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Abstract

This paper proposes a novel coordinated human-robot collaboration framework based on the hidden state-space model, which
probabilistically clones the human behaviour and presents dynamic features in a nonparametric form. Derived from the filter
prediction techniques and the theory of exact moment matching, this framework could provide an analytical approximation of the
posterior distribution, and hence infer the hidden state variables of the collaborative robot given the external observation and its
uncertainties. Not akin to the other cutting-edge movement-primitive based algorithms or coordinated human-robot collaboration
methods, our collaboration framework not only preserves the adaptation functionalities of imitation learning but also propagates
state variables and their uncertainties during real-time coordinated implementation. By leveraging on the binary Gaussian process
classification, additional functionality, such as multiple task recognition is proposed to enhance the generalisation capability of our
framework. The application feasibility is verified from both theoretical comparison simulation and real-world experiments.

Keywords: Imitation learning, Coordinated human-robot collaboration, Hidden state-space model, Gaussian process, Binary
classification

1. Introduction

In modern industrial manufacturing, robots play a signifi-
cant role in various crucial applications, such as painting com-
ponents in automotive industry, shot-peen in aerospace manu-
facturing, and agile packing in food production [1, 2]. These5

industrial applications are usually implemented in several work
cells operated by skilled workers with a given set of instruc-
tions. Evidently, the robots as a powerful tool are utilised to
fulfill tasks or assist operators to achieve desirable industrial
processes, which is usually referred to as human-robot collab-10

oration [3]. However, coordinated physical collaboration be-
tween human and robots is still challenging, since robots are
required to adapt to environment changing and both motions
should be aligned spatially and temporally. Imitation learning is
a potential candidate to clone human behaviour and transfer hu-15

man motion skills to robots. More importantly, the extension of
imitation learning model could be used in the applications such
as force-driven interaction control [4], manufacturing product
handover [5, 6] and obstacle avoidance motion generation [7].

Dynamic Time Warping (DTW) has been applied in human-20

robot collaboration, for the purpose of temporally aligning hu-
man actions and robot predicted trajectories, which are retrieved
according to various human demonstrations [8] or directly learned
from a probabilistic representation [9]. Nevertheless, as DTW
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heavily relies on the distance measurements among different25

full trajectories [10], on-line applications with full or partial
observations [11] are not desirable.

Although Hidden Markov Model (HMM) is a typical time
series prediction method, it can be used for generating robot
trajectories in the human-robot collaboration applications, such30

as tool delivery [12], low-level primitive control [13] and hu-
man action prediction [14]. Additionally, in [15] the temporal
issues are solved with transition probabilities during on-line im-
plementation. However, these methods do not model the robot
trajectories explicitly. Alternatively, they rely on the mixture35

of the trajectory demonstrations, which are separated from the
methods themselves.

Alternative human-robot collaboration approaches could be
referred to as the movement-primitive-based learning algorithms.
For instance, Dynamical Movement Primitives (DMP) [16] could40

provide variation of temporal modulation with an explicit phase
indicator, which can be seen as a useful tool to govern trajecto-
ries of several agents. Moreover, a new variation of movement
primitive approach, so-called Kernerlized Movement Primitives
(KMP) [18] which is derived from the nonparametric ridge re-45

gression, focuses more on the nonlinear mapping between hu-
man motion and robot pose. In [17], both human motion and
robot trajectories are correlated together using interaction Prob-
abilistic Movement Primitives (iProMP).

In order to correctly interpret human observation, filtering50

techniques are applied in [19, 20]. Consequently, the robot tra-
jectories are inferred given the measurement from the inertial
measurement unit or force sensor. In addition, the human inten-
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Table 1: Qualitative comparison.

Approach Probabilistic
Dynamic
system

Uncertainty
propagation Muli-task

DMP [16] –
√

– –
iProMP[17]

√
– –

√

KMP [18]
√

– – –
Our approach

√ √ √ √

tion for assembly cell could also be recognised by using Kinect
depth camera as detailed in [21]. The extension of their work55

[22, 23] focuses on the safety issues of the human-robot inter-
action with wearable sensors and AR techniques. The safety
issues in a share workspace are also discussed in [24] by using
cyber physical system. A collision-free algorithm for human-
robot collision based on context awareness is introduced in [25].60

Besides, machine learning algorithms such as Bayesian estima-
tion [26], reinforcement learning [27], deep learning [28] and
Gaussian process [29] are applied for human intention as well
as interaction impedance in human-robot collaboration. Never-
theless, these nonlinear human intention estimation algorithms65

do not provide dynamic functionalities.
According to the above analysis, the temporal alignment is

one of the main issues of the coordinated human-robot collab-
oration. Although DTW could provide a straightforward solu-
tion, it suffers from computation burden. HMM is usually seen70

as an alternative. However, HMM only presents discrete state
variables and requires additional knowledge to output continu-
ous probabilistic trajectories.

Since the implementation of robot motion is always related
to temporal parameters, a dynamic system might be a better op-75

tion as introduced in DMP. Nevertheless, it must combine with
a separate canonical system and does not support probabilis-
tic trajectory prediction. Both recent cutting-edge movement-
primitive algorithms, i.e., KMP and iProMP are derived from
the basis function regression. The KMP approach seeks to use80

nonlinear mapping to model human-robot collaboration, which
may lose the crucial temporal information. Leveraging on the
filtering technique, the iProMP framework is able to retrieve
adapted trajectory given the human observations. However, the
framework always updates the whole trajectory, even the part85

that has already been implemented. This could be a disadvan-
tage if the next-step predicted robot state of the new trajectory
has significant drift compared with current robot state. Then,
the jerk motion of the robot is unavoidable. In addition, the se-
lection of the width of the basis function is also crucial, as it90

may cause overfitting problems.
Therefore, the challenges of coordinated human-robot col-

laboration can be summarised into three aspects. Firstly, the
human behaviour as well as corresponding robot trajectories
should be effectively captured and learned. Secondly, the robot95

system must present its dynamic functionalities both from spa-
tial and temporal aspects. More specially, human observation
should be considered in real-time, along with its uncertainties.
Thirdly, the developed framework of the coordinated human-

robot collaboration should have the ability to accommodate dif-100

ferent collaboration tasks to enhance the generalisation capabil-
ity.

Despite the large volume of excellent work, there are still
some open issues to address as presented in the qualitative com-
parison in Table 1. Consequently, we propose a novel proba-105

bilistic coordinated human-robot collaboration framework that
could retrieve novel adapted robot trajectory given human ob-
servation and its uncertainties. Therefore, we highlight our con-
tributions as follows:

1. Firstly, we propose a novel imitation learning approach110

based on differential Gaussian process that could encode
the human behaviour probabilistically;

2. Secondly, the dynamic hidden state-space model of human-
robot collaboration is introduced, along with the uncer-
tainty propagation based on the exact moment matching.115

The adapted trajectory for the robot can be obtained from
the conditional inference given the Gaussian approxima-
tion of two consecutive states;

3. Furthermore, multi-task recognition is discussed derived
from the binary Gaussian process classification to further120

improve the generalisation capability;
4. Finally, we conduct a comparison experiment and two

real-world applications to further verify the feasibility of
our proposed framework.

The remainder of this paper is organised as follows: af-125

ter the introduction, the coordinated human-robot collaboration
framework for a single task is detailed in Section 2; the multi-
task recognition is further studied in Section 3; Finally, the sim-
ulation comparison and real-world experiments with an ABB
YuMi robot and an Oculus VR are implemented in Section 4130

and the conclusion is drawn in the last section.

2. Coordinated Human-robot Collaboration Framework

In this section, the novel proposed collaboration framework
is introduced into three parts. First, a novel imitation learn-
ing method based on differential Gaussian process is detailed135

in Subsection 2.1. Then, the hidden state-space collaboration
model is addressed in Subsection 2.2. Finally, the conditional
inference with exact moment matching is given in Section 2.3.

2.1. Learning from Human Demonstration

The human demonstrations could be defined as the collec-
tion of the observation pairs {xi, yi} and differential observation
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Figure 1: The graphic explanation of the physical human-robot collaboration framework. The collaboration framework can be divided into three parts. Firstly,
both human and robot trajectories are learned from the demonstration in Subsection 2.1. Then the robot dynamic system state ξk+1 in the interaction model is only
dependant on the previous state ξk and the human observation πk as detailed in Subsection 2.2. Finally, the novel retrieved trajectory is obtained from the conditional
inference of the exact moment matching approximation in subsection 2.3.

pairs {xd
i , y

d
i }

D = {{xi, yi}
M
i=1, {x

d
i , y

d
i }

N
i=1}, (1)

where yi and xi are the observation and its timestamp, respec-140

tively. Similarly, yd
i and xd

i are denoted as the differential obser-
vation and its timestamp. M and N are the total number of the
observation pairs and differential observation pairs, correspond-
ingly. In this paper, i and j are defined as the index number of
the timestamp and observation variables.145

Consequently, the human demonstrations are encoded by a
nonparametric Gaussian process model and in this paper, we re-
fer to as Gaussian process movement primitives. Consequently,
we define a squared exponential covariance function as follows

kx = σ
2
0 exp(

1
2
||xi − x j||

2
λ) + σ

2
f δi j, (2)

with σ0 the vertical scale, λ the horizontal scale, and σ f the
noise variance. For further addressing the differential obser-
vations, the squared exponential covariance function should be
rewritten to include the differential kernel

kdx =
∂kx(xd

i , x j)

∂xd
i

(3)

kddx =
∂2kx(xd

i , x
d
j )

∂xd
i ∂x

d
j

. (4)

and hence the compact forms [30] could be given as

kdx = −kx(xd
i , x j)λ(xd

i − x j)

kddx = kx(xd
i , x

d
j )λ

− kx(xd
i , x

d
j )λ(xd

i − xd
j )(xd

i − xd
j )

Tλ.

In preparation for retrieving the position and velocity of a
novel trajectory, the conditional distribution given an enquiring
point x∗ is defined as

µ(x∗) = k∗(K + σ2
f I)−1y (5)

Σ(x∗) = k∗∗ − kT
∗ (K + σ2

f I)−1k∗. (6)

Accordingly the term y should include the differential observa-
tion defined as y = [{yi}

M
i=1, {y

d
i }

N
i=1]T . Consequently, the covari-

ance k∗∗ and cross-covariance k∗ are given as k∗∗ = kx(x∗, x∗)
and k∗ = [kx(x∗, xi)}Mi=1, {kdx(x∗, xd

i )}Mi=1]T , separately. The Gram
matrix K should also be rewritten regarding the additional dif-
ferential observations xd

i

K =

[
kx(xi, x j)

] [
kdx(xd

i , x j)
][

kdx(xi, xd
j )
] [

kddx(xd
i , x

d
j )
] .

Since the above novel covariance functions expressed in Equ. 3
and Equ. 4 are in closed-form, the prediction is still Gaussian.

2.2. State-space Interaction Model
In the following, we assume two retrieved trajectories are

derived from two different agents, respectively, such as two150

YuMi arms or a human operator and a robot manipulator. Con-
sequently, the two trajectories are encoded with Gaussian pro-
cess movement primitives denoted by {ξk} and {πk}, separately.

Without loss of generality, for an autonomous robotic sys-
tem, the system dynamic equation can be expressed as

ξk = f (ξk−1) + ω, (7)

where {ξk ∼ N(µk
ξ,Σ

k
ξ)} is the state variable and ω is the system

noise. Given the observation {πk}, which is simultaneously ob-
tained from another object, the task defined in this subsection
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is the inference of the hidden state variable ξk according to the
measurement system defined as

πk = h(ξk) + ν, (8)

with πk ∼ N(µk
π,Σ

k
π) and ν the noise of the measurement system.

We would like to point out that this inference is not exactly155

the same as filtering techniques, which the measurement sys-
tem observes the same object and usually has direct connection
with state variables. In our scenario, however, the observation
is obtained from a second agent and the mapping between the
two agents is established in Equ .8.160

Given the prior information of the previous step estimation
p(ξk−1|πk−1), the posterior distribution of the state parameter ξk
could be obtained according to the Bayesian theory

p(ξk |π1:k) =
p(πk |ξk)p(ξk |π1:k−1)

p(πk |π1:k−1)
, (9)

where the likelihood p(πk |ξk) is derived from the measurement
system in Equ. 8. The prior knowledge can be obtained from
the dynamic system as presented in Equ. 7

p(ξk |π1:k−1) =
∫

p(ξk |ξk−1)p(ξk−1|πk−1)dξk−1. (10)

However, the marginal likelihood p(πk |π1:k−1), which has the
following expression

p(πk |π1:k−1) =
∫

p(πk |ξk)p(ξk |π1:k−1)dξk, (11)

is in most interesting cases analytically intractable. This is be-
cause the propagation of a Gaussian distribution learned from
the human demonstrations is not a Gaussian after going through
a nonlinear function.

Although typical solution such as Monte Carlo sampling
can provide an exact result, it suffers from computational ex-
pense. In this paper, we apply an alternative analytical solu-
tion, so-called exact moment matching [31], which matches the
mean and the covariance of the true distribution and approxi-
mates this distribution as a normal distribution. Consequently,
the propagated mean of function f (ξk−1) with uncertainty input
ξk−1 ∼ N(µk−1

ξ ,Σ
k−1
ξ ) can be expressed as

m f (ξk−1) =
∫
µ(ξk−1)p(ξk−1)dξk−1

=

∫
µ(ξk)N(ξk |µk−1

ξ ,Σ
k−1
ξ )dξk−1 = α

T q, (12)

where α = (K + σ f I)−1y and q is defined as

q = σ2
f |Σ

k−1
ξ λ

−1 + I|−
1
2

exp(
1
2

(ξk−1 − µ
k−1
ξ )T (Σk−1

ξ + λ)
−1(ξk−1 − µ

k−1
ξ )).

The propagated variance given the uncertainty input ξk−1 could

be given as

σ f (ξk−1) =
∫

(Σk−1
ξ )2 p(ξk−1)dξk−1 − m2

f (ξk)

+

∫
(µk−1
ξ )2 p(ξk−1)dξk−1 (13)

= αT Qα + σ2
0 − tr((K + σ2

f )
−1Q) − m2

f (ξk),

where Qi j is given by

Qi j =
kx(xi, µ

k−1
ξ )kx(x j, µ

k−1
ξ )

|2Σk−1
ξ λ

−1 + I|
1
2

exp(zi j − µ
k−1
ξ )T (Σk−1

ξ +
1
2
λ)−1Σk−1

ξ λ)
−1(zi j − µ

k−1
ξ ), (14)

with zi j = (xi + x j)/2. Note that the Equ. 11 can be solved165

analytically by setting ξk−1 = ξk and f as h. Therefore, the
analytical expressions of p(ξk |π1:k−1) ∼ N(m f (ξk−1), σ f (ξk−1))
and p(πk |ξk) ∼ N(mh(ξk), σh(ξk)) are obtained.

2.3. Conditional Inference

According to the above analysis, the coordinated human-170

robot collaboration model including dynamic system and mea-
surement system, is nonparametric and relies on the data it-
self. Not akin to the inference in [16] or [17], the collaboration
model is explicit and also the uncertainties of the data (trajec-
tories and observations) are considered at every step propaga-175

tion. These issues could be addressed by assuming known or
tractable distributions propagated in predict-update-project cy-
cles.

Consequently, the posterior inference of the hidden state
variable ξk can be deduced by the conditional inference p(ξk |π1:k)
given a joint distribution

p(ξk, πk |π1:k−1) = p(ξk |πk)p(ξk |π1:k−1)

∼ N(
[
m f (ξk−1)
mh(ξk)

]
,

[
σ f (ξk−1) σ f h(ξk−1, ξk)
σh f (ξk, ξk−1) σh(ξk)

]
). (15)

The mean term m f (ξk−1) and mh(ξk) could be derived from ex-
act matching as detailed in the previous subsection respectively,180

along with the covariance σ f (ξk−1) and σh(ξk). In terms of ex-
act expression of cross-covariance σ f h(ξk, ξk−1), we omit it but
refer to the excellent work in [31].

Since we have all the expressions of the joint distribution
p(ξk, πk |π1:k−1), the posterior distribution of the hidden-state ξk
can be finally obtained by

p(ξk |π1:k) ∼ N(ξk |m
p
k , σ

p
k ), (16)

mp
k = m f + σ f hσ

−1
f (πk − mh), (17)

σ
p
k = σ f − σ f hσ

−1
f σ

T
f h. (18)

The graphic explanation of our proposed framework is con-
cluded in Fig. 1. We would like to point out that the proce-185

dure in Fig. 1 is an example of one coordinated human-robot
collaboration task.
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Figure 2: The graphic explanation of the multi-task physical human-robot collaboration framework. The framework detailed in Section 2 is a single task template.
Therefore, the recognition of multiple tasks is further developed in Section 3. Each task recognition model is trained with iteratively reweighted least squares.
Subsequently, given a new observation π∗k , every binary classification model outputs the probability η∗ of the prediction. The task label l∗ is corresponding to the
maximum probability among these predictions.

3. Multiple Tasks Recognition

The template of the coordinated human-robot collaboration
task has been detailed heretofore. However, a single collabora-190

tion model cannot always interpret all the tasks exactly. Sub-
sequently, it is not realistic to expect various tasks to own the
same temporal and spatial features. In this section, additional
feature such as multiple tasks recognition with Gaussian pro-
cess classification has been developed to enhance the generali-195

sation capability of our framework.

3.1. Multi-task Recognition
The multiple tasks recognition is developed based on Gaus-

sian process binary classification [32]. Thus, the task collection
model is defined as p(l|πk) = σ(lϕ(πk)), where σ(·) = sigm(·) is200

the logistic regression and li is the task label.
Basically, the tasks of each human-robot collaboration should

be collected regarding the coordinated framework introduced in
Section 2. The dataset for recognition, such as time-series hu-
man observation πk, must be collected initially. Then, the log
function of the unnormalised posterior distribution is given as
follows

L(ϕ(πk)) = log p(l|ϕ(πk)) + log p(ϕ(πk)|πk). (19)

The negative log function −L(ϕ) is hence optimised using iter-
atively reweighted least squares algorithm. More specifically,
the update of the task collection has the following form

ϕ(πk) = ϕ(πk) − H−1 g, (20)

with H = − ▽ ▽ log p(l|ϕ) + K−1 the Hessian expression of the
log likelihood, along with the gradient g = ▽p(l|ϕ) + K−1ϕ.
After convergence, the posterior is thus defined as

p(ϕ(πk)|πk, l) ∼ N(ϕ̂(πk),H−1). (21)

The multi-task recognition could be seen as the prediction
of the task collection model given the new human observation
π∗k. The mean of the prediction according to the Equ. 21 can be
defined as

E[ϕ(π∗k)|π∗k, πk, l] =
∫
E[ϕ(π∗k)|ϕ, π∗k, πk, l]p(ϕ|πk, l)dϕ

= kT
∗ K−1E[ϕ|πk, l] ≈ kT

∗ K−1ϕ̂. (22)

Similarly, the variance of the prediction can be computed using
the rule of iterated variance in Equ. 21

var[ϕ(π∗k)] ≈ k∗∗ − kT
∗ H−1k∗. (23)

Therefore, the distribution of the prediction given the observa-
tion π∗k is expressed as p(ϕ(π∗k)|π∗k, πk, l) ∼ N(E[ϕ(π∗k)], var[ϕ(π∗k)]).
Consequently, to identify the task label, this distribution η∗ for
binary response is finally defined as

η∗ = p(l∗|ϕk, ϕ
∗
k, l) ≈

∫
σ(ϕ∗k)p(ϕ(π∗k)|π∗k, πk, l)dϕ∗k. (24)

A graphic explanation of the multi-task framework is pre-
sented in Fig. 2. The training dataset is derived from the initial
data stream of the human observations of several different tasks.
This setting enables the robot to quickly recognise the task label205

and respond to the human requirement.

4. Evaluation

Three human-robot collaboration experiments are conducted
in this section. Firstly, the comparison between iProMP and our
proposed framework is analysed. Then two more real-world ap-210

plications, i.e., product brochure handover, and multiple tasks
recognition are further implemented in order to verify our pro-
posed framework.
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Figure 3: The comparison between iProMP and our proposed framework. (a), (b) the axis components of X and Y of letter “a” of the iProMP; (e), (f) the axis
components of X and Y of letter “a” of our framework; (c), (d) the axis components of X and Y of letter “b”. (g) the comparison result letter “a” of two frameworks;
(h) the observation letter “b”. In the comparison, handwritten letter “a” and “b” are referred as robot training trajectories and human movement primitives.

4.1. Comparison

In this experiment, two datasets of the handwritten letter215

“a” and “b” are used separately as robot trajectories and human
demonstrations. The capacity of each dataset is 40 trajectories.
The task is that when the letter “b” is being written, a new tra-
jectory which is the letter “a” should be written at the same time
according to the observation of letter “b”. This could be utilised220

in surface inspection process for Aerospace manufacturing en-
vironment.

Before implementing the experiment, two different demon-
stration letters are trained with the Gaussian process movement
primitives presented in Subsection 2.1. Then, the interaction225

model between two trajectories can be further established ac-
cording to Subsection 2.2. After the preparation, the implemen-
tation closely follows the conditional inference detailed in Sub-
section 2.3. The compared framework, iProMP [17] is a state-
of-the-art coordinated human-robot collaboration approach, which230

seeks to provide a probabilistic collaboration solution based on
Kalman filtering techniques.

The comparison result is given in Fig. 3. Since iProMP
responds to sparse observations (four observations in green),
the whole trajectories update four times as shown in Fig. 3 (a).235

This leads to unpredictable trajectory drift, such as the third
observation in Fig.3 (a) as presented in the black dashed circle.
In the real-world application, the robot cannot respond to this
observation at once due to the inertial properties. Thus, a jerk of
motion is sometimes unavoidable. Nevertheless, our framework240

performs a real-time updating manner given the same real-time
observation (not four observations, but the whole observation
dataset). More specifically, it only updates the next step state
variables as given in Fig. 3 (a) and (b). Besides, if further
compared, the drift in Fig. 3 (a) is much larger than ours in Fig.245

3 (e).
Fundamentally, the iProMP is derived from the linear basis

function, which is sometimes easily overfitting, as illustrated in
the red dashed circle in Fig. 3 (a) and Fig. 3 (b). Moreover,
the iProMP only deals with trajectories which are not dynamic250

systems. Thus, whenever human observation comes, the whole
trajectory must update, even the previous part. Compared with
iProMP, the main advantage of our framework is that it is not
only an imitation learning trajectory but also a nonparametric
hidden state-space dynamic system, which takes full account255

of the uncertainties propagation. Moreover, our framework is
based on Bayesian inference and essentially there is no data
fitting in it. Thus, it doesn’t suffer from overfitting issues.

4.2. Product Brochure Handover

The product brochure handover experiment aims to provide260

further explanation of our framework. The platform shown in
Fig. 6 consists of a YuMi collaboration robot, a set of Ocu-
lus Rift VR devices and a monitor. The VR devices include a
headset, two hand touches, and a switch and a controller. In
our experiment, the touches are used as a measurement device265

to collect the human observations. The real-time robot motion
can be observed from the screen.

Before implementing the experiment, both human and robot
trajectories should be collected at first. The human trajectories
are collected by using VR touch, which is basically an IMU de-270

vice. The robot trajectories are obtained with manually guiding
(lead through [33]). More specifically, the human demonstra-
tions collected from the VR touch are presented in light grey
lines in Fig. 5 (d), (e) and (f). The YuMi robot trajectories are
obtained by manual guidance are given in light grey in Fig. 5275

(a), (b) and (c). Then, the whole dynamic system and collabo-
ration model are learned given the details in Section 2.

After the experiment implementation, a sequence records of
the product brochure handover is presented in Fig. 4. The VR
touch which is utilised to collect the human motions is in the left280
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Figure 4: The sequence records of the product brochure handover. The human motion is record during the experiment, along with the movement of YuMi. The
human motion is obtained with VR touch in his left hand.
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Figure 5: The representation of the collaboration trajectories. (a), (b) and (c), the joint trajectories of the joint 3, joint 4 and joint 5 of the YuMi robot. (d), (e) and
(f), three axes trajectories of the human motion. (h), the whole trajectories of the human operator and YuMi robot presented in three-dimension coordinates.

VR devices

Figure 6: Experiment setting. The experimental platform includes a collabora-
tive robot YuMi, an Oculus Rift VR system and a monitor to check the robot’s
motion in real-time.

hand of the operator. Subsequently, when the operator walks to-
wards the YuMi, the robot hands over the product brochure to
the operator. The human as well as the YuMi trajectories are
shown in Fig. 5 in dark blue and dark red, respectively. More
specifically, the default learning time period is 2 seconds. How-285

ever, in the real-time implementation, the duration is nearly 3
seconds, as the human operator could not follow very precise
procedure. Therefore, the left six figures in Fig. 5 present the
trajectories of the joints and axes during the experiments. In
addition, this demonstrates the automatic time alignment intro-290

duced in our framework.
Compared with the simulation result presented in Fig. 3, the

trajectories in color given in Fig. 5 (a), (b), and (c) do not quite
match with the human demonstrations in gray. However, they

are still in the area that covered by the human demonstrations295

(if ignore the time scale). This is because even the human oper-
ators try their best to repeat the same tasks with same motions
again and again, there is still difference among each demon-
stration as shown in gray lines in Fig. 5. In addition, during the
real-time experiment, the VR touch does input certain amount300

of noise to the control system as illustrated in Fig. 5 (d), (e),
and (f). This is the reason that the human-robot collaboration
in this paper is established based on the dynamic hidden state-
space models. Also this is the reason that the uncertainty is
considered and propagated through the dynamic and measure-305

ment systems. With the uncertainty propagation, the proposed
framework is aware of the human intention and outputs the pre-
dicted robot trajectories and their confidential intervals, which
are the error bars as shown in Fig. 5.

4.3. Multi-task Experiment310

The multi-task functionality aims to improve the generali-
sation capability and allow the robot to quickly recognise the
operator’s intention from observations. More specifically, the
collaborative robot should automatically choose the correct task
from the task container and physically collaborate with a hu-315

man operator according to the multi-task recognition model. In
this subsection, the task container consists of three tasks here,
i.e., rivet handover, nutplate handover and sealing assistance.
According to the graphic explanation in Fig. 2, each task is
constructed under the coordinated human-robot collaboration320

framework as detailed in Section 2.
Besides the same experiment setting as the previous experi-

ment as presented in Fig. 6, the initial data stream of the human
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Pick nutplate

Hand over

Pick sealant gun
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Pick rivet
Hand over
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Figure 7: The experiments of the multi-task recognition. (a) and (d), nutplate handover; (b) and (e), sealing assistance; (c) and (f), rivet handover. Three experiments,
i.e., nutplate handover, sealing assistance and rivet handover are presented in the above figures. All the key actions during the collaboration, such as nutplate picking
and hand over are also listed in the figures.

(a) (b) (c)

Figure 8: Training result of the task collection model with binary Gaussian
process classification. (a) Training result of the nutplate handover. (b) Training
result of the sealing assistance. (c) Training result of the rivet handover.

observations for each task should be captured for training multi-
task recognition model at first. After the data collection, since325

the binary labels are used in Gaussian process classification,
three recognition models corresponding to each collaboration
task should be trained separately, as represented in Fig. 8.

Consequently, there are two regions of interest in each sub-
figure or recognition model. The region of interest in red shows330

a high probability, which means that for example, the data fallen
into the red region in Fig. 8 (a) is more likely to be the nutplate
handover task. Thus, the YuMi robot would pick the nutplate
and hand it over to the operator. On the contrary, the blue region
shows a lower probability result, which indicates that the oper-335

ator chooses a different task but not this task. We would like to
point out that the recognition models given in Fig. 8 (a), (b) and
(c), are two dimension instance for explanation purpose.

During the experiment, the operators select the task ran-
domly. However, in order to obtain a more statistical analy-340

sis, we conduct ten times testing for each task. The input is
still the human initial observations, i.e., three-dimension infor-
mation. The snapshot of three tasks and their trajectories are
given in Fig. 7, respectively. Moreover, the probabilities for the
three tasks inferred by the multitask recognition model are also345

recorded in the bar chart as shown Fig. 9.
In Fig. 9, the task labels at the bottom are the ground truth

of the human operator selections. For each task, the above
three columns indicate the probability information inferred by
the learning multitask recognition model. For instance, for the350

ten times testing of the first task, the recognition model outputs
the probability of at around about 0.7 of the first task, which
is approximately twice larger than the probabilities of second
and third tasks. The results indicate that the human operator
is more likely to choose the first task. Therefore, the YuMi355

robot should response accordingly to the operator and imple-
ment the first collaboration task. Similarly, the other two task
testings also show the correct probabilities at roughly 0.8. Evi-
dently, the learned results of maximum probabilities match with
the ground truth. Thus, the application of the feasibility of our360

multitask recognition model is verified.
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Figure 9: Experimental result of the multi-task recognition. The mean and
standard deviation derived from ten test for each task are presented above.
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5. Conclusions

This paper proposes a novel imitation learning framework
for coordinated human-robot collaboration derived from the hid-
den state-space models. After learning from the human demon-365

strations, given only the spatial information of the human obser-
vation, this framework can effectively provide a temporal and
spatial alignment solution for coordinated human-robot collab-
oration. Additional crucial function, i.e. multiple task recogni-
tion is also addressed in this paper to provide more flexibility.370

The proposed nonparametric framework responds to the hu-
man observation and its uncertainties based on the conditional
inference of the exact moment matching approximation. Based
on the hidden dynamic functionalities, both state variables and
their uncertainties are propagated through the framework. The375

simulation experiments not only compare the iProMP approach
and our proposed framework but also present the main advan-
tages and functionalities of our work. In addition, the product
brochure handover is conducted to further verify the real-world
application based on our framework. The multi-task experi-380

ment is implemented to demonstrate the recognition of the hu-
man intention corresponding to various task labels. Therefore,
the future work will be focused on the compliance physical in-
teraction and human-robot collaboration in Cartesian space.
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