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Triglycerides (TG) are one of the most common excipients used in oral lipid-based formulations. The
chain length of the TG plays an important role in the oral bioavailability of the co-administered drug.
Fatty acid (FA) chain-length specificity of porcine pancreatic lipase was studied by means of an in vitro
lipolysis model under bio-relevant conditions at pH 6.80. In order to determine the total extent of
lipolysis, back-titration experiments at pH 11.50 were performed. Results suggest that there is a specific
chain length range (C2–C8) for which pancreatic lipase shows higher activity. This specificity could result
from a combination of physicochemical properties of TGs, 2-monoglycerides (2-MGs) and FAs, namely
the droplet size of the TGs, the solubility of 2-MGs within mixed micelles, and the relative stability of
the FAs as leaving groups in the hydrolysis reaction. During experimentation, it was evident that an
optimisation of lipolysis conditions was needed for tighter control over pH levels so as to better mimic
in vivo conditions. 1 M NaOH, 3.5 mL/min maximum dosing rate, and 3 lL/min minimum dosing rate
were the optimised set of conditions that allowed better pH control, as well as the differentiation of
the lipolysis of different lipid loads.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Since the advent of high throughput techniques and develop-
ment of combinatorial chemistry in the early 1990s, the number
of potential drug candidates has significantly increased [1].
Physical properties of the new chemical entities have changed
towards higher molecular weight, higher melting point, increased
H-bonding capacity, and increased lipophilicity, leading to poorer
solubility in aqueous media [2]. Indeed, it was estimated that in
2005 40% of the top 200 oral marketed oral drugs were poorly
water-soluble [3]. Latterly in 2007, it was reported that up to
70% of the new active molecules in the development pipeline
exhibited poor aqueous solubility [4]. Since low aqueous solubility
can be associated with poor absorption and hence poor bioavail-
ability, it is clear that one of the main challenges for pharmaceuti-
cal scientists is finding novel formulations capable of improving
the intraluminal solubility of poorly soluble drugs.

The co-administration of hydrophobic drugs with dietary or
formulation lipids in many cases results in improved oral bioavail-
ability. Different proposed mechanisms by which lipidic
formulations increase oral bioavailability include the following:
(a) promoting drug solubilisation in the gastrointestinal tract, by
providing lipidic components that increase the inherent solubilisa-
tion capacity of the intestinal fluids [5], (b) delaying gastric empty-
ing and transit time [6], (c) increasing apparent drug permeability
through inhibition of efflux transporters such as P-glycoprotein
[7,8], (d) changing the membrane fluidity of enterocytes [9], and
(e) reducing hepatic first-pass metabolism if lymphatic transport
is involved [10].

Recently, there has been a growing interest in oral lipid-based
drug delivery systems (LBDDSs) as a formulation strategy for
efficient delivery of poorly water-soluble compounds [11,12–14].
Marketed formulations such as Marinol� (dronabinol) [15],
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Neoral� (cyclosporine A) [16], Rocaltrol� (calcitriol) [17],
Agenerase� (amprenavir) [18] and Accutane� (isotretinoin), have
demonstrated that LBDDSs are an accepted and successful
commercially viable formulation strategy for sparingly soluble
compounds.

In vitro lipolysis is capable of mimicking the intestinal lipid
digestion process, and therefore is a suitable method to trace the
fate of drugs delivered by means of LBDDSs. The in vitro lipolysis
model (extensively reviewed elsewhere [19–21]) has been
previously developed and utilised by different research groups
(including the University of Copenhagen [22,23], Monash
University [24], Gattefossé [25] and The Hebrew University of
Jerusalem [26]). Although the concept and fundamental principles
of the model are similar between groups, experimental conditions
and parameters vary among them. In this regard, the Lipid
Formulation Classification System Consortium has published a
number of studies aimed to reduce the variability in the experi-
mental approach between different groups [7,27,28]. Briefly, the
protocol for in vitro lipolysis consists of the dispersion of the
LBDDS in the experimental medium consisting of simulated
intestinal fluids. The addition of pancreatic lipase to the medium
initiates the lipolysis process. The digestive enzyme hydrolyses
triglycerides (TGs) in the formulation, releasing fatty acids (FAs)
and inducing a drop in pH. In order to keep the pH at a constant
value throughout the experiment (to mimic in vivo conditions), a
pH-stat titrator is used. The instrument continuously measures
and controls this transient drop in pH by equimolar titration of
NaOH. The University of Copenhagen has used a slightly different
approach, a dynamic in vitro lipolysis model, in which the rate of
hydrolysis is controlled by continuous addition of calcium chloride
[22,23]. Once the process is finished (or deliberately stopped by
addition of an inhibitor), the resulting solution is ultracentrifuged
and separated into three distinct layers: (i) an upper undigested
lipid phase, (ii) a middle aqueous phase, containing colloidal
structures within which poorly-water soluble drug molecules are
solubilised, and (iii) a lower sediment phase, comprising FAs
calcium soaps. It is assumed that drug molecules solubilised in
the aqueous micellar phase are most readily available for absorp-
tion. After density-gradient separation, each phase is analysed for
drug content. Finally, the percentage of drug dose solubilised in
the aqueous phase in vitro is then compared with the in vivo
pharmacokinetic data obtained following oral administration (to
an animal or a human) of the LBDDS.

TGs are the main constituents of dietary lipids [29] and one of
the most common excipients used in LBDDSs [12]. TG-based drug
delivery systems, which belong to Type I formulations according
to Lipid Formulation Classification System [30], are the most basic
LBDDSs since they include neither surfactants nor co-solvents. The
FA chain length of the TG in the formulation is an important factor
in the oral bioavailability of the co-administered poorly
water-soluble drug [31]. In general, following absorption into the
enterocyte, lipolysis products derived from short-chain TGs
(SCTs, <C6) and medium-chain TGs (MCTs, C6–C12) diffuse across
the cell gaining access to the portal vein. However, FAs and MGs
derived from long-chain triglycerides (LCTs, >C12) are
re-esterified, incorporated into chylomicrons, and enter the lym-
phatic system, bypassing the hepatic first-pass metabolism [32].
SCTs are known to induce tight junction permeability changes
[33], while the micellar solubilisation capacity of MCTs and LCTs
has been proven to be higher than that of SCTs [26,34]. Although
the assessment of the performance of TGs with different chain
lengths has been carried out before, these studies have only
focused on the end result, i.e. drug solubilisation across lipolysis
phases [7,24,26,35–37]. Limited attention has been drawn to the
causes for substrate specificity of the pancreatic lipase [38,39]. A
better knowledge of the lipolysis process itself, and the factors
governing lipase activity, would help to rationalise the perfor-
mance of LBDDSs and eventually aid in the development of opti-
mised lipidic formulations.

Accordingly, the first objective of this study was to gain a dee-
per understanding of the mechanism behind pancreatic lipase
activity, by evaluating the in vitro lipolysis of equimolar amounts
of TGs with different chain lengths.

Because different pH–time profiles were observed during the
lipolysis of TGs with different chain lengths, it was evident that
an optimisation of lipolysis conditions was needed for tighter con-
trol over pH levels so as to better mimic in vivo conditions.
Therefore, the second aim of the study was to find an optimised
set of conditions (in terms of titrant concentration and maximum
and minimum titrant addition rates) capable of maintaining the
pH environment within the physiological range (6.75–6.85) during
the hydrolysis of TGs with different carbon chain lengths. The
hydrolysis of different volumes of oil was also evaluated to assess
a variety of possible scenarios in the intestine, from the ingestion
of an oil-containing capsule in fasting conditions to the consump-
tion of a high-fat meal.

2. Materials and methods

2.1. Materials

Sodium hydroxide solutions (NaOH, 0.5 M and 1 M), Trizma�

maleate, sodium taurocholate hydrate (98% w/w), L-a-lecithin
(�60% pure L-a-phosphatidylcholine, from egg yolk), pancreatin
powder from porcine pancreas (8 � United States Pharmacopeia
specifications activity), glyceryl triacetate (P99.9%), glyceryl trioc-
tanoate (P99%), and peanut oil were all purchased from Sigma–
Aldrich (Dorset, UK). Sodium chloride (99.5% w/w) was a product
from Fisher Scientific (Leicester, UK). Calcium chloride anhydrous
(93% w/w), and glyceryl tributyrate (98%) were purchased from
Alfa Aesar (Heysham, UK). Glyceryl tridecanoate (P98%) was
obtained from TCI (Tokyo, Japan). The standard buffer solutions
(pH 4, 7, 10 and 12), utilised for calibration of the pH-electrode,
were purchased from YSI Incorporated (Ohio, USA) and Hanna
Instruments (Rhode Island, USA). Water was obtained from a
Purelab Ultra Genetic purification system (Elga LabWater, Illinois,
USA).

2.2. Lipidic formulations

Glyceryl triacetate (tri-C2) and glyceryl tributyrate (tri-C4)
served as model molecules for SCTs (<C6). Glyceryl trioctanoate
(tri-C8) and glyceryl tridecanoate (tri-C10) represented MCTs
(C6–C12). In a similar manner to previous publications [26,40],
peanut oil (tri-C18) was chosen as the prototype for LCTs (>C12).
Peanut oil contains mainly LCTs (C16 and C18), the vast majority
of which is triolein [29].

2.3. Preparation of simulated digestion buffers

The preparation of the bio-relevant digestion buffer simulating
the contents of the jejunum in the fasted state was based on previ-
ous reports [26,41] with a minor modification. This change con-
sisted in decreasing the pH of the buffer from 7.40 to 6.80 to
achieve maximum pseudo-physiological conditions [18]. The lipol-
ysis medium contained 50 mM Trizma� maleate [35,36,42,43],
150 mM sodium chloride, 5 mM calcium chloride, 5 mM sodium
taurocholate, and 1.25 mM L-a-lecithin. The pH of the medium
was adjusted to 6.80 ± 0.05 at 37 �C using 1 M NaOH solution as
titrant, and a pH-stat titrator unit (T50 Graphix, Mettler Toledo
Inc., Leicester, UK) coupled to a pH-electrode (DGi111-SC, Mettler
Toledo Inc., Leicester, UK).
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The incomplete digestion buffer used for the preparation of the
enzyme extract was prepared in a similar manner, although it did
not include bile salts or phospholipids to prevent the deactivation
of the lipase prior to the lipolysis experiments.

2.4. Preparation of lipase/co-lipase extract

Porcine pancreatin powder, containing equimolar amounts of
lipase and co-lipase [23], was prepared as described by Sek et al.
[44]. Briefly, one gram of pancreatin powder was added to 5 mL
of incomplete digestion buffer and vortex-mixed for 15 min at
room temperature. After centrifugation at �1200g (Harrier 18/80
centrifuge, swing-out rotor, MSE, London, UK) and 4 �C for
15 min, the supernatant was collected and stored on ice to avoid
denaturation. The activity of the lipase/co-lipase extract used in
this study was 42 tributyrin units (TBU) per milligram of dry pan-
creatin powder (735 TBU per millilitre of digest), where 1 TBU is
the amount of enzyme that can release 1 lmol of butyric acid from
tri-C4 per minute.

2.5. Experimental procedure: lipolysis of equimolar amounts of
different triglycerides

The procedure of the in vitro lipolysis was similar to that
described previously [7,24,26,36,37]. A fixed molar amount of oil
(860 lmol) was added to 35.5 mL of digestion buffer dispersed in
a reaction vessel with continuous stirring and kept at 37 �C. After
15 min of equilibration, 3.5 mL of lipase/co-lipase extract was added
to the mixture to initiate the enzymatic hydrolysis. A pH-stat titra-
tor unit was used to keep experimental pH under control (6.75–
6.85) by titrating the released ionised FAs with 0.5 M NaOH solution.
The maximum and minimum rates of titrant addition were set up
through the instrument control software (LabX light v3.1) at
1 mL/min and 10 lL/min, respectively. The experiments were con-
sidered to be completed when the dosing rate of NaOH was lower
than 10 lL/min. Each experiment was repeated five times.

Control experiments (n = 5) were performed without any for-
mulation, to correct for the amount of NaOH solution needed to
neutralise the acids released as a consequence of the lipolysis of
phospholipids, or arising from the lipolysis of impurities in the bile
and pancreatin extracts.

The extent of digestion was expressed as percentage of the
maximum theoretical quantity of lipid susceptible to hydrolysis.
Accordingly, it was assumed that one TG initially released two
FAs and one 2-monoglyceride (2-MG). It has been reported that
2-MGs can isomerise to 1/3-monoglyceride (1/3-MG) and be sub-
sequently lipolysed releasing a third FA and glycerol, as depicted
in Fig. 1 [45–48]. The apparent extent of lipolysis at pH 6.80 was
calculated from the volume of titrant consumed during the
in vitro digestion, as expressed in Eq. (1):

Extent of lipolysis ð%Þ ¼ V � 0:5 �MW
3 � q � v � 100 ð1Þ

where V is the volume (L) of titrant consumed during the digestion
at pH 6.80, 0.5 M is the concentration of the titrant, MW is the
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Fig. 1. Lipolysis of triglyceride by pancreatic lipase. Pancreatic lipase shows the same sele
fatty acid side chains are identical.
molecular weight (g/mol) of the oil under investigation, 3 is the
maximum quantity of FAs than can be released from one TG, q is
the density (g/mL) of the oil, and v is the volume (mL) of oil dis-
persed in the lipolysis medium.
2.6. Experimental procedure: back-titrations

Based on their apparent pKa, FAs released as a consequence of
enzymatic hydrolysis at pH 6.80 may be only partially ionised. As
a result of this titration by NaOH, lipase activity determination
can be underestimated in direct titration experiments. In order to
calculate the total extent of lipolysis, back-titrations [7,49] were
performed. In these experiments, the pH of the medium was ele-
vated to pH 11.50 ± 0.05 by quick addition of 0.5 M NaOH.
Control experiments without any triglyceride were performed to
correct for the amounts of NaOH needed to raise the pH of the
medium up to 11.50.

The total extent of lipolysis was calculated using Eq. (1), where
V represented the volume of NaOH added originally at pH 6.80
(titration of ionised FAs) plus the volume of NaOH added during
the back-titration experiments (titration of unionised FAs).
2.7. Solubility effect of glyceryl triacetate on the extent of lipolysis

As opposed to the other model triglycerides, tri-C2 was com-
pletely soluble in the bio-relevant media due to its high water sol-
ubility (58 g/L at 25 �C, [50]). In order to determine whether this
factor would affect pancreatic lipase activity, additional lipolysis
experiments (n = 3) with higher amounts of tri-C2 were performed.
1500 lL and 2100 lL of tri-C2, representing values slightly below
(49 g/L) and above (68 g/L) the solubility limit, respectively, were
lipolysed under the same conditions described in Sections 2.5
and 2.6.
2.8. Measurement of droplet size and total surface area of the
equimolar triglyceride emulsions following dispersion in the lipolysis
buffer

Dynamic light scattering (DLS) was used to determine the mean
droplet size (dH) of the emulsions in the digestion medium before
the addition of pancreatic lipase, just after the equilibration period.
DLS measurements were carried out at a scattering angle of 173�
and 37 �C, using a Zetasizer Nano ZS (k = 633 nm, Malvern
Instruments, Malvern, UK). As the emulsions were too turbid, they
were diluted with incomplete lipolysis buffer to 5 � 10�2% v/v to
avoid multiple scattering effects. Size determinations were per-
formed for all TG emulsions at least 8 times. Diluted digestion buf-
fer was also analysed to account for any contribution of bile salts
and phospholipids to DLS measurements. As expected, droplet size
of digestion buffer particles was below the detection limit of the
instrument [51], and their size could not be determined.

Droplet size measurements were used to calculate the specific
surface area (SS, surface area per unit volume [52]) of the emul-
sions formed prior to enzyme addition. Assuming emulsions were
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formed by spherical droplets, the surface was determined using the
following equation:

SS ¼
ST

VT
¼ n � Si

VT
¼ VT=Vi � Si

VT
¼ Si

Vi
¼ pd2

H

1=6pd3
H

¼ 6
1

dH
ð2Þ

where ST is the total surface area of lipid, n is the number of lipid
droplets, Si is the surface area of a single lipid droplet, VT is the total
volume of lipid, and Vi is the volume of a single lipid droplet.

2.9. Optimisation of the in vitro lipolysis model

The experimental conditions described in Section 2.5, where
equimolar concentrations of oil were used, served as a starting
point for the optimisation of the lipolysis model. Here, the lipolysis
model was optimised to be able to analyse different volumes of oil
and the lipolysis of TGs with different chain lengths (short, med-
ium and long) with one set of conditions. The titrant concentration
and the maximum and minimum rate of addition were varied in
order to find a set of conditions that maintained the pH between
6.75 and 6.85 during lipolysis. The sets of conditions evaluated
during the optimisation of the model are listed in Table 1. Each
set of conditions was assessed for SCTs, MCTs and LCTs, and with
oil volumes of 200, 500 and 1000 lL, five times. The dispersion
of 200 lL of TG in the model (�40 mL) would be equivalent to a
1000 lL lipid-containing capsule in the human gastrointestinal
tract (�250 mL [53]). Similarly, 1000 lL of oil dispersed in the
lipolysis medium would be comparable to a high-fat meal in the
in vivo situation [26]. 500 lL was chosen as a value in between
the previous two conditions.

2.10. Statistical data analysis

All presented data are expressed as mean ± standard deviation
(SD). A one way ANOVA (followed by post hoc Tukey–Kramer mul-
tiple comparison test) or an unpaired t-test, where appropriate,
was used for determining statistically significant differences
among the experimental groups. A p value of 0.05 was considered
the minimal level of significance. Statistical analysis was per-
formed using GraphPad Prism version 6.00 for Windows
(GraphPad Software, San Diego, California, USA).

3. Results

3.1. In vitro lipolysis of equimolar amounts of different triglycerides

The changes in pH over time during the in vitro lipolysis of
equimolar quantities of selected TGs are depicted in Fig. 2.
Regardless of carbon chain length, all pH–time profiles showed
an initial drop of pH as a result of the delay between the pH-stat
titrator detecting the first ionised FAs and the subsequent addition
of NaOH solution for the titration. The initial burst of hydrolysis
has already been reported by other authors [23]. Since transit time
along the gastrointestinal tract is known to be variable [54], exper-
iments were not performed for a fixed period of time, but were
Table 1
Sets of conditions assessed during the optimisation of the lipolysis model (n = 5).

Concentration of
titrant (M)

Maximum dosing rate
(mL/min)

Minimum dosing rate
(lL/min)a

0.5 1 10
1 1 10
1 1 3
1 3.5 3

a The minimum dosing rate and the termination rate were set to coincide in all
experiments.
allowed to proceed until the titrant addition rate was low
(10 lL/min), indicating the absence of any FAs to titrate, i.e.
absence of TG hydrolysis. As a result, the digestion of each lipid
took different times, with the hydrolysis of tri-C8 being the longest
process (�80 min), followed by tri-C18, tri-C10 and tri-C2
(�35 min). The lipolysis of tri-C4 took the shortest time (�20 min).

The cumulative volumes of 0.5 M NaOH solution required over
time during the in vitro digestion of equimolar amounts of the
selected TGs are represented in Fig. 3. The amount of titrant con-
sumed was used in Eq. (1) to calculate the apparent extent of lipol-
ysis at different time-points, which is also shown in Fig. 3. All lipids
showed a fast initial increase in hydrolysis rate, which subse-
quently decreased and stayed almost constant for the rest of the
process. The lipolysis of tri-C8 resulted in the highest consumption
of titrant, and thus in the highest apparent extent of lipolysis by
direct titration (93 ± 2%). Tri-C4 was hydrolysed to a lower extent
(62 ± 6%), but the process was completed one hour earlier. The
apparent extents of lipolysis of tri-C10 (43 ± 2%), tri-C2 (33 ± 0%)
and tri-C18 (12 ± 3%) were lower than that of tri-C4, despite the
longer durations of the reaction.

3.2. Back-titration studies

The results from the back-titration experiments showed that
the extent of lipolysis at pH 6.80 was underestimated by direct
titration for all lipids except for tri-C8 (Fig. 4). Based on the cumu-
lative titrant volumes of both direct and back titrations, the lipol-
ysis of tri-C2, tri-C4 and tri-C8 was almost complete (98 ± 2%,
91 ± 9% and 96 ± 5%, respectively), and not statistically different
from each other (p < 0.001). The total extent of hydrolysis of
tri-C10 was 67 ± 3%, whereas that of tri-C18 was only 31 ± 6%.

3.3. Solubility effect of glyceryl triacetate on the extent of lipolysis

The apparent and total extent of lipolysis of tri-C2 in volumes
below and above its solubility limit is shown in Supplementary
Table 1. No statistically significant differences were found among
groups. This result suggests that the lipolysis of 860 lmol of
tri-C2 could be compared with that of the other triglycerides even
when this oil was completely solubilised in the bio-relevant media
and the others were not.

3.4. Droplet size and total surface of the equimolar triglyceride
emulsions following dispersion in the lipolysis buffer

The particle size and the specific surface area of the equimolar
emulsions are shown in Table 2. All emulsions showed one
population and tight peak widths. Tri-C4 had the smallest
droplet size (124 ± 6 nm) and the highest specific surface area
(436 � 10�3 ± 12 � 10�3 nm�1), followed by tri-C2, tri-C8, tri-C10,
and tri-C18. The relatively large droplet sizes are consistent with
the poor dispersion properties of Type I lipidic formulations [11].

3.5. Optimisation of the in vitro lipolysis model

The effect of the concentration of titrant, and maximum and
minimum titrant dosing rates on the control over the lipolysis pro-
cess was investigated to find an optimised set of conditions capable
of keeping the pH environment within the physiological range
(6.75–6.85), during the hydrolysis of TGs with different carbon
chain lengths. Also the lipolysis of different TG volumes was evalu-
ated in order to assess a variety of possible scenarios in the intestine.

3.5.1. 0.5 M NaOH, 1 mL/min maximum rate, 10 lL/min minimum rate
The initial set of conditions was characterised by a prolonged

time to gain control over pH during the lipolysis of tri-C4, and by
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a transient drop of pH during the hydrolysis of 500 and 1000 lL of
tri-C8 (Supplementary Fig. 1). In addition, high volumes of titrant
were required during the lipolysis of 1000 lL of tri-C2, tri-C4 and
tri-C8 which lead to dilution (approximately 25%) of the experi-
mental medium. Prolonged times to complete the process (e.g.
over two hours for 1000 lL of tri-C4) were additional issues
encountered while assessing the set of conditions.

3.5.2. 1 M NaOH, 1 mL/min maximum rate, 10 lL/min minimum rate
Titration with 1 M NaOH considerably reduced the time needed

to gain initial control over the pH for the lipolysis of tri-C2 and
tri-C4, and avoided or decreased the transient loss of control dur-
ing the lipolysis of tri-C8 (Supplementary Fig. 2). Despite improve-
ments, these conditions caused a premature cessation of the
process for the lipolysis of 200 lL of tri-C18. A marked elevation
of the pH above the pre-determined threshold at the beginning
of the process led to very slow titrant dosing rate that was recog-
nised by the titrator as lower than the termination rate and the
process was terminated after just 90 s.
3.5.3. 1 M NaOH, 1 mL/min maximum rate, 3 lL/min minimum rate
Reducing the minimum rate of addition from 10 to 3 lL/min

enabled the continuation of the lipolysis of 200 lL of tri-C18
(Supplementary Fig. 3). Nevertheless, the loss of control over pH
(1000 lL of tri-C8), the sharp drop of pH and the prolonged time
to reach the control band (500 and 1000 lL of tri-C4) were still
unresolved issues.
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Fig. 3. Apparent extent of lipolysis (black) and volume of 0.5 M NaOH solution consumed over time (grey) during the direct in vitro lipolysis at pH 6.80 ± 0.05 of equimolar
amounts of: (A) glyceryl triacetate (tri-C2), (B) glyceryl tributyrate (tri-C4), (C) glyceryl trioctanoate (tri-C8), (D) glyceryl tridecanoate (tri-C10) and (E) peanut oil (tri-C18).
The extent of lipolysis was calculated using Eq. (1), assuming that the digestion of one molecule of triglyceride released three molecules of fatty acid and one molecule of
glycerol (with isomerisation of 2-monoglyceride to 1/3-monoglyceride in between). Values are expressed as means (n = 5) ± SD.
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3.5.4. 1 M NaOH, 3.5 mL/min maximum rate, 3 lL/min minimum rate
The increment of the maximum addition rate from 1 to

3.5 mL/min achieved the control over pH throughout the lipolysis
of all evaluated TGs and volumes (Supplementary Fig. 4). In terms
of reaction time, lipolysis of short- and medium-chain TGs lasted
less than 30 min. Lipolysis of tri-C18 came to an end before reach-
ing 45 min. Statistically significant differences (p < 0.05) in NaOH
consumption were observed during lipolysis of different volumes
of the same TG (except for 500 and 1000 lL of tri-C18).

4. Discussion

4.1. In vitro lipolysis of equimolar amounts of different triglycerides
and back-titration studies

In this work, the extent of lipolysis of lipidic Type I formula-
tions, based on TGs, has been evaluated by means of an in vitro
lipolysis model, to better understand the mechanisms behind
pancreatic lipase activity. The assessment of the lipolysis process
by direct titration at pH 6.80 showed there are significant differ-
ences in the pH–time profiles (Fig. 2) and the amount of titrant
consumed (Fig. 3) for each TG. In addition and in agreement with
previous studies, there is also more extensive lipolysis (Fig. 4) of
medium-chain TGs by pancreatic lipase when compared with
long-chain TGs. Most of previous in vitro lipolysis reports have
compared formulations with the same volume [39] or same mass
[7,35,36,45,55] of lipid. However, to compare pancreatic lipase
activity on different TG substrates, the assessment is more infor-
mative mechanistically when performed with equimolar amounts
as reported here.

Another consideration in the experimental procedure is that the
lipolysis of Type I formulations, results in lipolytic products that
have low degree of ionisation at physiologically relevant pH (e.g.
pH 6.80). Some authors [7,39,49,55–58] have partially resolved
this, by performing back-titrations and defining a correction factor
to determine the real extent of lipolysis. In the light of this,
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Fig. 4. Comparison of the total extent of lipolysis for the in vitro lipolysis of
equimolar amounts of different triglycerides: glyceryl triacetate (tri-C2), glyceryl
tributyrate (tri-C4), glyceryl trioctanoate (tri-C8), glyceryl tridecanoate (tri-C10)
and peanut oil (tri-C18. White colours represent the apparent extent of lipolysis
calculated when the pH of the medium was kept at 6.80 ± 0.05 (direct titration).
Grey-shade areas represent the underestimated extent of lipolysis calculated after
back-titration experiments, when the pH of the medium was elevated to
11.50 ± 0.05. Values are expressed as means (n = 5) ± SD. One-way ANOVA followed
by post hoc Tukey–Kramer test was used for statistical analysis. a Statistically
significantly different from all other TGs (p < 0.001). b Statistically significantly
different from tri-C4, tri-C8 and tri-C18 (p < 0.001), and from tri-C10 (p < 0.01).
c Statistically significantly different from tri-C4, tri-C8 and tri-C18 (p < 0.001), and
from tri-C2 (p < 0.01). d Statistically significantly different from all other TGs
(p < 0.001), except for tri-C4 and tri-C8 (p < 0.05). e Statistically significantly
different from all other TGs (p < 0.001), except for tri-C2 and tri-C8 (p < 0.05).
f Statistically significantly different from all other TGs (p < 0.001), except for tri-C2
and tri-C4 (p < 0.05).

Table 2
Hydrodynamic droplet size (dH) and specific surface area (SS) of the diluted
(5 � 10�2% v/v) triglyceride emulsions formed upon dispersion of equimolar amounts
of oil in the digestion buffer after the equilibration period, prior to enzyme addition
(mean ± SD, n P 8). One way ANOVA followed by post hoc Tukey–Kramer test was
used for statistical analysis.

Triglyceride dH (nm) SS (nm�1) � 103

Glyceryl triacetate (tri-C2) 138 ± 4a 436 ± 12a

Glyceryl tributyrate (tri-C4) 124 ± 6a 485 ± 25a

Glyceryl trioctanoate (tri-C8) 155 ± 7b 388 ± 19b

Glyceryl tridecanoate (tri-C10) 162 ± 7c 371 ± 17c

Peanut oil (tri-C18) 189 ± 7a 318 ± 12a

a Statistically significantly different from all other TGs (p < 0.001).
b Statistically significantly different from all other TGs (p < 0.001), except for tri-

C10 (p < 0.05).
c Statistically significantly different from all other TGs (p < 0.001), except for tri-

C8 (p < 0.05).
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back-titration experiments were undertaken at pH 11.50, immedi-
ately after direct titrations had been performed. The pH value of
11.50 was chosen to guarantee both complete FA ionisation and
pancreatic lipase inhibition [59].

For tri-C2, the apparent extent of lipolysis was approximately
33%. This value suggests that only triglycerides were hydrolysed.
However, back-titration results indicate 66% of the lipolysis extent
was underestimated and thus diglycerides and MGs were lipolysed
as well. Similarly, the calculated extent of lipolysis at pH 6.80 of
tri-C4 was 66%, indicating that all TGs and diglycerides were lipol-
ysed. Subsequent titrations at pH 11.50 revealed that 33% of the
extent of the process had been underestimated in direct titrations.
Interestingly, pKa values of acetic and butyric acid are 4.74 and
4.82 [60] respectively, and therefore all acid molecules should have
been ionised at pH 6.80. However, it has been suggested previously
that the apparent pKa of FAs within the aqueous micellar solution
is higher than that calculated in standard conditions [7], which
could explain the incomplete ionisation. Another possible explana-
tion for this phenomenon is that the lipase was still active, and
therefore catalysed the release of one more FA during the time
taken (60 s) for the increase of pH levels from 6.80 to 11.50.

For tri-C8 the apparent extent of lipolysis calculated indirectly
from the NaOH volume data showed that almost complete hydrol-
ysis was achieved. Fig. 3C shows that for tri-C8 the apparent extent
of the lipolysis-time profile is characterised by two distinct slopes,
i.e. two different lipolysis rates. The inflection point of this graph
falls almost exactly at the 66% value of the lipolysis extent. It could
be assumed that the first part of the profile (from 0% to 66%) rep-
resents the lipolysis of TGs and diglycerides, and the second part of
the profile (the remaining 33%) represents the isomerisation of
2-MG to 1/3-MG and subsequent lipolysis to glycerol and one FA.
It is conceivable that the second stage of the process (characterised
by the least steep slope) was the slowest, since it involved two
steps (isomerisation and hydrolysis), and because the affinity of
pancreatic lipase towards monoglycerides is lower than towards
TGs and diglycerides [38]. Back-titration data demonstrated that
almost all released FAs during the lipolysis of tri-C8 were ionised
at pH 6.80 ± 0.05, which is in agreement with the pKa of octanoic
acid: 4.89 [60].

Back-titration results for tri-C10 revealed that the total extent
of hydrolysis was around 66%; thus, pancreatic lipase catalysed
the lipolysis of all TGs and diglycerides, but not monoglycerides.
Although the pKa of decanoic acid (4.90, [60]) is higher than that
of octanoic acid, the unionised to ionised FA ratio (�0.5) did not
follow theoretically predicted values. However, similar results have
been found in other laboratories. Williams et al. [7] reported a ratio
of 0.43 after the lipolysis of a mixture of tri-C8 and tri-C10 at pH
6.5. Likewise, Fernandez et al. [55] determined a ratio of 0.33 while
assessing the lipolysis of Gelucire� 44/14 at different pH values.

Finally, the total extent of lipolysis of LCT tri-C18 indicates that
lipase acted on half of the TGs to release two FAs per one molecule
of tri-C18. In this case the incomplete ionisation of oleic acid at pH
6.80 was expected since its pKa is 9.85 [61]. Accordingly, around
20% of the extent of the process was undetected by direct titration.

Overall, the trend in extent of lipolysis, and thus lipase activity
(tri-C2, tri-C4, tri-C8 > tri-C10 > tri-C18) correlates with results
observed by the only two other authors who have undertaken
these equimolar lipolysis comparisons. Firstly, Dicklin et al. [62]
incubated the TGs with pancreatic tissue homogenate for a fixed
period of time without titrating the released FAs. In this study,
no statistical differences were found among the specific activities
that porcine pancreatic tissue homogenates showed towards
tri-C4, tri-C6 (glyceryl trihexanoate) and tri-C8, although they
were all higher than the lipase activity demonstrated by tri-C10.
While, Ciuffreda et al. [63] assessed the in vitro lipolysis of different
TGs by direct titration at pH 8 and reported an ascending order of
lipase activity from tri-C18 and tri-C10 to tri-C4, but no lipolytic
activity was detected for tri-C2.

A theory as to the increased pancreatic lipase activity for the
shorter TG chain lengths could be explained based on a two-step
process as described by Lengsfeld et al. [64], whereby adsorption
at the oil–water interface is followed by a catalysis reaction.
Therefore, substrate specificity of lipase could arise from any of
these two steps, and could be due to the ability of the lipase to
adsorb at the interface, as well as to the chemical affinity the bind-
ing site shows towards the TG acyl chain.

Binding site affinity could explain the lower activity observed
for tri-C10 and tri-C18 when compared to tri-C2, tri-C4 and
tri-C8. X-ray crystallographic studies have shown that the active
site of pancreatic lipase is formed by three residues: serine 153
(Ser153), histidine 264 (His264) and aspartate 177 (Asp177) [65].
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The catalytic triad is pulled together through hydrogen bonds
between the hydroxyl group of Ser153 and one imidazole nitrogen
of His264, and between the other imidazole nitrogen and the car-
boxylic group of Asp177 (Fig. 5). It is under this conformation that
the hydrolysis reaction can take place. The hydroxyl group of
Ser153 is thought to initiate the reaction through a nucleophilic
attack to the first (or third) glyceryl carbon, with the fatty carboxy-
late being the leaving group [66]. Consequently, the reaction would
become faster the more electrophilic the glyceryl carbon is and the
better leaving group (more stable) the carboxylate is. In terms of
electrophilicity, all TGs are analogous. However, in terms of the
leaving group, carboxylates of shorter chain length are better can-
didates (the stronger the acid, the weaker the conjugate base, the
better the leaving group), and accordingly tri-C2, tri-C4 and
tri-C8 were lipolysed to the greatest extent.

Regarding the lipase adsorption to the interface, the difference
in activity could be attributed to the size of the oil droplets and/or
to the inhibitory effects of the lipolysis products. Since pancreatic
lipase carries out interfacial catalysis, the higher the substrate sur-
face is, the more extensive the lipolysis becomes. Therefore, in the-
ory, the TGs with smaller oil droplets, are supposed to be lipolysed
to a greater extent. Indeed, results derived from DLS measurements
showed the extent of lipolysis was directly proportional to the
specific surface area (Table 2). Alternatively, the lipolysis process
could be inhibited by the interfacial activity of amphiphiles such
as diglycerides, unionised FAs and, mainly, 2-MGs [67–69].
Unless incorporated within mixed micelles, 2-MGs could form a
layer at the droplet surface that efficiently blocks the access of
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Fig. 5. Proposed molecular mechanism of triglyceride lipol
the lipase [69]. Therefore, it could be hypothesised that 2-MGs
derived from tri-C10 and tri-C18 are the least solubilised and
inhibited the process to a greater extent.

In summary, the results suggest that there is a specific chain
length range (C2–C8) for which pancreatic lipase shows higher
activity. We hypothesise that this specificity could result from a
combination of physicochemical properties of TGs, 2-MGs and
FAs, namely the droplet size of the TGs, the solubility of 2-MGs
within mixed micelles, and the relative stability of the FAs as leav-
ing groups in the hydrolysis reaction.

4.2. Optimisation of the in vitro lipolysis model

The role of the concentration of titrant and maximum and min-
imum titrant addition rates, in the control of the lipolysis process,
was investigated to find an optimised set of conditions capable of
maintaining the pH environment within physiological range
(6.75–6.85) during the hydrolysis of TGs with different carbon
chain lengths. The hydrolysis of different volumes of oil (200,
500 and 1000 lL) was evaluated to assess a variety of possible sce-
narios in the intestine, from the ingestion of an oil-containing cap-
sule in fasting conditions to the consumption of a high-fat meal.

The first set of conditions evaluated (0.5 M NaOH with
1 mL/min maximum and 10 lL/min minimum dosing rates,
Supplementary Fig. 1) was found to be suitable for tri-C10 and
tri-C18, but not for tri-C2, tri-C4 and tri-C8. The high activity that
pancreatic lipase showed towards tri-C4 – translated into a large
amount of liberated ionised FAs – presented a problem for the
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titrator when trying to regain control over pH during the initial
stages of the process. Most importantly, during the ‘‘delayed’’ peri-
ods, pH of the medium dropped to acidic values. If the fate of an
ionisable drug across lipolysis phases had been assessed under
these conditions, such low pH values could have affected the distri-
bution of the compound, leading to incorrect interpretations of the
performance of the lipidic formulation. Regarding the lipolysis of
tri-C8, the drawback was not the initial drop of pH, but the loss
of control over pH at a later point in the reaction. Apart from pH
control, other reasons to disregard this set of conditions were dilu-
tion of the medium due to large volumes of titrant needed during
the lipolysis of 1000 lL of tri-C2, tri-C8 and tri-C10, and prolonged
times to complete the process. Based on these results, it was
decided to increase the concentration of the titrant up to 1 M but
maintain the same maximum and minimum rates of addition of
NaOH (Supplementary Fig. 2). Despite improvements, the new con-
ditions introduced a problem of premature stop of titration with
small volumes of tri-C18. To avoid reaching the termination rate
at initial stages of the process, it was decided to reduce the mini-
mum rate to 3 lL/min (Supplementary Fig. 3). This new set of con-
ditions enabled the continuation of the lipolysis of 200 lL of
tri-C18, but was still suboptimal due to the loss of control over
pH during the lipolysis of 1000 lL of tri-C8. There was also a sharp
drop of pH and prolonged time to reach control band at initial
stages of the lipolysis of 500 and 1000 lL of tri-C4. Finally, by
increasing the maximum addition rate up to 3.5 mL/min, all previ-
ous issues (premature stop of titration, loss of control over pH, and
prolonged time to reach control band) were avoided and the con-
trol over pH throughout the lipolysis of all evaluated TGs and vol-
umes was achieved (Supplementary Fig. 4). The implementation of
this method resulted in shorter reaction times, which allows the
assessment of several formulations on the same day. Statistically
significant differences (p < 0.05) in NaOH consumption were
observed during lipolysis of different volumes of the same TG indi-
cating the optimised conditions were capable of distinguishing
among the different fat-digesting situations that were mimicked.
5. Conclusions

In these studies, the in vitro lipolysis by pancreatic lipase under
bio-relevant conditions at physiological pH of equimolar amounts
of TGs with different chain lengths has been evaluated for the first
time. The assessment of the process by direct titration at pH 6.80
showed there are significant differences in the pH–time profiles
and the amount of titrant consumed for each TG. The combined
results of direct and back-titration studies proved there is a specific
chain length range (C2–C8) for which pancreatic lipase showed
higher activity. Based on the obtained results, it is hypothesised that
the specific surface area of the dispersed oil droplets, the solubility
of 2-MGs within mixed micelles, and the relative stability of the FAs
as leaving groups in the hydrolysis reaction, are the physicochemi-
cal properties which could determine the total extent of lipolysis.

1 M NaOH titrant concentration, 3.5 mL/min maximum titrant
dosing rate and 3 lL/min minimum titrant dosing rate, were found
to be the conditions that better maintain pH environment within
physiological range (6.75–6.85) during the hydrolysis of TGs with
different carbon chain lengths. This optimised set of conditions also
allowed the differentiation of the lipolysis of different lipid loads.
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