylation values are shown for the array (filled symbols; left) and pyrosequencing 

(open symbols; right). 

Abbreviations: Pyro., bisulfite pyrosequencing. 

 

Figure 5. Additional CpG sites in MAP3K5 and RUNX1 that were differentially 

methylated between RA and OA fluid-derived FLS. Shown are additional CpGs 

adjacent to the array-identified site for A. MAP3K5 (one additional site), and B. RUNX1 

(two additional sites), that were also found to be differentially methylated in RA-

derived FLS relative to OA FLS, as determined by pyrosequencing. Negative and 

positive base pair numbers on the x-axis indicate bases upstream and downstream of the 

array CpG site, respectively. RA and OA fluid-derived FLS are depicted by circles and 

triangles respectively, and the short horizontal bar in each group indicates the mean. 

Abbreviations: bp, base pairs. 

 

Supplementary Figure 1. Heatmap and clustering for the 122 differentially 

methylated genes that were unique to fluid-derived FLS. DNA methylation across 

the 122 genes (124 CpGs) in each of the samples was analyzed by hierarchical 

clustering using the Euclidean distance and average linkage criteria. Each row 

represents an individual CpG site and each column a different sample (indicated beneath 

the heatmap). RA and OA-derived FLS are indicated by the red and green bars, 

respectively. Color gradation from yellow to blue represents low to high DNA 
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methylation respectively, with β-values ranging from 0 (no methylation; yellow) to 1 

(complete methylation; blue). 

 

Supplementary Figure 2. Technical validation of 450K array data by sodium 

bisulfite pyrosequencing. Correlation between array-derived methylation β-values and 

methylation levels quantified by bisulfite pyrosequencing was used to validate array 

data. One CpG in each of the ten differentially methylated genes presented in Figure 4 

was examined in RA and OA fluid-derived FLS (90 discrete data points), represented as 

circles and crosses, respectively. Spearman’s r = 0.955, p < 0.0001. 

 

Supplementary Table 1. Assay details for candidate CpGs/genes interrogated by 

bisulfite pyrosequencing. 

*Further information that is not included here is available upon request. The horizontal 

dashed line between rows 9 and 10 separates candidate genes common with (above) and 

unique from (below) the studies of Nakano et al [15) and de la Rica et al [16). 

†The prefix 'b-' denotes biotin labeling of the 5' end of the primer. 

‡The sequence indicated is post-bisulfite conversion and the letters 'Y' and 'R' denote 

the cytosine of interrogated CpG sites ('Y' and 'R' refer to sequencing along the upper 

and lower strands respectively). 

Abbreviations: bp, base pairs 

 

Supplementary Table 2. Complete list, β-value data and annotation for the 328 

CpGs identified as differentially methylated between RA and OA fluid-derived 

FLS. 
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*Unless otherwise stated, values are methylation array β-values. The solid black 

horizontal line between rows 260 and 261 separates CpGs that were hypomethylated 

(above) and hypermethylated (below) in RA fluid-derived FLS. 

†FDR, false discovery rate adjustment for multiple comparisons [30). 

 

Supplementary Table 3. Complete list, β-value data and annotation for the 122 

differentially methylated genes (124 CpGs) that were unique to RA fluid-derived 

FLS. 

*Unless otherwise stated, values are methylation array β-values. The solid black 

horizontal line between rows 95 and 96 separates CpGs that were hypomethylated 

(above) and hypermethylated (below) in RA fluid-derived FLS. 

†FDR, false discovery rate adjustment for multiple comparisons [30). 

 

 


