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Abstract	

Background	

Thermal	sensory	testing	in	rodents	informs	human	pain	research.	There	are	important	differences	in	

the	methodology	for	delivering	thermal	stimuli	to	humans	and	rodents.	This	is	particularly	true	in	cold	

pain	research.	These	differences	confound	extrapolation	and	de-value	nociceptive	tests	in	rodents.	

New	Method	

We	investigated	cooling-induced	behaviours	in	rats	and	psychophysical	thresholds	in	humans	using	

ramped	cooling	stimulation	protocols.	A	Peltier	device	mounted	upon	force	transducers	

simultaneously	applied	a	ramped	cooling	stimulus	whilst	measuring	contact	with	rat	hind	paw	or	

human	finger	pad.	Rat	withdrawals	and	human	detection,	discomfort	and	pain	thresholds	were	

measured.		

Results	

Ramped	cooling	of	a	rat	hind	paw	revealed	two	distinct	responses:		Brief	paw	removal	followed	by	paw	

replacement,	usually	with	more	weight	borne	than	prior	to	the	removal	(temperature	inter-quartile	

range:	19.1	
o
C	to	2.8	

o
C).	Full	withdrawal	was	evoked	at	colder	temperatures	(inter	quartile	range:	-

11.3	
o
C	to	-11.8	

o
C).	The	profile	of	human	cool	detection	threshold	and	cold	pain	threshold	were	

remarkably	similar	to	that	of	the	rat	withdrawals	behaviours.	

Comparison	

Previous	rat	cold	evoked	behaviours	utilise	static	temperature	stimuli.	By	utilising	ramped	cold	stimuli	

this	novel	methodology	better	reflects	thermal	testing	in	patients.	

Conclusion	

Brief	paw	removal	in	the	rat	is	driven	by	non-nociceptive	afferents,	as	is	the	perception	of	cooling	in	

humans.	This	is	in	contrast	to	the	nociceptor-driven	withdrawal	from	colder	temperatures.	These	
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findings	have	important	implications	for	the	interpretation	of	data	generated	in	older	cold	pain	models	

and	consequently	our	understanding	of	cold	perception	and	pain.	

	

Keywords:	pain,	behaviour,	rat,	human,	cold,	nociception	
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1 Introduction	

Cooling	evoked	behaviours	in	rodents	are	often	studied	with	the	aim	of	informing	our	incomplete	

understanding	of	thermal	perception	in	humans.	This	effort	is	hampered	by	significant	differences	in	

the	methodology	used	with	the	different	species.	The	utility	of	results	generated	in	rodents	with	

respect	to	the	above	aim	can,	therefore,	be	questioned.	Thus	there	is	a	need	to	better	understand	the	

relationships	between	cooling	evoked	behaviours	in	rodents	and	cooling	evoked	sensations	in	humans.		

	

In	human	psychophysical	experiments,	ramped	contact	cooling	is	delivered	via	a	thermode,	usually	

using	devices	such	as	those	made	by	MEDOC	(http://www.medoc-web.com/medoc_en_home.aspx)	or	

SOMEDIC	(http://en.somedic.com/default.asp?pid=29).	Importantly,	application	of	ramped	cooling	to	

skin	enables	determination	of	thresholds	for	cold	detection	and	pain	in	healthy	individuals	and	

subsequently	the	definition	of	positive	and	negative	symptoms/sensations	in	patients	[1,	2].	

	

Contact	thermal	stimuli,	often	with	varying	ramp	rates	and	final	target	temperatures,	are	also	used	in	

pre-clinical	electrophysiological	experiments	in	sensory	primary	afferent	research	[3-6].	This	enables	

capture	of	thermal	thresholds	to	neuronal	activation	and	the	responses	to	suprathreshold	stimuli.		

	

In	contrast,	behavioural	experimentation	in	animals	utilises	significantly	different	cold	stimuli.	These	

include;	cold	plates	(static	temperature),	evaporative	cooling,	or	place	preference	tests	[7-10].	The	

most	common	outputs	are	time-related,	e.g.	latency	to	behaviour	(paw	withdrawal	[11]	licking	or	

flinching),	behaviours	per	unit	time		[7,	12]	or	time	spent	in	a	particular	location.	It	is	rare	that	thermal	

behavioural	thresholds	per	se	are	measured	in	animals,	although	decreasing	temperature	plates	have	

been	described	[13],	enabling	differentiation	between	cold	allodynia	and	cold	hyperalgesia.	Most	
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thermal	tests	measure	hyperalgesia,	but	milder	interventions	such	as	evaporative	cooling	of	acetone,	

have	also	been	used	to	elicit	allodynic	behaviours	[8,	14].		

	

A	further	important	consideration	is	that	as	ramped	cooling	is	almost	never	used	in	rodent	studies	

there	are	no	data	regarding	behaviours	elicited	during	the	transition	between	innocuous	and	noxious	

cooling.	Given	that	any	putative	behaviours	are	likely	to	be	different	and	that	this	transition	must	occur	

(albeit	more	rapidly)	when	using	routine	cold	stimuli	such	as	cold	plates;	more	detailed	consideration	

of	such	behaviours	and	the	impact	that	they	may	have	had	on	the	interpretation	of	previous	work	is	

warranted.		

	

Further	still,	most	cooling	evoked	behaviours	are	elicited	via	cooling	delivered	to	all	four	paws;	the	tail	

and	also	the	abdomen	(and	testes	in	males).	Thus,	in	addition	to	nociceptive	reflexes	that	may	be	

present,	the	observed	behaviours	will	also	be	influenced	by	mechanisms	involved	in	maintaining	body	

temperature	(homeostasis)	[15]	and	may	be	complicated	by	fear/avoidance	behaviours	evoked	by	an	

inescapable,	potentially	noxious	stimuli.	The	Hargreaves	test	[11,	16],	by	restricting	heat	stimulation	to	

a	single	paw,	removed	these	confounds	in	heat	nociceptive	testing.		

	

The	aim	of	this	study	was	to	develop	methodology	to	address	these	discrepancies	between	rodent	and	

human	cold	testing	in	order	to	better	apply	knowledge	gained	in	the	laboratory	setting	to	human	cold	

perception	and	pain.	To	achieve	this,	the	same	cooling	stimulus	was	used	to	evoke	behaviours	in	

healthy	rats	and	sensations	in	healthy	humans.	We	delivered	ramped	cooling	to	a	single	rat	hind	paw	

and	determined	contact	temperatures	at	which	cooling	induced	behaviours	occur.	This	method	was	

used	in	parallel	to	determine	cool	detection,	cold	discomfort	and	cold	pain	thresholds	in	healthy	

humans.		 	
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2 Materials	and	Methods	

	

2.1 Apparatus	for	delivering	ramped	thermal	stimuli	to	glabrous	skin	in	humans	and	rats	

	

The	apparatus	used	in	all	experiments	was	designed	and	built	in-house,	as	there	was	no	available	

commercial	apparatus	that	could	reproducibly	and	reliably	stimulate	both	rat	and	human	glabrous	skin	

to	enable	measurement	of	equivalent	thermal	thresholds.		

	

A	Peltier	unit	(Supercool,	Gothenburg,	Sweden,	(cat.	no.	131-10-13);	40mm	x	23mm	x	3.6mm)	was	

attached	with	thermally	conductive	adhesive	(Arctic	Silver	5,	from	Arctic	Silver	CA.	USA)	to	an	

aluminium	heat	sink.	The	Peltier	and	heat	sink	module	was	mounted	upon	force	transducers	(FS	series	

Force	Transducer,	Radiospares	UK,	cat	no.	235-6210),	which	enabled	measurement	of	the	precise	

temperature	at	which	the	force	transducers	were	unloaded.	The	surface	temperature	of	the	unit	was	

recorded	via	a	T	Type	thermocouple	mounted	on	a	copper	plate	affixed	with	Arctic	Silver
TM
	to	the	

upper	surface	of	the	Peltier	device.	During	cooling,	the	heat	sink	was	flushed	with	50:50	ethylene	

glycol:water,	pre-cooled	to	-10
o
C.	This	enabled	rapid	and	large	reductions	in	temperature.	During	

heating	experiments,	the	heat	sink	was	flushed	with	cold	water.	The	Peltier	device	was	driven	from	a	

control	system	built	in	house,	which	enabled	fine	control	of	linear	heating	and	cooling	rates.		

	

Thermocouple	and	force	transducer	outputs	were	amplified	and	fed	into	a	micro1401	analogue	to	

digital	converter	(Cambridge	Electronic	Design).	Data	were	recorded	on	a	PC	using	Spike	2v6	

(Cambridge	Electronic	Design)	for	subsequent	off	line	analysis	(Figure	1).	
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2.2 Determination	of	thermal	thresholds	in	rats	

	

All	experiments	involved	male	Wistar	rats	(250-350g,	Harlan,	UK)	and	were	carried	out	with	University	

of	Bristol	Ethical	Review	Panel	approval	and	in	accordance	with	the	UK	Animals	(Scientific	Procedures)	

Act	1986.	This	manuscript	was	prepared	with	reference	to	the	ARRIVE	guidelines	[17].	Animals	were	

housed	in	enriched	environments,	under	12:12	hour	light:dark	conditions	and	had	ad	libitum	access	to	

food	and	water.	Prior	to	experimental	testing,	animals	were	habituated	to	both	the	testing	apparatus	

and	to	the	investigators.	

	

Rats	were	placed	in	a	Perspex	enclosure	similar	to	that	used	in	Linton	Instrumentation’s	Incapacitance	

tester	(http://www.lintoninst.co.uk/).	They	settled	into	a	position	such	that	the	hind	paws	were	in	

contact	with	the	Peltier	device	(Figure	1A,	C).	Occasionally	it	was	necessary	to	make	minor	adjustments	

to	the	position	of	the	paws.	Once	the	animal	was	settled,	thermal	stimuli	were	applied	to	the	glabrous	

hind	paw	skin,	from	a	holding	temperature	of	25
o
C.	In	three	rats,	heating	was	delivered	at	a	rate	of	

1
o
C/s,	until	withdrawal,	upon	which	the	plate	temperature	was	returned	to	baseline.	This	process	was	

repeated	up	to	4	times	per	rat.	In	ten	rats,	cooling	was	delivered	at	a	rate	of	-1.3
o
C/s	and	continued	

until	the	animal	shifted	the	weight	off	the	cooled	hindpaw,	denoting	withdrawal	from	the	stimulus.	

The	lowest	achievable	temperature	was	-12
o
C	which	was	therefore	effectively	the	cut-off	temperature.	

After	stimulation	the	Peltier	device	temperature	was	returned	to	baseline.	A	second,	and	occasionally	a	

third,	ramp	was	then	delivered	with	an	inter-stimulus	interval	no	less	than	3	minutes.	Occasionally	it	

was	necessary	to	repeat	ramps	if,	for	example,	the	rat	turned	around	in	the	box	thus	removing	the	

hindpaw	from	contact	surface.	
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Four	additional	rats	were	tested	with	variable	cooling	rates	of	-0.5,	-1,	-2	and	-4
o
C/s.	Other	than	the	

different	rates,	these	experiments	were	performed	as	described	above.		

At	the	end	of	the	behavioural	testing	the	paws	of	the	rats	were	inspected	for	signs	of	injury	including	

erythema	and	oedema.	

	

2.3 Relationship	between	surface	and	subcutaneous	temperatures	

	

Behavioural	withdrawal	to	contact	heating	is	known	to	depend	on	the	subcutaneous	heating	rate	[18].	

It	was	therefore	necessary	to	evaluate	both	the	rate	of	subcutaneous	cooling	and	the	absolute	

subcutaneous	temperature	achieved	during	the	rodent	experiments.	In	order	to	determine	the	

subcutaneous	temperatures	at	which	cooling	behaviours	occurred,	one	anaesthetised	additional	rat	

was	used.	Anaesthesia	was	induced	and	maintained	with	sodium	pentobarbitone	(induction:	60mg/kg	

intraperitoneal,	maintenance:	20mg/kg/hr	(intravenous)	and	the	trachea	was	cannulated	for	airway	

maintenance.	A	T-Type	thermocouple	(made	in-house)	was	inserted	subcutaneously	into	the	plantar	

skin	of	one	hind	paw.	The	anaesthetised	rat	was	then	positioned	in	the	restraining	box	(Fig	1C)	with	

hind	paws	firmly	in	contact	with	the	Peltier	unit,	and	the	Peltier	device	was	cooled	at	different	rates.	

The	subcutaneous	paw	temperatures	that	corresponded	to	the	contact	temperatures	were	determined	

for	each	ramp	rate.		

	

2.4 Determination	of	thermal	thresholds	in	human	volunteers	

	

The	study	was	given	ethical	approval	by	the	Faculty	of	Medical	and	Veterinary	Sciences	Committee	for	

Research	Ethics,	University	of	Bristol.	Participants	gave	informed	consent	prior	to	testing.		
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Participants	were	excluded	from	the	study	if	they	suffered	any	neurological	or	other	problems	that	

could	affect	their	ability	to	detect	or	respond	to	cutaneous	thermal	noxious	stimuli.		

	

Ten	healthy	participants	(5	male,	5	female,	26.4	yrs	±	1.2	(mean	age	±	SEM))	were	recruited.	No	

participant	was	subsequently	excluded	for	any	reason.		

	

Participants	were	acclimatised	to	the	testing	facility	prior	to	testing.	The	protocol	was	explained	to	

them	so	they	were	aware	of	the	procedure,	and	they	were	exposed	to	a	familiarisation	ramp	prior	to	

testing.		

	

Participants	were	asked	to	place	the	pad	of	the	right	index	finger	on	the	Peltier	surface,	which	was	

initially	held	at	30
o
C.	The	instructions	were	to	rest	/	place	the	fingertip	upon	the	cooling	surface	and	

not	to	exert	any	specific	force	[19].	After	more	than	10	seconds	had	elapsed,	the	investigator	informed	

them	that	the	ramp	would	begin	within	the	following	10	seconds.	Participants	were	asked	to	say	when	

they	detected	the	temperature	change	(detection)	and	when	they	detected	the	transition	into	an	

uncomfortable	sensation	(discomfort).	Input	from	a	foot	pedal	was	used	to	capture	detection	and	

discomfort	thresholds.	Participants	were	instructed	to	remove	their	finger	from	the	equipment	when	

the	sensation	became	painful;	this	event	was	recorded	via	the	force	transducer.	Following	withdrawal	

the	equipment	temperature	was	returned	to	30
o
C.	The	heating	rate	was	~1

o
C/s,	whereas	cooling	rate	

was	-1.3
o
C/s.		The	same	ramp	was	applied	three	times.		

	

Immediately	after	each	test,	participants	were	asked	to	choose	two	descriptors	from	a	predefined	list	

that	indicated	the	best	description	of	the	sensation(s)	they	experienced	at	withdrawal	(i.e.	the	quality	
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of	the	pain).	The	descriptors	list	was	constructed	with	reference	to	previous	psychophysical	studies	

[20-22].	Four	participants	found	it	difficult	to	give	two	descriptors	for	each	ramp.	When	this	occurred,	

the	single	descriptor	or	no	descriptors	were	recorded.	One	participant	forgot	to	provide	detection	

thresholds	on	2	of	3	ramps.	To	keep	testing	number	consistent	between	subjects,	and	to	comply	with	

ethics	committee	approval,	these	ramps	were	not	repeated	in	this	single	individual	and	data	were	

included	as	an	incomplete	set.	

	

2.5 Statistical	analysis	

	

Prism	4	for	Windows	(Version	4,	Graphpad)	and	SPSS	(version	18;	IBM,	Armonk,	NY)	were	used	for	

statistical	comparisons.	Data	are	presented	or	shown	as	mean	±	standard	error	of	the	mean	(SEM)	or	

median	(interquartile	range	(IQR))	as	stated.	Threshold	and	withdrawal	latency	at	initial	and	full	

withdrawal	(rats)	were	compared	using	Mann	Whitney	tests.	Mean	temperatures	and	latencies	for	

evoked	behaviours	at	different	cooling	rates	(rats)	and	human	psychophysical	and	rat	behavioural	data	

were	compared	using	a	non-parametric	1	way	ANOVA	(Kruskal	Wallis)	followed	by	Dunns	post	hoc	test.	

Thresholds	in	human	participants	(cold	detection,	discomfort	and	noxious	withdrawal)	were	compared	

using	1	way	repeated	measure	ANOVA	followed	by	Bonferroni’s	post	hoc	test,	unless	explicitly	stated.	

	

When	investigating	the	effect	of	cooling	rate	on	evoked	behaviours,	a	linear	test	for	trend	was	

additionally	performed	as	a	post	hoc	test	following	1	way	ANOVA	analysis	of	the	log-log	transforms	of	

the	latencies	to	initial	and	full	withdrawal	at	the	different	rates.		
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Subcutaneous	temperatures	during	cooling	at	which	initial	and	full	withdrawal	occurred	were	

interpolated	offline	from	the	data	measured	in	un-anaesthetised	rats.		

	

Hierarchical	clustering	of	the	latencies	of	all	behaviours	induced	during	cooling	at	-1.3
o
C/s	was	

performed	using	the	Ward	method	and	the	Squared	Euclidean	distance	measure	in	SPSS.	The	optimum	

number	of	clusters	was	determined	via	examination	of	the	agglomeration	coefficients.	SPSS	was	then	

used	to	assign	cluster	membership	to	the	individual	latencies.	Frequency	histograms	of	cluster	

memberships	were	then	generated	using	Prism.	Using	SPSS,	a	two-cluster	solution	was	then	applied	to	

temperatures	of	all	behaviours	induced	by	cooling	at	-1.3
o
C/s.	The	frequency	histograms	of	behaviours	

vs	temperature	were	then	generated	in	Prism.	It	should	be	noted	that	cluster	analysis	does	not	provide	

a	statistic	that	can	be	used	to	determine	the	probability	of	the	data	set	containing	a	certain	number	of	

clusters.			
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3 Results	

	

3.1 Heating	responses	in	rats	and	participants.	

	

Heating	of	the	finger	pad	of	the	index	finger	of	the	human	participants	elicited	detection,	discomfort	

and	withdrawal	thresholds	of	38.1
o
C	±	1.5

o
C,	47.4

o
C	±	1.2

o
C	and	49.8

o
C	±	0.9

o
C	(Mean	±	SEM)	

respectively	(Figure	2A,	2C).	Heating	of	the	plantar	surface	of	a	single	rat	hind	paw	elicited	a	robust	

withdrawal	response	at	47.8
o
C	±	0.4

o
C	(Mean	±	SEM)	(Figure	2B,	2C).	Whilst	human	detection	

thresholds	occurred	at	significantly	lower	temperatures	than	rat	withdrawal,	no	differences	were	

found	between	human	discomfort,	human	withdrawal	and	rat	withdrawal	temperatures	(Figure	2C).		

	

3.2 Cooling	responses	in	rats	

	

Cooling	stimuli	were	applied	following	the	above	validation	of	this	method	of	delivering	an	isolated	

thermal	stimulus	to	a	single	rat	hind	paw.	Cooling	of	one	hind	paw	elicited	two	distinct	behaviours	in	

the	rat.	These	behaviours	were	identified	by	observation	and	could	also	be	seen	in	the	weight	bearing	

profile,	shown	as	raw	data	in	Figure	3A.	Initial	brief	paw	removals,	that	were	not	sustained,	were	

usually,	but	not	always,	seen	as	the	contact	temperature	decreased.	This	involved	a	brief	removal	of	

the	paw	from	the	plate	(1-2s	duration),	which	was	then	returned,	often	subsequently	bearing	more	

weight	than	before	despite	the	continued	lowering	of	contact	temperature	(Fig.	3A).	This	increase	in	

weight	bearing	on	the	stimulated	paw	was	not	seen	in	the	responses	to	heating.	As	the	temperature	

continued	to	decrease,	a	full	withdrawal	was	evoked	as	the	paw	was	removed	from	the	plate	and	

remained	lifted	until	the	plate	was	re-warmed	(Fig.	3A).	When	paw	removals	were	grouped	into	
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”initial”	if	they	were	not	sustained,	and	”full”	when	the	paw	lift	was	sustained	as	determined	by	the	

trace,	then	initial	brief	and	full	removals	occurred	at	contact	temperatures	of	14.3
o
C	(2.8

o
C	to	19.1

o
C)	

and	-11.7
o
C	(-11.3

o
C	to	-11.8

o
C)	respectively	(median	(inter-quartile	range)).	Full	withdrawal	often	

occurred	at	temperatures	approaching	the	lowest	that	were	achievable	(approximately	-12
o
C,	Fig.	3B).	

The	differences	in	withdrawal	temperatures	were	reflected	in	withdrawal	latencies	(initial	11.6s	(8.2s-

20.0s),	full	withdrawal	33.5s	(31.3s-36.4s)).	The	variability	in	the	latency	to	full	withdrawal	was	greater	

than	that	seen	in	the	variability	in	temperature	at	full	withdrawal.	This	probably	reflects	events	

occurring	after	the	attainment	of	the	lowest	possible	plate	temperature.	The	latencies	were	also	

significantly	different	between	initial	and	full	withdrawal	values	(Fig.	3C).	

	

It	was	evident	(Figs.	3B,	C)	that	the	temperatures	at	which	initial	paw	removal	occurred	overlapped	

with	those	temperatures	eliciting	full	withdrawal.	To	determine	whether	hindpaw	cooling	did	indeed	

evoke	two	distinct	behaviours	in	the	rat,	whether	the	initial	and	full	withdrawals	were	a	continuum	of	

the	same	behaviour,	or	whether	subjective	experimenter	opinion	was	influencing	interpretation,	

latencies	and	temperatures	were	subject	to	cluster	analysis.	Examination	of	the	agglomeration	

coefficients	for	latencies	most	strongly	supported	a	model	with	2	clusters,	although	a	3	or	4	cluster	

model	could	not	be	discounted	from	the	agglomeration	coefficients	alone.	Examination	of	different	

cluster	solutions	(i.e.	2,	3	or	4	clusters)	always	generated	a	first	cluster	with	a	median	(I.Q.R)	latency	of	

11.7	(8.6	to	14.3)	seconds	(initial	removal)	and	this	cluster	always	included	the	same	number	of	data	

points,	suggesting	that	the	two	behaviours	were	indeed	distinct.	Using	a	two	cluster	model	gave	a	

median	(I.Q.R)	latency	for	the	second	cluster	of	28	(23.4	to	31.7)	seconds.	Three	and	four	cluster	

models	all	split	the	longer	latency	cluster	(full	withdrawal)	into	additional	sub	clusters	with	no	effect	on	

the	first	cluster	(Fig.	3E).	Furthermore,	the	first	cluster	in	the	two	cluster	solution	for	temperature	vs.	

responses	contained	a	similar	number	of	responses	as	the	first	cluster	generated	using	latencies:	38	
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data	points	for	temperatures	vs.	36	data	points	for	latencies.		This	generated	a	first	cluster	with	a	

median	(I.Q.R.)	temperature	of	13.6	(18.8	to	10.3)	
o
C	and	a	second	cluster	with	a	median	(I.Q.R.)	

temperature	of	-8.1	(-2.5	to	-12.3)	
o
C	(Fig.	3D).			

	

The	rate	of	contact	heating	and	subsequent	subcutaneous	heating	rate	in	rats	affects	different	groups	

of	nociceptive	afferents	[18].	We	therefore	determined	the	effect	of	different	cooling	rates	on	the	

evoked	rat	behaviours.		

	

Increasing	the	rate	of	cooling	from	-0.5	to	-4
	o
C/s	reduced	the	latency	to	both	initial	brief	removal	and	

full	withdrawal	(Figs	4A	&	4B),	but	did	not	affect	the	skin	temperature	at	which	initial	or	full	removal	

occurred	(Figs	4C	&	4D).	Interpolation	of	the	subcutaneous	temperature	at	which	behaviours	would	be	

expected	to	occur,	as	derived	from	the	skin	and	subcutaneous	temperatures	in	the	anaesthetised	rat,	

generated	subcutaneous	mean	initial	removal	temperatures	of	approximately	5
o
C	to	10

o
C	(Fig.	4E).	

These	were	highly	variable,	as	seen	for	the	skin	contact	temperatures	(Fig.	3B).	Notably,	interpolated	

subcutaneous	temperatures	at	full	withdrawal	were	much	less	variable,	mean	withdrawal	

temperatures	were	~	-2
o
C	(Fig.	4F).	

	

The	subcutaneous	temperature	was	linearly	related	to	the	surface	temperature	and	this	linear	

relationship	was	identical	for	rate	of	cooling	from	-0.5
o
C/s	to	-2

o
C/s.	At	the	fastest	rate	of	cooling,	-4

	

o
C/s,	this	was	no	longer	the	case,	and	subcutaneous	temperatures	were	slightly	higher	than	would	be	

predicted	from	a	linear	relationship	(Fig.	4G).	
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3.3 Cooling	responses	in	participants	

	

In	human	studies,	participants	indicated	detection	and	discomfort	to	cooling	and	this	was	captured	on	

the	raw	trace	via	a	foot	pedal	input.	Finger	removal	occurred	when	the	sensation	became	painful	(Fig.	

5A).	Cooling	detection	occurred	at	24.9
o
C	(26.3

o
C	to	19.5

o
C)	(median	(IQR)),	discomfort	at	-1.2

o
C	(1.2

o
C	

to	-5.9
o
C)	and	noxious	withdrawal	-6.3

o
C	(-3.5

o
C	to	-10.3

o
C)	(Fig.	5B).	Notably,	cooling	discomfort	and	

noxious	withdrawal	were	not	evident	until	skin	contact	temperatures	were	less	than	0
o
C.	The	most	

frequent	words	chosen	to	describe	the	sensation	evoked	at	noxious	cold	withdrawal	were	“cold”‚	

“numbing”	and	“freezing”	(Fig.	4C).	

	

Due	to	the	mismatch	between	human	and	rodent	studies	on	cold	nociception,	one	aim	was	to	

determine	whether	rat	behaviours	could	be	related	to	psychophysical	correlates	in	humans.	As	there	

were	potential	differences	in	skin	thickness	and	thermal	transfer	between	rats	and	humans	and	we	

could	not	directly	measure	subcutaneous	temperatures	in	humans,	and	many	rat	withdrawals	occurred	

at	the	cut-off	temperature	whereas	humans	did	not,	we	compared	latency	to	withdrawal	rather	than	

contact	temperatures.	Comparison	showed	that	rat	full	withdrawal	and	pain-evoked	withdrawal	in	

humans	occurred	at	a	similar	latency	in	both	species	(Fig.	6A-C),	indicating	that	this	method	of	

stimulation	elicited	nociception	in	both	species	at	equivalent	times	after	onset	of	cold	ramping.	In	

addition,	initial	removal	latencies	in	rats	were	equivalent	to	cold	detection	latencies	in	humans	(Fig.	

5C).	Probably	most	crucial	is	that	the	profile	of	responses	to	reducing	temperature	is	comparable	

between	the	two	species.		

	

Interestingly,	latency	to	noxious	cold	withdrawal	in	humans	was	not	clearly	distinguishable	from	

latency	to	cold	discomfort	in	humans	or	from	latency	to	full	cold	withdrawals	in	rats.	There	was	also	no	
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statistical	difference	between	latencies	to	cold	detection/initial	removals	in	humans	and	rats	

respectively	(Fig.	5C).	This	supports	the	interpretation	that	the	initial	paw	removal	responses	in	rats	are	

associated	with	non-noxious	rather	than	noxious	cold.	The	variance	of	both	cold	measures	(initial	and	

full	withdrawals)	in	the	rat	was	significantly	greater	than	in	the	human	measures,	i.e.	initial	rat	

responses	to	ramped	contact	cold	stimulation	were	less	consistent	between	trials	than	those	of	

humans.		
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4 Discussion	

	

The	neurophysiology	of	thermal	perception,	particularly	that	of	cold	pain,	is	complex.	Multiple	afferent	

populations	and	ascending	pathways	inform	perception	and	behavioural	responses	[23],	and	

processing,	particularly	of	noxious	cold	information,	is	also	influenced	by	descending	modulation	from	

brainstem	centres	[24-26].	Further	complexity	is	added	to	interpretation	of	findings	by	methodological	

differences	between	studies,	including	stimuli	(magnitude;	area;	skin	type)	and	outcomes	

(psychophysics,	behaviour,	neuronal	properties,	imaging).	Overarching	all	of	the	above	are	possible	

differences	between	species.	

	

This	complex	situation	has	led	to	assertions	and	possible	over-simplifications,	which,	especially	when	

taken	out	of	context	of	the	original	work,	can	be	contradictory	to	everyday	experience.	For	example,	it	

is	commonly	reported	that	humans	have	a	cold	pain	threshold	of	near	to	14
o
C,	a	figure	which	has	been	

used	to	relate	perception	to	the	function	of	individual	putative	transduction	molecules	[27].	However,	

it	is	not	usually	painful	to	handle	a	bottle	of	milk	from	a	fridge	at	4
o
C	and	it	is	possible	to	handle	frozen	

foods	from	a	domestic	freezer	(-20
o
C)	for	short	periods	of	time	without	suffering	pain,	although	it	can	

be	uncomfortable.	

	

We	sought	to	address	the	mismatch	between	experimental	conclusions	in	rats	and	humans,	and	

everyday	observations	on	cold	discomfort/pain,	and	to	compare	cold	behavioural	responses	in	humans	

and	rats	by	using	equivalent	cold	ramping	stimuli	in	both	species.		
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Initial	experiments	sought	to	validate	this	novel	method	of	delivery	of	thermal	stimuli.	This	was	

possible	with	reference	to	previously	published	heat	withdrawal	thresholds	in	rats.	Heat	withdrawal	

thresholds	reported	here	of	circa	48
o
C	are	remarkably	similar	to	the	47.6

	o
C	±	0.2

	o
C	generated	utilising	

thermal	stimuli	from	a	radiant	heating	lamp	[16],	a	comparable	thermal	stimulus.	Furthermore,	and	as	

noted	by	Banik	and	Kabadi,	2013	[16],	these	withdrawal	temperatures	are	comparable	to	those	

generated	in	humans	(data	herein	and	e.g.	47.5
o
C,	[28]).	The	rat	heat	thresholds	reported	here	are	

somewhat	lower	than	those	reported	using	a	similar	method	of	measuring	heat	hyperalgesia	described	

by	Tabo	and	colleagues	(1998).	This	method	combined	force	measurement	with	a	Peltier	thermode	but	

the	force	transducers	recorded	the	force	of	withdrawal	and	not	the	weight	borne	by	the	paw	[29].		

		

Given	these	positive	validation	experiments,	we	were	then	able	to	explore	the	unknown	effects	of	the	

application	of	ramped	cooling	stimuli.	In	equivalent	skin	types,	both	species	demonstrated	that	they	

were	able	to	respond	to	the	onset	of	cooling	from	ambient	at	equivalent	latencies/temperatures,	and	

this	occurred	at	temperatures	not	perceived	as	painful	by	humans.	We	therefore	hypothesise	that	the	

initial	brief	paw	removal	seen	in	rats	is	not	a	nocifensive	behaviour.	This	hypothesis	is	strongly	

supported	by	the	new	observation,	which	is	only	possible	to	make	using	this	novel	apparatus,	that	

more	weight	is	borne	by	the	paw	after	it	is	replaced,	during	these	initial	behaviours.		

	

It	is	interesting	to	note	that	cold	induced	vasoconstriction	during	cooling	of	isolated	paws	occurs	in	the	

rat	at	approximately	22
o
C	[30].	It	could	be	that	the	brief	removal	from	the	cooling	surface	represents	a	

homeostatic	response	to	cooling,	as	rodent	paws	and	tail	are	critical	for	maintenance	of	body	

temperature	in	the	rat	[31].	In	the	rat,	without	the	benefit	of	the	additional	information	on	increased	

weight	borne	on	the	cooled	hind	paw	after	these	movements,	the	more	transient	behaviours	evoked	

by	non-noxious	cooling	could	easily	be	misinterpreted	as	a	full	withdrawal	response.	It	only	becomes	



Research	Article	

	

	 19	

apparent	that	withdrawals	are	transient	when	applied	temperatures	are	subsequently	lowered	to	

levels	where	complete	withdrawal	occurs.	If	a	trial	is	terminated	on	initial	paw	removal,	the	cold	

threshold	will	be	recorded	at	a	higher	value.	Indeed,	noxious	cold	thresholds	in	rats	are	often	quoted	at	

values	much	warmer	than	those	we	report	(e.g.	circa	4	or	5
o
C	[7,	12]),	in	the	range	in	which	most	of	the	

brief	paw	removals	occurred.		

	

The	initial	paw	removal	is	clearly	different	from	the	overt	full	withdrawals	evoked	by	lower	contact	

temperatures	that	most	obviously	correlate	with	the	noxious	cold	thresholds	measured	in	humans.	

Such	withdrawals	occur	at	temperatures	similar	to	those	that	evoke	withdrawal	in	lightly	anaesthetised	

animals	which,	by	definition	[32],	are	nociceptor	driven	[24,	33]	.	This	full	withdrawal	behaviour	and	

the	correlate	in	humans	is	therefore	more	likely	to	be	driven	by	cold	nociceptors,	and	may	be	an	

appropriate	measure	to	use	in	preclinical	cold	evoked	pain	research.	It	should	also	be	noted	that	for	

both	brief	initial	paw	removal	and	noxious	withdrawals,	the	responses	in	rats	are	much	more	variable	

than	those	elicited	in	humans.	It	is	therefore	clear	to	us	that	the	interpretation	of	cold-evoked	

withdrawal	behaviour	in	rodents	is	complicated	by	the	more	complex	withdrawal	behaviour	than	is	

seen	with	heat	stimulation.	

	

As	rate	of	cooling	increased,	latency	to	behaviours	decreased,	yet	the	temperatures	at	which	

behaviours	occurred	was	consistent.	This	finding	suggests	that	it	is	the	absolute	temperature	at	the	

neuronal	receptor	(subcutaneous/dermal/epidermal	etc.)	that	drives	both	initial	and	full	withdrawals,	

rather	than	the	rate	of	change	of	cutaneous	temperature.		

	

Subcutaneous	temperature	measurements	indicate	that	full	noxious	withdrawal	behaviours,	in	rats	at	

least,	are	evoked	at	temperatures	just	below	0
o
C,	with	contact/surface	temperature	well	below	0

o
C.	It	
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is	well	known	that	freezing	is	painful	and	may	lead	to	tissue	damage	[34].	Whether	the	withdrawal	

behaviour	described	here	reflects	actual	freezing	pain	is	debatable.	There	was	no	evidence	of	tissue	

damage	to	the	paw	after	testing	and	no	sensitisation	of	responses	was	seen,	even	though	both	would	

be	expected	following	tissue	injury.	Furthermore,	it	may	be	argued	that	nociceptive	systems	function	

to	warn	of	the	potential	for	injury	and	that	this	system	would	act	to	prevent	such	injury	in	an	awake	

animal.	It	is	also	known	that	thermoregulatory	mechanisms	are	blunted	under	anaesthesia	[35]	and	it	

is	therefore	possible	that	the	subcutaneous	temperature	in	awake	animals	were	not	as	low	as	in	the	

anaesthetised	rat.	

	

While	it	is	difficult	to	compare	our	data	to	previous	work	because	of	the	differences	in	methodology,	it	

is	interesting	to	note	that	previously	reported	cold	pain	thresholds	in	both	rats	and	humans	occurred	

at	warmer	temperatures	to	those	reported	here.	On	the	thenar	eminence,	thresholds	are	reported	as	

between	10
o
C	and	15

o
C	[20-22,	36,	37]	though	with	high	variability	[38],	as	with	other	skin	sites,	

whereas	our	data	show	thresholds	substantially	less	than	zero
o
C	in	both	species.	We	suggest	that	these	

differences	could	be	accounted	for	by	a	combination	of	factors,	including	lack	of	

expectation/anticipation	effects	[39,	40]	when	using	an	escapable	stimulus	where	termination	is	

entirely	under	the	participant’s	control;	a	smaller	stimulus	area	and	therefore	reduced	spatial	

summation	[41],	and	the	lower	cold	sensitivity	of	glabrous	skin	[21],	in	particular	the	finger	tip	in	

relation	to	other	skin	sites	[38].		

	

The	aim	of	this	study	was	to	develop	methodology	to	address	discrepancies	between	rodent	and	

human	cold	testing	in	order	to	better	apply	knowledge	gained	in	the	laboratory	setting	to	human	cold	

perception	and	pain.	There	are	however	known	differences	between	cool/cold	primary	afferents	in	

rodents	and	primates.	As	mentioned	above,	while	differences	in	stimulation	protocols	and	
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preparations	complicate	comparisons	between	cutaneous	afferents,	similar	patterns	of	responses	do	

emerge.	Most	studies	report	two	major	cold	sensitive	afferent	populations	in	the	rat,	units	with	tonic	

activity	at	the	holding	temperature	and	polymodal	nociceptive	units	that	also	respond	to	mechanical	

and	occasionally	heat	stimuli	[42-44].		

	

Tonically	active	“cool”	units	in	rats	have	maximal	discharge	rates	at	variable	temperatures,	depending	

on	stimulation	protocol.	Step	and	hold	protocols,	with	a	holding	temperature	of	32
o
C	and	cooling	to	

12
o
C,	show	maximal	discharge	rates	between	27

o
C	and	17

o
C	[42].	In	comparison,	a	ramp	protocol	

similar	to	that	reported	herein	(holding	temperature	30
o
C,		-1

o
C/s	ramp	cooling	to	0

o
C),	demonstrated	

maximal	discharge	rates	between	10
o
C	and	25

o
C	[44]).	These	tonically	active	units	represent	one	fifth	

to	one	quarter	of	the	sampled	population,	and	have	predominately	C	fibres,	with	only	a	few	conducting	

in	the	Aδ	range	[42-44].	A	noticeable	difference	between	these	rat	cooling	receptors	and	those	in	

primates	is	that	primate	tonically	active	low	threshold	cool	receptors	conduct	in	the	Aδ	range	[23,	45].	

Although	modelling	and	ischaemic	blocks	suggest	that	these	Aδ	afferents	are	likely	to	be	responsible	

for	the	perception	of	cool	in	humans	[37,	38,	46],	there	are	also	a	number	of	C-fibre	afferents	that	

behave	very	much	like	those	found	in	the	rat	(maximum	firing	at	around	15
o
C),	in	humans	[47].		

	

In	contrast	to	cooling	afferents,	nociceptive	afferents	are	silent	at	normal	skin/holding	temperatures	

(e.g.	30
o
C),	have	both	C	and	Aδ	fibres,	and	reported	cold	thresholds	of	12

o
C	to	22

o
C	[42,	44].	Most	of	

these	studies	do	not,	however	examine	the	responses	of	these	primary	afferents	to	sub-zero	cooling	in	

vivo.	All	nociceptive	C	and	Aδ	afferents	were	excited	when	cooling	to	sub-zero	temperatures	

(thresholds	between	12
o
C	and	-6

o
C	and	between	0

o
C	and	-12

o
C	respectively)	[5].	All	Aδ	nociceptors	

responded	to	low	temperature	cooling	and	encoded	stimulus	intensity,	both	in	terms	of	afferent	

recruitment	and	firing	frequency,	down	to	at	least	-12
o
C	[6].	A	significant	proportion	(~40%)	of	human	
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C-fibre	polymodal	nociceptors	also	respond	to	cold	temperatures	(between	19
o
C	and	0

o
C).	It	is	also	

interesting	to	note	that	this	second	population	had	a	very	vigorous	response	to	freezing	[48,	49].	

	

With	these	differences	and	similarities	in	rat	and	human	cold	afferents,	we	speculate	that	cold	

detection	in	humans	is	mediated	by	Aδ	fibres	but	in	rat,	manifested	by	the	initial	withdrawals,	it	is	

mediated	by	the	functionally	similar	rat	C	fibre	cool	fibres,	based	on	the	temperatures	at	which	these	

fibres	show	maximal	firing	[23,	37,	38,	45,	46].	The	discomfort	and	painful	withdrawal	in	both	species	

would	appear	to	be	mediated	by	the	nociceptive	Aδ	fibre	afferents	that	are	activated	at	sub	zero	

temperatures,	but	there	is	probably	also	a	component	from	polymodal	C	fibre	cold-responsive	

nociceptors	[5,	6,	48,	49].	

	

To	estimate	the	temperature	change	at	the	receptor	terminal,	we	interpolated	the	subcutaneous	

temperature	change	from	data	obtained	in	anaesthetised	rats.	The	temperature	change	at	the	afferent	

receptors	is	dependent	not	only	upon	the	applied	temperature	of	the	Peltier	device,	but	also	other	

factors	such	as	contact	pressure,	blood	flow	and	other	physical	and	physiological	compensatory	

mechanisms	[19].	Contact	pressure	increased	as	rats	shifted	more	weight	onto	the	cooled	paw	after	

the	initial	withdrawals.	This	could	increase	the	skin	area	in	contact	with	the	Peltier,	possibly	reducing	

the	distance	between	receptor	and	Peltier	by	compressing	the	skin.	Local	blood	flow	could	be	reduced	

by	this	behaviour,	which	would	also	then	affect	heat/cold	transfer,	and	so	increased	paw	pressure	

could	increase	tissue	cooling.	It	is	possible	that	this	increased	contact	on	initial	is	involved	in	improving	

cooling	detection.		Interestingly,	the	paw	pressure	increases	were	not	seen	during	the	heating	

experiments,	indicating	a	cooling-specific	behaviour,	rather	than	non-specific	response	to	paw	

temperature	change.	In	humans,	we	attempted	to	mitigate	as	many	of	these	potential	confounding	

factors	as	possible,	by	instructing	participants	to	place	their	finger	on	the	testing	device	with	only	light	
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contact	pressure.		

	

Finally,	there	are	obviously	inherent	difficulties	in	relating	psychophysical	outcomes	in	humans	and	

behavioural	outcomes	in	rats,	not	least	that	rats	lack	some	neuroanatomical	structures	within	the	

forebrain	that	are	crucial	to	the	human	experience	of	pain	[50].	However,	withdrawal	behaviours	in	the	

rat	are	driven	by	afferent	populations	that	appear	to	have	equivalent	counterparts	in	humans	[42]	.	

Given	that	a	major	reason	to	undertake	research	in	experimental	animals	is	to	inform	and	improve	

human	pain	management,	we	believe	that	the	two	species	should	be	investigated	in	parallel,	to	

highlight	similarities	and	differences.		
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5 Conclusions	

	

We	have	used	a	novel	method	of	monitoring	behavioural	and	psychophysical	responses	to	cooling	and	

noxious	cold	in	both	rats	and	humans.	By	delivering	ramped	cooling	our	technique	more	closely	

reflects	currently	used	clinical	protocols	and	thus	facilitates	human	comparative	studies.	This	approach	

has	revealed	a	cooling	induced	behaviour	in	the	rat	that	is	unlikely	to	be	driven	by	nociceptive	

afferents.	It	has	also	revealed	that	full	withdrawal	from	cold	stimuli	requires	much	colder	

temperatures,	and	thus	subcutaneous	temperatures,	than	have	previously	been	employed.	This	work	

has	important	implications	for	the	interpretation	of	past	and	ongoing	work	studying	physiological	and	

pathophysiological	cold	pain.	
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8 Figure	legends		

	

Figure	1.	Behavioural	testing	apparatus.		

	

A.	Diagrammatic	representation	of	the	testing	apparatus	with	a	rat	in	position.	Individual	thermal	

modules	consist	of	a	Peltier	device,	heat	sink	and	force	transducers.	The	rat	hind	paws	are	located	over	

these	modules	via	the	positioning	frame.	The	temperature	of	the	Peltier	device	and	the	output	from	

the	force	transducer	is	amplified	and	then	captured	via	CED’s	1401	which	interfaces	with	a	PC.	

B.	Photograph	of	the	apparatus	illustrating	the	two	plates	independently	mounted	on	separate	thermal	

modules.	In	flow	and	out	flow	tubing	for	coolant	for	the	heat	sinks	can	be	seen	to	the	left	of	the	

photograph.	Connections	to	amplification	and	recording	equipment	are	visible	to	the	right	of	the	

photograph.		

C.	Photograph	of	apparatus	as	above	but	including	the	Perspex	positioning	box	and	a	rat	in	situ.		

	

Figure	2.	Contact	ramped	heating	of	the	rat	hind	paw	elicits	withdrawal	at	temperatures	equivalent	to	

human	discomfort	and	withdrawal	thresholds.	

	

A.	Human.	Panel	shows	a	typical	example	of	a	digitised	trace	of	the	raw	data	generated	from	the	force	

transducers	under	the	heated	index	finger	(top	trace,	arbitrary	units),	and	the	surface/contact	

temperature	of	the	Peltier	device	in	contact	with	the	finger	(lower	trace,	
o
C),	over	time	(s).	Detection,	

discomfort	and	withdrawals	are	indicated	by	the	vertical	numbered	cursors	and	the	temperature	read	

from	the	lower	trace	as	illustrated.	Rate	of	heating	was	circa	1
o
C/s.	



Research	Article	

	

	 27	

B.	Rat.	Panel	shows	a	typical	example	of	a	digitised	trace	of	the	raw	data	generated	from	the	force	

transducers	under	the	heated	hindpaw	(top	trace,	arbitrary	units),	and	the	surface/contact	

temperature	of	the	Peltier	device	in	contact	with	the	plantar	hindpaw	(lower	trace,	
o
C),	over	time	(s).	

Withdrawal	is	indicated	by	the	vertical	cursor	1.	Temperature	is	read	from	the	lower	trace.	Rate	of	

heating	was	circa	1
o
C/s.	

C.	Mean	(+SEM)	data	from	human	(n=10)	and	rat	(n=3)	experiments	.	Human	detection	of	heating	

occurs	at	a	significantly	lower	temperature	than	rat	behaviours.	Human	pain	threshold	and	withdrawal	

threshold	are	not	different	to	the	rat	withdrawal	temperature.	Kruskal-Wallis	test,	**		=		p<0.05,	ns	=	

p>0.05).	

	

Figure	3.	Contact	ramped	cooling	of	the	rat	hindpaw	elicits	two	distinct	behavioural	responses.	

	

A.	Panel	shows	a	typical	example	of	a	digitised	trace	of	the	raw	data	generated	from	the	force	

transducers	under	the	cooled	hindpaw	(top	trace,	arbitrary	units),	and	the	surface/contact	

temperature	of	the	Peltier	device	in	contact	with	the	plantar	hindpaw	(lower	trace,	
o
C),	over	time	(s).	

The	rate	of	cooling	is	-1.3
o
C/s.	The	vertical	cursors	indicate	the	cooling	evoked	behaviours.	Cursors	1,	2	

and	3	indicate	rapid,	transient	removals	of	weight	from	the	plate,	and	the	contact	temperature	at	

which	they	occurred	(22.1
o
C,	19.2

o
C	and	10.9

o
C).	When	the	paw	was	placed	back	on	the	plate,	there	

was	often	an	increase	in	weight	borne	on	the	plate,	as	indicated	by	the	upward	shift	of	the	trace	most	

noticeable	between	cursors	3	and	4.	The	plate	temperature	continued	to	fall	during	this	time.	Vertical	

cursor	4	indicates	a	more	prolonged	removal	of	weight,	full	withdrawal,	at	-11.87
o
C.		

B.	Scatter	plot	illustrating	the	temperature	at	which	the	two	cooling	evoked	behaviours	occurred.	

Horizontal	bars	show	median	and	IQRs.	The	median	temperature	at	which	the	initial	transient	



Research	Article	

	

	 28	

withdrawal	occurred	was	higher	than	that	at	which	full	withdrawal	behaviours	occurred	(p<0.001,	n=10	

rats,	up	to	3	ramps	per	rat.	Mann	Whitney	U	test).	The	rate	of	cooling	is	-1.3
o
C/s.	

C.	Scatter	plot	illustrating	the	latencies	at	which	the	two	cooling	evoked	behaviours	occurred.	

Horizontal	bars	show	median	and	IQRs.	The	median	time	to	withdrawal	(latency)	was	longer	for	full	

withdrawals	than	for	initial	withdrawals	(p<0.001,	n=10	rats,	up	to	3	ramps	per	rat.	Mann	Whitney	U	

test).	The	rate	of	cooling	is	-1.3
o
C/s.	

D.	Frequency	histogram	showing	the	two-cluster	solution	provided	for	responses	vs.	temperature.	The	

open	bars	indicate	“initial”	withdrawals‚	associated	with	cluster	one	as	detected	by	hierarchical	

clustering,	and	the	closed	bars	indicate	cluster	2,	the	full	withdrawals.		For	full	explanation	of	clustering	

please	see	text.	The	rate	of	cooling	is	-1.3
o
C/s.	

E.	Frequency	histogram	showing	the	two-cluster	solution	provided	for	responses	vs.	latencies.	The	

open	bars	indicate	“initial”	withdrawals‚	associated	with	cluster	one	as	detected	by	hierarchical	

clustering,	and	the	closed	bars	indicate	cluster	2,	the	full	withdrawals.	For	full	explanation	of	clustering	

please	see	text.	The	rate	of	cooling	is	-1.3
o
C/s.	

	

Figure	4.		The	effect	of	rate	of	contact	ramped	cooling	on	behavioural	responses	in	rats.		

	

A.	As	cooling	rate	increased,	the	latency	to	initial	withdrawal	decreased.	(Median	±	I.Q.R,	n=	4	rats,	1-2	

trials	per	rate,	**p<0.01,	Kruskal-Wallis	+	Dunn’s,	***p<0.001	linear	test	for	trend	following	log-log	

transformation).	

B.	As	cooling	rate	increased,	the	latency	to	full	withdrawal	also	decreased.	(Median	±	I.Q.R.,	n=	4	rats,	

1-2	trials	per	rate,	*p<0.05,	***p<0.001,	Kruskal-Wallis	+	Dunn’s.	***p<0.001	linear	test	for	trend	

following	log-log	transformation).	
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C.	Although	the	cooling	rate	increased,	the	plate	temperature	that	evoked	initial	withdrawal	was	

unchanged,	although	this	was	highly	variable.	(Median	±	I.Q.R.,	n=4	rats,	1-2	trials	per	rate,	one	way	

ANOVA	with	Bonferroni	post	hoc	test).	

D.	The	plate	temperature	at	which	full	withdrawals	occurred	was	also	unchanged	by	the	rate	of	plate	

cooling.	For	full	withdrawals	the	plate	temperature	was	highly	consistent	across	trials.	(Median	±	I.Q.R.,	

n=4	animals,	1-2	trials	per	rate	one	way	ANOVA	with	Bonferroni	post	hoc	test).	

E.	The	mean	(±95%CI)	subcutaneous	temperatures	at	which	initial	withdrawals	occurred	at	different	

rates	of	cooling	were	interpolated	from	the	contact	temperatures	(Fig	3C)	and	known	values	of	

subcutaneous	measurements	made	in	an	anaesthetised	rat.	Unfortunately,	the	plate	temperature	was	

not	lowered	sufficiently	in	the	subcutaneous	temperature	experiment	to	enable	the	extrapolation	of	

the	lower	confidence	interval	for	the	-2
o
C/s	cooling	rate.	

F.	The	mean	(±95%CI)	subcutaneous	temperatures	at	which	full	withdrawals	occurred	at	different	rates	

of	cooling	were	interpolated	from	the	contact	temperatures	(Fig.	3D)	as	above.		

G.	Plate	temperature	is	plotted	against	sub	cutaneous	temperature	for	the	4	different	cooling	rates.	

The	relationship	between	plate	and	sub-cutaneous	temperature	is	approximately	linear	for	cooling	

rates	-0.5
o
C/s	to	-2

o
C/s.	These	data	were	generated	in	a	single	anaesthetised	rat.	

	

Figure	5.	Contact	ramped	cooling	of	the	human	forefinger	allows	definition	of	cold	detection,	

discomfort	and	pain	thresholds	and	latencies.		

A.	Panel	shows	a	typical	example	of	a	digitised	trace	of	the	raw	data	generated	from	the	force	

transducers	(arbitrary	units)	under	a	cooled	forefinger	(top	trace),	and	the	surface/contact	

temperature	(
o
C)	of	the	Peltier	device	in	contact	with	the	forefinger	(lower	trace),	over	time	(s).	

Cooling	rate	was	~	-1.3
o
C/s.	Participants	indicated	cold	detection	and	discomfort	and	this	was	recorded	

via	a	foot	pedal.	This	is	shown	in	the	Marker	channel	at	the	top	of	the	figure.	The	vertical	cursors	
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indicate	these	events:	Cursor	1	cold	detection	at	19.1
o
C,	cursor	2	cold	discomfort	at	-2.48

o
C	and	cursor	

3	cold	pain	and	withdrawal	at	-9.1
o
C.			

B.	Cold	detection	thresholds	were	significantly	higher	that	cold	discomfort	and	cold	pain	thresholds.	

Cold	discomfort	was	also	significantly	different	from	cold	pain	(median	(I.Q.R.).	***p<0.001,	1	way	

ANOVA	+	Bonferroni's	test,	n	=	10).		

C.	The	most	common	descriptors	used	to	describe	the	cold	pain	evoked	by	contact	cooling	were	“cold”,	

“numbing”	and	“freezing”.	(n=10,	2	descriptors	for	each	of	three	trials).			

	

Figure	6.	Comparison	of	human	psychophysical	and	rat	behavioural	thresholds	during	contact	ramped	

cooling.				

	

A.	Latency	to	psychophysical	thresholds	evoked	by	cooling	in	humans	is	shown	as	a	frequency	

histogram	relative	to	the	plate	temperature.	The	number	of	events	(left	Y	axis)	in	each	5	second	bin	is	

shown	for	detection	(dashed	line),	discomfort	(dotted	line)	and	withdrawal	(solid	line)	(n=	10).	Plate	

temperature	(
o
C)	is	shown	on	the	right	Y	axis.	

B.	Latency	to	behaviours	evoked	by	cooling	in	rats	is	shown	as	a	frequency	histogram	relative	to	the	

plate	temperature.	The	number	of	events	(left	Y	axis)	in	each	5	second	bin	is	shown	for	initial	(dashed	

line)	and	full	withdrawals	(solid	line)	(n=	10).	Plate	temperature	(
o
C)	is	shown	on	the	right	Y	axis.	

C.	The	latencies	to	initial	brief	paw	removal	(rats)	and	cold	detection	(human)	were	equivalent,	

although	the	variability	of	responses	was	much	greater	in	the	rats.	The	latencies	for	discomfort,	

noxious	cold	(humans)	and	full	withdrawals	(rats)	were	also	not	significantly	different,	again	rat	

responses	were	more	variable.	The	latencies	for	“initial	response”	and	“pain”	were	significantly	

different	in	both	humans	and	rats	(p<0.0001).	All	other	comparisons	were	significantly	different	except	

for	those	indicated	(Kruskal	Wallis	+	Dunn’s	test).	Bars	indicate	medians	and	IQRs.		
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