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Tanycytes play multiple roles in hypothalamic functions, including sensing peripheral nutrients and 

metabolic hormones, regulating neurosecretion and mediating seasonal cycles of reproduction 

and metabolic physiology. This last function reflects the expression of TSH receptors in tanycytes, 

which detect photoperiod-regulated changes in TSH secretion from the neighbouring pars 

tuberalis. The present overall aim was to determine the signal transduction pathway by which TSH 

signals in tanycytes. Expression of the TSH receptor in tanycytes of 10-day-old Sprague Dawley rats 

was observed by in situ hybridisation. Primary ependymal cell cultures prepared from 10-day-old 

rats were found by immunohistochemistry to express vimentin but not GFAP and by PCR to 

express mRNA for Dio2, Gpr50, Darpp-32 and TSH receptors that are characteristic of tanycytes. 

Treatment of primary tanycyte/ependymal cultures with TSH (100 IU/l) increased cAMP as 

assessed by ELISA and induced a cAMP-independent increase in the phosphorylation of ERK1/2 as 

assessed by western blot analysis. Furthermore, TSH (100 IU/l) stimulated a 2.17-fold increase in 

Dio2 mRNA expression. We conclude that TSH signal transduction in cultured tanycytes signals via 

Gas to increase cAMP and via an alternative G protein to increase phosphorylation of ERK1/2.  

Introduction 

The interface between the third ventricle, hypothalamic neuropil and median eminence is 

composed of cuboidal ependymal cells and specialised ependymoglial cells called tanycytes. These 

cells have a distinct morphology. They interface with the cerebrospinal fluid in the ventricle and 

send a single process deep inside the neuropil of the hypothalamus towards the arcuate nucleus 

(ARC), the ventromedial nucleus (VMH) and the dorsomedial nucleus (DMH). Ventrally, tanycyte 

processes are localised in the median eminence, where they appose peptidergic terminals and 

portal capillaries (Rodriguez et al. 2005). Tanycytes sense biologically active hormones and 

metabolites from the ventricle and portal blood vessels, and they connect the ventricle and 

neighbouring pars tuberalis via networks of cisterna (Guerra et al. 2010, Frayling et al. 2011, 

Bolborea & Dale 2013, Balland et al. 2014). They express receptors and/or transport proteins for a 

wide variety of known and unknown biologically active compounds (Grahamet al. 2003, Rodriguez 

et al. 2005, Barrett et al. 2007, Coppola et al. 2007, Cottrell et al. 2009, Nilaweera et al. 2011, 

Shearer et al. 2012, Dardente et al. 2014). Notably, tanycytes express type 2 deiodinase (Dio2) at 

very high levels. Dio2 is an enzyme that converts the weakly active form of thyroid hormone L-

thyroxine (3,30,5,50-tetraiodo-L-thyronine (T4)) to the biologically active form triiodothyronine 

(T3) (3,5,30- triiodo-L-thyronine, or T3). This enzyme is important in diverse physiological 

responses, including fasting and non-thyroid illness caused by bacterial infections, and in both 



cases, tanycytic Dio2 expression and T3 production are increased (Klosen et al. 2002, Sanchez et 

al. 2010). The importance of tanycytes as a source of T3 is also evident in seasonal mammals: 

photoperiod-regulated T3 availability determines seasonal physiology and behaviour (Barrett et al. 

2007, Dardente et al. 2014). Expression of Dio2 is stimulated in tanycytes in a variety of situations, 

including starvation, which is caused by an unknown mechanism (Coppola et al. 2007), 

inflammatory conditions, which are caused by an NFkB-dependent signalling mechanism (de Vries 

et al. 2014, Wittmann et al. 2014), and long-day photoperiods, which are caused by thyroid 

stimulating hormone (TSH) of pars tuberalis origin (Hanon et al. 2008, Nakao et al. 2008, Ono et al. 

2008, Helfer et al. 2013, Herwig et al. 2013, Klosen et al. 2013). TSH receptors are highly localised 

within the ventral region of the ependyma lining the third ventricle, a region that is composed 

mainly of tanycytes (Ross et al. 2011, Herwig et al. 2013). I.c.v. administration of TSH elicits a 

robust increase in Dio2 expression in the ependymal wall (Helfer et al. 2013, Yoshimura 2013), and 

consequently increases local thyroid hormone availability. The activation of adenylate cyclase is a 

signal transduction pathway commonly associated with TSH receptor activation, but TSH receptors 

are known to couple with a diverse range of G proteins to activate several different pathways that 

potentially have multiple downstream consequences for responses to TSH (Laurent et al. 1987, 

Allgeier et al. 1994, Kursawe & Paschke 2007, Buch et al. 2008). Our objective was to determine 

the pathways by which TSH signals within the cells of the ependymal wall, because these may 

have further consequences for the function of tanycytes and their regulation of the surrounding 

hypothalamus. In the present study, we used dissociated primary hypothalamic ependymal cell 

cultures from 10-day-old rats to determine the intracellular signalling pathway utilised by the TSH 

receptor in these cells. 

 

Materials and methods 

Animals 

Sprague Dawley rats and their litters were kept under controlled light/dark cycle (12 h light:12 h 

darkness cycle) and constant temperature (20±2°C) and humidity (55±10%) in standard rat cages 

(type RC2/f). Food (CRM (P) rat and mouse breeder and grower, standard pelleted diet, Special 

Diet Services, Witham, Essex, UK) and water were provided ad libitum. We used 10-day-old 

neonates of both sexes. Experimental procedures were approved by the Rowett Institute Ethics 

Committee, and animals were euthanised under the Schedule 1 of the Animals (Scientific 

Procedures) Act of 1986 (UK). 

 



Primary cell culture 

Brains were collected and micro-dissected in ice-cold Dulbecco’s PBS solution (Sigma–Aldrich) 

using a binocular magnifying microscope. The preparation of primary cell cultures was achieved 

using the protocol previously described by Prevot et al. (2003) and others (McCarthy & de Vellis 

1980, Ma et al. 1994, de Serano et al. 2004). Briefly, after clearing the meninges and blood vessels, 

the median eminence and the floor of the third ventricle were micro-dissected. Micro-dissected 

tissues from a minimum of 20 rat pups were pooled in ice-cold DMEM (Sigma Aldrich), then 

centrifuged for 1 min at 1500 g, and the medium was exchanged for fresh DMEM. Explant tissue 

was then scraped through a 20 mm mesh over a Petri dish containing DMEM (Sefar, Lancashire, 

UK). The dissociated tissue was transferred to a centrifuge tube and spun for 5 min at 1500 g. The 

supernatant was discarded, and the resulting pellet was resuspended by trituration with a Pasteur 

pipette in 5 ml DMEM supplemented with 10% foetal bovine serum and antibiotic/antimycotics. 

The cell suspension was transferred to a 25 cm culture flask (Corning Costar, Loughborough, 

Leicestershire, UK or Sigma–Aldrich) with an additional 5 ml of supplemented medium. Cultures 

were incubated in a humid atmosphere of 5% CO2: 95% air at 37 °C. Once cells had adhered (after 

3–4 days), the medium was changed every 3–4 days until the cells were confluent. A similar 

procedure was used with tissue from the cortex to generate a control culture of cortical glia. 

 

Immunohistochemistry  

Immediately after removal, brains were immersed in a solution of 4% paraformaldehyde in 95 mM 

phosphate buffer (20 mM NaH2PO4, 75 mM Na2HPO4, pH 7.4) and fixed for 24 h with gentle 

agitation. The brains were cryoprotected by immersion in a gradient of 10, 20 and finally 30% 

sucrose in PBS. Fourteen micron sections were then cut on a cryostat and immunostained. Briefly, 

slides containing cut brain sections were rinsed with two washes in 1xPBS (137 mM NaCl, 2.7 mM 

KCl, 10 mM Na2HPO4, 2 mM KH2PO4, pH 7.4) and a final wash in 1xPBS + 0.3% Triton X-100 (Sigma–

Aldrich) to facilitate cell permeability. This was followed by a 60 min incubation in a blocking 

buffer that contained 1xPBS + 0.3% Triton X-100 + 5% BSA (Sigma– Aldrich). The primary 

antibodies were incubated overnight at 4 °C: vimentin (Clone V9, Sigma–Aldrich; dilution 1:1000) 

and GFAP (ab4674, Abcam; dilution 1:1000). The following day, slides were washed in 1xPBS and 

then incubated with the secondary antibodies, respectively raised against the appropriate species 

and coupled to fluorescein (Vector Labs, Peterborough, Cambridgeshire, UK) at 1:1000 or 

Northern Lights637 (R&D Systems, Abingdon, Oxford, UK) at 1:2000 dilutions. 

 



In situ hybridisation 

Brains were extracted in the same manner as they were for cell cultures and 

immunohistochemistry but rapidly frozen on dry ice. In situ hybridisation was performed on 14 

mm frozen sections of 10-day-old rat brain sections as described previously (Shearer et al. 2012). 

We used a 35S-labelled anti-sense riboprobe for the TSH receptor as described previously (Herwig 

et al. 2013). Following hybridisation, sections were apposed to film for 7 days. 

 

cAMP assay 

After cells reached confluence in the original flask, cultures were plated at a cell density of 100 

000 cells/well in a 24-well plate. After a 48 h recovery period, followed by overnight serum 

deprivation (16 h), cells were rinsed with DMEM three times. Cells were then immediately treated 

with the appropriate conditions – DMEM only for controls, DMEM containing bovine TSH at 1, 10 

and 100 IU/l or forskolin at 10 mM for 60 min – before the media was removed for the cAMP 

assay. A colorimetric ELISA (Arbor Assay, Ann Arbor, MI, USA) was used to detect egressed cAMP 

levels. The optical density was measured on a plate reader at 450 nm. Adenylate cyclase activation 

by TSH was performed in triplicate and in two independent experiments. 

 

MAPK assay 

Primary tanycyte cell cultures were plated in a 60 mm petri dish at a density of 300 000 cells/dish 

and left to adhere and divide for 48 h. The cell cultures were then serum deprived for 16 h 

(overnight). The following morning, cells were rinsed three times with DMEM at 37 8C. Cells were 

then incubated for 5 min at 37 °C with DMEM only, bovine TSH in DMEM (1, 10 and 100 IU/l) or 

forskolin (10 mM). Where cells were pretreated with cholera toxin (Sigma–Aldrich) to inactivate 

adenylate cyclase, the toxin was added to the DMEM during the overnight serum deprivation at 

200 ng/ml. Each treatment was performed in duplicate or triplicate, and the assay was performed 

twice. After a 5 min treatment, the dishes were immediately placed on ice, the medium was 

removed and the cells were washed twice with an ice-cold10mM HEPESC 150mM NaCl (HN) 

solution. Cells were scraped off with 100 l HN solution and immediately transferred to a 

microfuge tube with 100 ml of 2x Laemmli gel loading buffer (4% SDS, 20% glycerol, 0.125M Tris–

HCl, pH 6.8, 10% mercaptoethanol). The cells were then sonicated for 6x10 s bursts at a 5 micron 

amplitude setting (MSE Soniprep 150; MSE, London, UK) to disrupt cell structure and shear DNA. 

This was followed by 5 min at 95–100°C to denature the proteins. Twenty microliters lysate was 

loaded onto a 7x8cm 10% SDS polyacrylamide gel and electrophoresed at 150 V for 2–3 h to 



separate the protein components by molecular mass. Proteins were transferred to a PVDF 

membrane (Bio-Rad Laboratories, Hemel Hempstead, Hertfordshire, UK) using a wet transfer 

apparatus (Bio-Rad Laboratories). Protein detection was accomplished using a standard western 

blot protocol. Briefly, membranes were blocked with 5% non-fat dry milk with 0.1% Tween-20 in 

1xTBS (20 mM Tris–HCl, 137mM NaCl, pH7.6). Antibodies were incubated overnight at 4 8C in 

1xTBS containing 5% BSA with 0.1% Tween-20. The antibodies used were anti-phospho-ERK1/2 

(New England Biolabs, Hitchin, Hertfordshire, UK; 1:1000 dilution), an anti-ERK1/2 (New England 

Biolabs; 1:1000 dilution) and an anti-vimentin (Sigma–Aldrich; 1:5000 dilution). Following washes 

in 1xTBS with 0.1% Tween- 20, an appropriate secondary antibody at a 1:2000 dilution that was 

linked to HRP (New England Biolabs) was used the next day on the PVDF membrane for 1 h. 

Proteins were visualised by chemiluminescence using a Pierce Supersignal West 

Picochemiluminescent substrate (Scientific Laboratory Supplies, East Riding, Yorkshire, UK). 

 

RT-PCR and qRT-PCR 

Brain explants were dissected as described in the previous section for primary cell cultures. Total 

RNA was extracted from brain tissue or primary cell cultures using a QIA shredder (Qiagen) and an 

RNeasy Mini Kit (Qiagen) on columns and with a DNAse 1 (Promega) treatment. Yield and purity of 

the RNA was quantified with a Nanodrop ND-1000 spectrophotometer (Thermo Scientific, 

Wilmington, MA, USA) and Bioanalyzer 2100 (Agilent Technologies, Cheadle, Cheshire, UK). One 

microgram of total RNA was reverse transcribed using Superscript II (Invitrogen). Partial sequences 

of Dio2, TSHr, Gpr50, Vimentin, Darpp32, G3pdh and TSHb were then amplified from the brain 

explants cDNA templates using a HotStart GoTaq kit (Promega, Southampton, Hampshire, UK) and 

following primers based on rat and mouse sequences in the Genbank database (f, forward primer; 

r, reverse primer): Dio2 (NM_031720)-f: CTCTTCCTGGCGCTCTATGACTCG, Dio2-r: 

TCCTCTTGGTTCCGGTGCTT (494 bp); TSHr (NM_012888)-f: TCCAGGG MCTATGCAATGAAC, TSHr-r: 

CAGCCCGAGTGAGGTGGAGGA (312 bp); Gpr50 (NM_001191915)-f: AAGCTCCGAAATTCTGGCAACA, 

Gpr50-r: ATGAGAGGGAGG ACGAAGTGGATG, (434 bp); Vimentin (NM_031140)-f: 

AGAACACCCGCACCAACGAGAAGG, Vimentin-r: ACGC AGGGCAGCRGTGAGGTC (521 bp); Darpp32 

(NM_138521)-f: CTTCGGGAGCTKGGGTAYC, Darpp32-r: AGGGAAAGGCATTGGGGACTCTG (461 bp); 

G3pdh (AF106860)-f: ACCACAGTCCATGCCATCAC, Darpp32-r: TCCACCACCCTGTTGCTGTA (451 bp); 

TSH (NM_013116)-f: CCGAAGGGTATAAAATGAACAGAG, TSHb-r: ACCAGATTGCATTGCCATTACAGT 

(505 bp). The cycling conditions used were 60 8C for the annealing temperature for Dio2, 

Vimentin, Darpp32, G3pdh and TSHb and 58 8Cfor Gpr50 and TSHr for 40 cycles. The resulting PCR 



amplification products were separated through 2.0% (w/v) agarose gels (Melford Laboratories, 

Ipswich, Suffolk, UK) and stained with SYBRSafe DNA gel stain (Invitrogen, Life Technologies, 

Paisley, Renfrewshire, UK). To control for the product size, the samples were compared to a 100 

bp size marker (Hyperladder IV, Bioline, London, UK). For quantitative real-time PCR (qPCR) 

analysis, primary cultured cells were plated in 60mm petri dishes at a density of 300 000 cells/dish. 

Forty-eight hours later, cells were serum starved overnight and then treated either with DMEM or 

DMEM containing bovine TSH (100 IU/l) for 7 h at 37 °C. Total RNA was extracted and reverse 

transcribed as described in the previous paragraph. Five nanograms of cDNA were used as 

template in the qPCR using a QuantiFast SYBRGree PCR kit (Qiagen, Venlo, The Netherlands) on a 

Thermal Cycler 7500 Fast RealTime PCR System (Applied Biosystems, Life Technologies). We used 

Qiagen-validated primers for b-Actin (Quanti Tect Primer Assay, Rn_Actb_1_SG) and Dio2 

(Rn_Dio2_2_SG). Each PCR procedure included a negative control reaction without template, and 

each sample was run in triplicate with the experiment being performed twice. The reaction 

conditions were as follows: amplification for 5 min at 95 °C, 40 cycle of 10 s at 95 °C, 30 s a 60 °C 

and dissociation curve analysis for 15 s at 95 °C, 1 min at 60 °C and 15 s at 95 °C. The b-actin 

housekeeping gene was used as a reference for the relative quantification of Dio2 calculated 

based on the 2KDCT method. 

 

Results 

 

Expression of the TSH receptor in 10-day-old rat hypothalamus 

In situ hybridisation confirmed that TSH receptor expression in the 10-day-old rat brains was 

localised in the hypothalamus exclusively to the ependymal cell layer lining the wall of the third 

ventricle (Fig. 1A and A’). 

 

Primary tanycyte cultures 

Immunocytochemical staining of the 10-day-old rat brain hypothalamic sections with anti-

vimentin antibody showed that this type 3 intermediate filament was localised to cell soma in the 

ependymal wall and to processes that extended into the surrounding neuropil (Fig. 1B). Similarly, 

staining with an anti-GFAP antibody was observed in tanycytes cells of the sub-ependymal regions 

with a morphological appearance characteristic of astrocytes (Fig. 1Carrowheads). In primary cell 

cultures derived from the micro-dissected ependymal wall, all of the cells were found to express 

vimentin (Fig. 2A), whereas only a few cells were GFAP positive (Fig. 2B and C), which represented 



either a small number of astrocytes having been carried over or a majority of tanycytes in culture 

having lost expression of GFAP. In comparison, cultures derived from the brain cortex extensively 

expressed both vimentin and GFAPmarkers (Fig.2D,E and F). Interestingly, we observed that 

tanycyte cultures often had a greater cell density in contrast to cortical cell cultures, and this 

might be linked to the stem cell potential of tanycytes (Bolborea & Dale 2013). Primary cell 

cultures were assessed and compared to tissue explants for the expression of genes known to be 

mostly localised to tanycytes: Dio2, Gpr50, Vimentin, Darpp-32 and the TSH receptor (Fig. 3). 

Transcripts for all of these genes were detected in both primary cell cultures and explants. To 

eliminate possible contamination by cells from the neighbouring pars tuberalis during the isolation 

procedure, PCR amplification with primers for TSH was performed (Fig. 3), but no amplicons 

were detected for the hypothalamic explants or for the tanycytes cultures. However, as expected, 

TSH was amplified from the rat pars distalis explants (Fig. 3). 

 

TSHR cell signalling pathway activated in tanycyte cultures 

The primary signal transduction pathway for TSH receptor is activation of adenylate cyclase via a 

Gs G protein-coupled receptor (Allgeier et al. 1994, Laugwitz et al. 1996, Calebiro et al. 2010). 

When primary cell cultures were treated with TSH 1, 10 and 100 IU/l for 1 h, cAMP levels 

increased in a dose-dependent manner from an unstimulated value of 2.57±0.07 – 2.92± 0.08 

pmol/ml at 1 IU/l (ANOVA, post-hoc Tukey’s, not significant), 3.59±0.07 pmol/ml at 10 IU/l 

(ANOVA, posthoc Tukey’s, P<0.05) and 4.12±0.24 pmol/ml at 100 IU/l (ANOVA, post-hoc Tukey’s, 

P!0.05). This was a modest rise as compared to the maximal stimulation of cAMP levels that was 

reached by activating the adenylate cyclase with 10 mM forskolin (15.60±0.33 pmol/ml; ANOVA, 

post-hoc Tukey’s, P<0.05; Fig. 4). Alternative G protein coupling was investigated using 

phosphorylation of ERK1/2 as a marker of receptor coupling to other G proteins. Primary cell 

cultures were treated with forskolin (10 mM) or TSH (100 IU/l) for 5 min (Fig. 5A). In comparison 

to the control, forskolin had no effect, but TSH increased phosphorylation of ERK1/2 (p42/44, Fig. 

5A). Phosphorylation of ERK1/2 also occurred in primary cell cultures that had been pretreated 

with cholera toxin for 16 h to eliminate coupling to Gas protein (Fig. 5B). TSH stimulates Dio2 in 

primary cell cultures Primary cell cultures treated for 7 h with 100 IU/l TSH resulted in a significant 

2.17-fold increase in Dio2 mRNA expression as compared to the unstimulated control (t-test, 

P<0.001; Fig. 6). 

 



Discussion 

The present study demonstrates that TSH receptors localised on ependymal cells of the 

hypothalamus transduce the signal of hormone binding via both activation of adenylate cyclase 

and phosphorylation of ERK1/2. Furthermore, activation of the TSH receptor leads to an increase 

in Dio2 mRNA expression. To investigate the signal transduction mechanism of the TSH receptor in 

the hypothalamic ependymal layer, we chose to utilise primary cell cultures of these cells from 10-

day-old rat brains, as described by Prevot et al. (2003). First, as found in other species, TSH 

receptor mRNA expression was confirmed by in situ hybridisation in the hypothalamus of 10-day-

old rats, confined to the cells adjacent to the third ventricle (Hanon et al. 2008, Nakao et al. 2008, 

Ono et al. 2008, Ross et al. 2011, Herwig et al. 2013). Using primary ependymal layer cell cultures 

prepared from 10-day-old rats, we investigated the signal transduction mechanism used by TSH 

receptors to transduce hormone binding in these cells. The cultures showed characteristics of 

tanycyte cells with the expression of mRNAs that are mostly restricted to tanycytes of the third 

ventricle, such as Gpr50, Darpp-32, Dio2 and TSHr (Ma et al. 1994, Barrett et al. 2006, Herwig et al. 

2013), immunoreactivity for vimentin and no expression of TSH mRNA (ruling out contamination 

of cells from the neighbouring pars tuberalis). Stimulation of the tanycyte primary cell cultures 

with TSH produced a dose-dependent increase in secreted cAMP levels. The functionality of the 

TSH receptor signalling was also evident, with a 2.17-fold increase in expression of Dio2 mRNA 

after treatment with TSH. The TSH receptor has been shown to couple with up to ten different G 

proteins representing members of all four families of G proteins (Gi, Gs, Gq/11 and G12/13), thereby 

activating adenylate cyclase, phophoslipase C and ERK1/2 (Laurent et al. 1987, Allgeier et al. 1994, 

Kursawe & Paschke 2007, Buch et al. 2008). However, the functional significance of this potential 

promiscuity of G protein coupling is not understood, and the outcome of TSH receptor activation 

is likely to be dependent on the cell type expressing the receptor and the repertoire of available G 

proteins. In our primary cell cultures, we show that TSH was able to stimulate adenylate cyclase, 

but it was also able to stimulate phosphorylation of ERK1/2. ERK1/2 is a common downstream 

effector of seven transmembrane domain receptors coupled to a range of G protein subtypes. 

ERK1/2 phosphorylation can occur via a pathway that involves a cascade from activation of protein 

kinase C leading to activation of Raf, which further activates mitogen-activated protein kinase to 

phosphorylating ERK1/2 via G proteins other than Gs [reviewed Gutkind (2000) and Werry et al. 

(2005)). However, adenylate cyclase activation by Gs can also lead to ERK1/2 activation via both a 

protein kinase A-dependent and a protein kinase A-independent mechanism. In our primary cell 



cultures, forskolin robustly activated adenylate cyclase, but this did not increase phosphorylation 

of ERK1/2, which suggests that the TSH receptor in our primary cell cultures was coupled to a Gs 

protein for the generation of cAMP but also to another G protein to facilitate increased 

phosphorylation of ERK1/2. The relevance of a bifurcation of TSH receptor signalling in tanycytes is 

unknown. Furthermore, whether all tanycytes have a dual signalling pathway or whether there 

may be regionalisation in this capacity based on tanycyte subtype distribution in the third ventricle 

(Rodriguez et al. 2005) are intriguing questions because of the regionalisation of neuronal stem 

cell activity in response to the stimulus for proliferation (Bolborea & Dale 2013). TSH has been 

identified as the messenger from the pars tuberalis to act on ependymal tanycytes; it has been 

shown to increase CREB phosphorylation, Dio2 mRNA expression and local T3 production in 

seasonal mammals and birds and in non-seasonal mice (Hanon et al. 2008, Nakao et al. 2008, Ono 

et al. 2008, Unifried et al. 2009, Helfer et al. 2013). Although Sprague Dawley rats are not known 

to respond to photoperiods with altered physiology or behaviour, the potential for signalling of 

TSH secreted from the pars tuberalis is present in this rat strain with the presence of a functional 

TSH receptor located in the ventricular ependymal layer. However, the applicability of the present 

findings may be more generic rather than merely applicable to mammals that are normally 

associated with seasons, as most laboratory strains of rats have the potential to respond to 

photoperiods with physiological changes following olfactory bulbectomy (Nelson & Zucker 1981) 

or after manipulation of testosteronenegative feedback (Wallen et al. 1987). Moreover, the F344 

rat strain does show physiological responses to photoperiods in terms of food intake and body 

weight (Ross et al. 2011) and increases in Dio2 expression in the ependymal layer following i.c.v. 

administration of TSH (Helfer et al. 2013). Furthermore, melatonin-proficient mice exposed to 

long-day photoperiods exhibit an appropriate response of TSH up-regulation in the pars tuberalis 

and Dio2 expression in the ependymal layer. I.c.v. infusion of TSH into mice also increases CREB 

phosphorylation and Dio2 expression in the ependymal cell layer, which supports the view that 

TSH secreted from the pars tuberalis acts in a paracrine manner to regulate gene expression in 

tanycytes (Ono et al. 2008, Unfried et al. 2009). Consequently, TSH signalling regulated by 

photoperiod or other mechanisms may play a hitherto generic, but unknown, role in hypothalamic 

functions. Thus, even in laboratory animals that are generally considered to be non-photoperiodic, 

an evolutionarily ancient mechanism (Hanon et al. 2008) may be revealed whereby TSH 

determines the ability of tanycytes to regulate deiodinase activity and, hence, local thyroid 

hormone availability. This mechanism appears to be integral to the seasonal regulation of 

hypothalamic function (Bolborea & Dale 2013, Dardente et al. 2014), but it might also serve as a 



convergence point for other inputs. For example, food restriction also increases Dio2 expression in 

rats (Diano et al. 1998) and in hamsters housed in short days (Herwig et al. 2009), but it remains to 

be determined whether this is also a TSH-driven process. 

 

In summary, we demonstrated that in ependymal cell cultures, TSH leads to an increase in cAMP 

and Dio2 expression. Furthermore, we showed that TSH has the ability to activate an alternative 

signal transduction pathway through a cAMP-independent mechanism. This pathway merits 

further investigation, because it may be relevant in other unknown aspects of ependymal cell 

physiology that affect hypothalamic–neuroendocrine communication. 
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Figure 1 

Localisation of TSH receptors, vimentin and GFAP at the interface of the ependymal layer and 

neuropil of 10-day-old rats. (A) In situ hybridisation for TSH receptors on a brain section of a 10-

old-rat shows a high level of expression in the ventral region of the rat hypothalamus originating 

from cells that constitute mainly tanycytes (arrowheads). (A’) Enlarged region over the area of the 

hypothalamus and third ventricle. (B and C) Immunohistochemistry for vimentin (B) and GFAP (C) 

on formaldehydefixed tissue at a ventral location of the hypothalamus in the region of the arcuate 

nucleus. (D) Merged image showing colocalisation of vimentin and GFAP; 3V, third ventricle, white 

arrowheads, GFAP (green) immunohistochemical staining indicative of astrocytes. (B, C and D) 

Micrographs taken at 40x magnification. 

 



 

 

Figure 2 

Immunocytochemical comparison of vimentin and GFAP on ependymal and cortical primary cell 

cultures. Vimentin immunocytochemistry on primary ependymal cell cultures (A) or primary 

cortical cultures (D). GFAP immunocytochemistry on primary ependymal cell cultures (B) or 

primary cortical cultures (E). Merged images of vimentin and GFAP and DAPI staining on primary 

ependymal cells (C) and cortical primary cell cultures (F). Scale: 25 mm. 

 

 

 

 

 

 

Figure 3 

Expression of tanycyte markers in primary ependymal cell cultures. (A) PCR amplification using 

cDNA reverse transcribed from RNA isolated from either hypothalamic tissue (E) or primary cell 

cultures (T) of type 2 deiodinase (Dio2), TSH receptor (TSHr), orphan G protein-coupled receptor 



Gpr50 (Gpr50), vimentin and dopamine- and cAMP-regulated neuronal phosphoprotein (Darpp-

32). Glyceraldehyde-3-phosphate dehydrogenase (G3pdh) was used as a housekeeping gene. (B) 

PCR amplification using cDNA reverse transcribed from RNA isolated from either hypothalamic 

tissue (Ex) or primary cell cultures (Tan) for the subunit of TSH (TSH) to test for contamination 

of tissue or cultures from cells of the pars tuberalis. RNA isolated from the pars distalis (PD) was 

used as a positive control. 

 

 



 

 

Figure 4 

TSH increases cAMP production and regression from primary cell cultures. Primary cell cultures 

were serum deprived for 16 h before treatment with 1, 10 and 100 IU/l or 10 mM forskolin for 1 h. 

cAMP was determined in the cell culture media of treatments performed in triplicate, and shown 

is one representative of two independent experiments. ANOVA followed by post-hoc Tukey’s. NS, 

not significant, ***P<0.05. 

 

 

 

 

Figure 5 

Stimulation of ERK1/2 phosphorylation by TSH in primary cell cultures. (A) 100 IU/l TSH increased 

ERK1/2 phosphorylation, whereas forsoklin had little or no activity. (B) TSH 100 IU/l stimulated 

ERK1/2 phosphorylation in cholera toxin (CTX)-pretreated cells, which together with the absence 

of stimulatory activity by forskolin indicates that TSH stimulates ERK1/2 phosphorylation by a Gas-

independent mechanism. Shown is one representative experiment of two independent 

experiments for each assay with treatments in duplicate or triplicate.



 

 

Figure 6 

Quantitation of Dio2 mRNA expression by PCR in TSH-stimulated primary cell cultures. Treatment 

of primary cell cultures with 100 IU/l TSH stimulated a 2.17-fold increase in Dio2 mRNA 

expression. Treatments were performed in triplicate in two independent experiments. t-test: 

***P<0.01. 

 

 


