
MUSSAI et al.  BCT-100 ARGINASE THERAPY FOR AML 

1 

 

Arginine dependence of Acute Myeloid Leukaemia blast proliferation: a novel 

therapeutic target. 

 

Francis Mussai,1 Sharon Egan,2 Joseph Higginbotham-Jones,1 Tracey Perry,1 Andrew Beggs,1 

Elena Odintsova,1 Justin Loke,1 Guy Pratt,1 Kin Pong U,3 Anthony Lo,4 Margaret Ng,4 Pamela 

Kearns,1 Paul Cheng,3 Carmela De Santo.1  

 

1School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom 

2School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United 

Kingdom 

3Bio-cancer Treatment International Ltd, Hong Kong 

4Department of Anatomic Pathology, The Chinese University of Hong Kong, Hong Kong 

4Bio-cancer Treatment International Ltd, Hong Kong 

 

Corresponding author: Francis Mussai, School of Cancer Sciences, University of 

Birmingham, Birmingham, United Kingdom. Tel: 0121 333 8234  

Email: Francis.mussai@bch.nhs.uk 

Scientific Category: Myeloid Neoplasia 

Short title: BCT-100 Arginase therapy for AML 

 

Key Points: Arginase depletion with BCT-100 pegylated recombinant human arginase is 

cytotoxic to AML blasts. 



MUSSAI et al.  BCT-100 ARGINASE THERAPY FOR AML 

2 

 

Abstract 

Acute Myeloid Leukaemia (AML) is one of the most common acute leukaemias in adults and 

children, yet significant numbers of patients relapse and die of disease. In this study we identify 

the dependence of AML blasts on arginine for proliferation. We show AML blasts 

constitutively express the arginine transporters CAT-1 and CAT-2B, and that the majority of 

newly diagnosed patients’ blasts have deficiencies in the arginine recycling pathway enzymes 

arginosuccinate synthase (ASS) and ornithine transcarbamylase (OTC), making them arginine 

auxotrophic. BCT-100, a pegylated human recombinant arginase, leads to a rapid depletion in 

extracellular and intracellular arginine concentrations, resulting in arrest of AML blast 

proliferation and a reduction in AML engraftment in vivo. BCT-100 as a single agent causes 

significant death of AML blasts from adults and children, and acts synergistically in 

combination with cytarabine. Using RNA-sequencing 20 further candidate genes which 

correlated with resistance have been identified. Thus AML blasts are dependent on arginine for 

survival and proliferation, and depletion of arginine with BCT-100 of clinical value in the 

treatment of AML. 
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Introduction 

Treatment for Acute Myeloid Leukaemia (AML) has seen significant progress, but overall 

survival rates have plateaued and significant numbers of patients continue to die of the 

disease.1,2 New therapeutic approaches are needed that complement standard chemotherapy 

without  increasing the burden of toxicity. Arginine is an amino acid metabolized by cells to 

provide precursors for cell cycle activity, protein synthesis, and a number of other cell 

functions.  In certain circumstances there can be a high demand for arginine, including rapid 

growth periods during development, inflammation, organ dysfunction and tumour growth. 

Arginine requirements may not be met by synthesis from citrulline alone, thus requiring 

arginine from the diet, leading to its classification as a semi-essential amino acid.3-5 Cancers 

also pose a unique demand on nutrient requirements, including dependency on arginine 

supplementation to sustain growth, i.e. arginine auxotrophism.6 Thus control over arginine 

availability and metabolism represents a potential therapeutic approach that can be exploited 

(see below).  

 

BCT-100 is a clinical grade pegylated (PEG) recombinant human arginase that catalyses the 

conversion of arginine to ornithine and urea, leading to arginine depletion.7-10 BCT-100 has 

shown significant benefit against solid tumours in preclinical studies and early phase clinical 

trials.8 Here we characterise the mechanisms of dependence of AML blasts on arginine and the 

potential for arginine depletion with BCT-100 as a therapeutic approach.  
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Methods 

AML patient samples 

Blood samples were obtained from 20 patients with newly diagnosed or newly relapsed AML, 

before the start of treatment, at the Birmingham Children’s Hospital, University Hospitals 

Birmingham, or Heartlands Hospital Birmingham (Table 1). The cells were separated from 

fresh samples as previously described.14 AML samples were investigated within 12 hours of 

blood sampling from patients and only samples with >98% viability by trypan blue staining 

were used. Bone marrow samples from 39 newly diagnosed AML patients were obtained from 

the Chinese Hospital, Hong Kong. 

 

Cytotoxicity assay 

Cell lines or sorted AML blasts from patients were re-suspended in complete media and 2x105 

AML blasts or 0.5x105 cell lines were added to each well of 96 well plates. On day 1, BCT-

100 was added at final concentrations of 0, 200, 400, 600, 800, 1000, 1500, 2000 or 4000 

ng/mL to triplicate wells. The cytotoxicity of cytarabine (500 ng/mL) was also tested in 

combination with BCT-100. Cells were incubated for a further 72 hours. The effect of arginine 

deprivation was similarly tested by culturing AML cell lines and patients’ blasts in SILAC 

arginine free RPMI-1640 (Fisher Scientific), 10% heat-inactivated arginine free fetal bovine 

serum (Fisher Scientific), glutamine (1x) (Sigma) and sodium pyruvate (1x) (Sigma) . 

Flow cytometric analysis 

Cells from cell lines and patient samples were collected and labelled with propidium iodide  

(PI) to assess viability by flow cytometry. The relative percentage of viable cells at the end of 

the assay (72hours) was calculated using the following formula: (mean no. of viable blasts 

recovered in treatment wells/mean no. of viable blasts in untreated wells x 100).  Apoptosis 
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was estimated by cells being re-suspended in 1x Annexin Binding Buffer and labelled with 7-

AAD and Annexin conjugated to phycocyanin (FITC) (FITC Annexin V Apoptosis Detection 

Kit I, BD Pharmingen, Cat. No. 556547). The cells were analyzed with a Cyan flow analyser 

(Beckman Coulter) using FlowJo software (Tree Star Inc.). The 50% inhibitory concentration 

(IC50) is defined as the concentration of BCT-100 that killed 50% of the viable cells at the 

termination of the assay.  

Cell cycle analysis was performed using propidium iodide (PI) staining and flow cytometry. 

1x106 cells/well incubated with RPMI 10% with or without BCT-100 (600 ng/mL) in  24 well 

plates for 72 hours were harvested, washed twice in PBS and fixed in cold  ethanol for 1h at 

4oC. Following washing with PBS, cells were stained with PI solution and 50µl of RNase A 

stock solution (10g/mL, Invitrogen)  at 4oC for 3 hours before analysis with a Cyan flow 

analyser in combination with ModFit software. 

To investigate effects of AML blast proliferation, Carboxyfluorescein succinimidyl ester 

(CFSE) labelled AML blasts, were cultured in the presence or absence of BCT-100 (600ng/ml) 

for 72 h. Propidium iodide added to allow viable cells to be gated on flow cytometry. Cell 

proliferation was determined according to CFSE dilution. 

 

AML murine xenografts 

NOD/Shi-scid/IL-2R SCIDnull (NOG) mice aged 10-14 weeks were irradiated with 1.25 Gy. 

One day later  5x106 HL60 leukaemia cells were injected into the tail vein. 5mg/kg BCT-100 

was injected intraperitoneally (i.p.) twice weekly. A second group of mice were treated with 

25mg/kg cytarabine (i.p. once weekly).  Bone marrow was harvested from the leg  bones of 

mice sacrificed after 5 weeks of treatment. AML engraftment was defined by the detection of  

human CD45+ cells  using flow cytometry. 
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Immunoblotting 

Following cell lysis (20nM Tris-Hcl pH7.5, 150nM NaCl, 2mM EDTA, 1.0% triton X-100 and  

protease and phosphatase inhibitors Roche Applied Science, Indianapolis, IL) equal amounts 

of protein were loaded onto 12% Tris-Glycine SDS-PAGE (BioRad) gels and transferred to 

PVDF membranes. Hybridisation was carried out using antibodies to PARP, caspases -3, and 

-9, LC3 (Cell Signalling), and actin (Sigma). HRP-conjugated secondary antibodies, goat anti-

rabbit (Cell Signalling), and sheep anti-mouse (GE Healthcare) were used for blots, which were 

developed with ECL substrate (BioRad) and exposed on Kodak film.   

 

Transmission Electron microscopy 

AML blasts were treated with BCT-100 (600ng/ml) in culture for 72hours. Following 

harvesting they were fixed in 2.5% glutaraldehyde followed by 1% osmium tetroxide. The 

samples were dehydrated through ethanol and embedded in propylene oxide/resin mixture at 

60°C for 16h prior to sectioning at 80 nm in thickness and placement on 300 mesh copper slot 

grids for examination by transmission electron microscopy. 

 

Immunohistochemistry  

Paraffin-embedded tissue sections of bone marrow trephines from AML patients at diagnosis 

were deparaffinised and rehydrated. Antigen were demasked was performed in 50 mM Tris/2 

mM EDTA pH 9.0 using a Philips Whirlpool Sixth Sense microwave on a steaming program. 

Staining with anti-human argininosuccinate synthase (ASS; Abcam) and anti-human ornithine 

transcarbamylase (OTC; Abcam) using the Novolink Polymer Detection System (RE7280-K, 

Leica). Primary antibody incubation was performed overnight in a cold room. Sections were 

counterstained with Gill Nr 3 haematoxylin (Sigma Aldrich) and mounted in Aquatex (Merck). 

RNA sequencing 
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RNA was derived from 6 sensitive (P1, P3, P8, P9, P10, P12) and 6 (P11, P6, P4, P5, P7, P13) 

resistant AML patients’ blasts, as identified by IC50. Samples were prepared with the Illumina 

TruSeq RNA Sample Preparation Kit v2 by Oxford Gene Technologies (Oxford, UK). They 

were sequenced on the Illumina HiSeq2000 platform using TruSeq v3 chemistry, over 100 

cycles. Read files (Fastq) were generated via the manufacturer’s proprietary software. Reads 

were mapped by their location to the appropriate Illumina iGenomes built using Bowtie version 

2.02. Splice junctions were identified using Tophat v2.0.9. Cufflinks (version 2.1.1) was used 

to perform transcript assembly. Visualisation of differential expression results used 

Cummerbund. RNA-Seq alignment metrics were generated using Picard. A table of arginine 

related genes, concerned with arginine recycling and transport and associated pathways were 

constructed based on current knowledge of arginine metabolism. Genes were compared to 

demonstrate differences in Fragments Per Kilobase of transcript per Million mapped reads 

(FPKM) between resistant and sensitive cells and subtracted to demonstrate change  and 

direction in FPKM. Genes of interest were highlighted if the different in FPKM was +/- 1.96 

(2SD from mean). 

 

Statistical analysis 

A Wilcoxon-rank-sum test was used to determine the statistical significance of the difference 

in unpaired observations between 2 groups (GraphpPad Prism, USA).  Correlations between 

parameters were evaluated using Spearman rank correlation analyses. p values are 2-tailed and 

where values were <0.05,they were considered statistically significant. For combination studies 

of BCT-100 with cytarabine, the interaction effect of the two drugs was tested in a two-way 

analysis of variance (ANOVA).12 Analysis of synergism was assessed according to the Chou 

& Talalay method, using CompuSyn software  (ComboSyn Inc, NJ, USA).13 AML blasts from 

patients were cultured with BCT-100 alone (0, 200, 400, 600, 800, 1000ng/mL), cytarabine (0, 
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200, 400, 600,800,1000ng/mL) or both for 72hours. The percentage of viable cells relative to 

control after 72hours was measured by flow cytometry.Using this method a Combination Index 

(CI) at IC50 for individual patient samples is calculated, synergism is defined as CI < 1, while 

antagonism is CI > 1, and an additive effect is considered as CI = 1.   

 

Study approval 

 

In accordance with the Declaration of Helsinki, patient samples were obtained after written, 

informed consent prior to inclusion in the study. Regional Ethics Committee (REC Number 

10/H0501/39) and local hospital trust research approval for the study was granted for United 

Kingdom hospitals and at the Chinese University Hospital, Hong Kong. The Birmingham 

Biomedical Ethics Review Subcommittee (BERSC) approved all animal protocols in this 

study. Procedures were carried out in accordance with UK Home Office Guidelines. 

 

 

 

 

 

 

 

 

 

 

Results 

AML proliferation is dependent on arginine 



MUSSAI et al.  BCT-100 ARGINASE THERAPY FOR AML 

9 

 

AML blasts create an immunosuppressive microenvironment through arginase activity and 

release, contributing to AML growth and pathogenesis.14 However, the dependence of AML 

blasts on arginine for survival has not been reported. Arginine deprivation resulted in a 

profound decrease in the number of viable AML blasts, providing proof of principle that this 

amino acid plays a key role in blast viability (Figure 1a).  

 

Blood arginine levels are maintained by dietary consumption, protein turnover and endogenous 

synthesis from citrulline through an intestinal-renal arginine cycle.15-18 In mammalian cells 

arginine is imported from the microenvironment predominantly by a Na+-independent (System 

y+) family of transmembrane cationic amino acid transporters (CAT1, CAT2A, CAT2B, 

CAT3) with tissue-specific expression patterns.19 We identified that AML blasts express CAT-

1 and CAT2B, regardless of blast subtype, thus allowing AML blasts to utilise extracellular 

arginine (Figure 1b). 

 

To understand if AML blasts express the key arginine recycling enzymes ASS and OTC we 

examined 39 diagnostic patient samples by immunohistochemistry (Figure 1c, Figure 1d). Of 

29 adult AML samples 10% had no staining, 45% showed low, 24% showed moderate, and 

21% showed high ASS expression; whilst 0% had no staining 35% showed low, 55% showed 

moderate, and 10% showed high OTC expression. Of 10 paediatric AML samples 20% had no 

staining, 60% had low, and 20% had moderate ASS expression; whilst 20% had no staining, 

0% had low, 50% had moderate, and 30% had high OTC expression. One paediatric sample 

received a 0 score for both ASS and OTC. 

 

AML blasts can therefore lack one or both,  of the important enzymes for endogenous arginine 

synthesis. As such their dependence on extracellular arginine levels should become rate-
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limiting on many metabolic reactions and  protein synthesis thereby preventing proliferation. 

Proliferation of cultured AML blasts was arrested when arginine  fell below 10Consistent 

with these findings in  newly diagnosed patients, where AML disease burden is highest, plasma 

arginine concentrations is significantly lower than in healthy controls (mean: 131 M healthy 

vs 9.0 M AML patients; p=<0.0001) (Figure 1e). Together these findings highlight the 

dependency of AML blasts on extracellular arginine  - arginine auxotrophism. 

 

BCT-100 reduces the number of AML blasts in vitro and in vivo 

BCT-100 is a pegylated recombinant human arginase being investigated for the treatment of 

solid tumours.8 We first demonstrated BCT-100 catalyses a dose-dependent reduction in media 

arginine concentrations in vitro (Sup. Figure 1a). Arginine was reduced to <2M within 8 h at 

concentrations of 600ng/mL BCT-100 or higher.  

 

AML cell lines are sensitive to BCT-100 arginine depletion: IC50s ranged between 50 and 180 

ng/mL (Sup. Figure 1b).  No further decrease in cell number was seen by increasing 

concentrations of BCT-100 above 600ng/mL, consistent with the depletion of arginine at this 

drug concentration and the specificity of drug action. In vivo experiments previously 

demonstrated that a single BCT-100 dose results in a sustained depletion of plasma arginine 

levels persisting for 6 days.7   We confirmed that BCT-100 led to a significant decrease in 

plasma arginine (mean: 20 M healthy vs 8.5 M AML mice; p=0.0244) (Figure 2a) and 

treated mice had a significant reduction in AML engraftment (human CD45+ cells: median 

21% untreated vs 5% BCT treated, p=0.029) (Figure 2b), which was approximately equivalent 

to 25mg/kg cytarabine (median 6%). No evidence of toxicity or weight loss was observed 

(Figure 2c). 
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BCT-100 demonstrates activity against primary AML blasts from patients 

The activity of BCT-100 was tested against sorted, fresh blasts from 20 AML patients. Samples 

varied in response, ranging from  >95% cell death to completely resistant (Figure 3a).  IC50s 

ranged from 100ng/mL to 2000ng/mL (Figure 3b). In 5 samples < 50% death occurred, and no 

increase in activity was seen even with doses up to 16,000ng/mL, confirming that BCT-100 

does not act through off-target toxicity. Sensitivity to BCT-100 did not correlate with clinical 

characteristics. BCT-100 was also cytotoxic to 3 of the 4 relapse samples (P7, P14, P19, P20). 

This is the first report of the efficacy of arginine depletion against human AML blasts. 

 

BCT-100 synergises with cytarabine against AML blasts from patients 

Cytarabine is a key agent in AML chemotherapy protocols for adults and children20,21 However 

patient AML blasts can develop cytarabine resistance. Therefore a new drug which re-sensitises 

blasts to cytarabine may play a key role in future therapy.22,23 When BCT-100 was combined 

with cytarabine,  cytotoxicity that is greater than the sum of the 2 individual compounds alone 

was seen in AML samples (F(1,57) = 6.405, p<0.0001) (Figure 3c). Analysis of individual patient 

samples, showed that BCT-100 synergised with cytarabine (Combination Index <1) for almost 

all samples (Table 2). BCT-100 sensitivity correlated moderately with sensitivity to cytarabine 

(r=0.5182, p=0.0280), suggesting complementary mechanisms of activity of these two drugs. 

(Figure 3d). 

 

 

BCT-100  reduces intracellular arginine concentrations 

Having demonstrated above that BCT-100 reduces local arginine concentrations, we also 

showed that BCT-100 led to a significant decrease in AML intracellular arginine (p<0.0007) 

(Figure 4a).  Although BCT-100 is a relatively large molecule and acts extracellularly, some 
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BCT-100 molecules could also be internalised.  Using fluorescently labelled BCT-100, this 

drug conjugate bound to the cell surface of AML blasts and was internalised (Figure 4b, Sup. 

Fig 2). The percentage of surface bound BCT-100 increased moderately over time (Sup Figure 

3). No correlation was identified between the sensitivity of AML blasts and the percentage of 

internalised BCT-100. 

 

BCT-100 induces cell cycle arrest and death by necrosis in AML blasts 

Conventional chemotherapy agents lead to a reduction in leukaemia cell numbers through 

either cell cycle arrest or cell death. To investigate BCT-100 cytotoxicity and its mechanism, 

we show that arginine depletion leads to a significant arrest of AML proliferation (Figure 5a,b). 

Cell cycle analysis showed an increase in the percentage of cells in G0/G1, with decreases of 

those in S phase (Figure 5c and Figure 5d).  G0/G1 arrest was confirmed in the blasts of AML 

patients treated with BCT-100, by the relative increase in Cyclin A expression, and decreases 

in cyclin B and E, compared to untreated cells. (Figure 6a).  

 

Cell cycle arrest may result in either a steady-state of viable cells or in cell death. Examining 

cell morphology by TEM, BCT-100 caused cell death of AML blasts, with features more 

consistent with necrosis – including cell membrane permeabilisation and organelle 

enlargement (Figure 6b, and Supp Figure 4 top panel).24 In contrast cytarabine treated AML 

blasts showed nuclear fragmentation bodies characteristic of apoptosis. There was no evidence 

of cell death in treated normal T cells or monocytes, confirming the low toxicity against non-

malignant haematopoietic cells seen in adult early phase trials of BCT-100 (Supplementary 

Figure 4). 
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Non-specific growth factor withdrawal has been associated with induction of the intrinsic 

pathway of apoptosis in AML.25 BCT-100 did not induce any significant activation of the 

requisite effector caspases -9 and -3 or PARP cleavage (Supplementary Figure 5a).26 In 

addition no significant increase in PI+/Annexin+ cells were seen following BCT-100 treatment 

(Sup Figure 5b and 5c). Amino acid deprivation has also been associated with the induction of 

death by autophagy in AML, identified by the conversion of cytoplasmic LC3-I to 

autophagosomic LC3-II.27-30 No increase in LC3-II was seen following BCT-100 treatment, 

confirming the absence of autophagy seen in EM (Supplementary Figure 5d). Amino acid 

deprivation can induce the rapid production of reactive oxygen species which induce cell death, 

but no evidence for this was found following BCT treatment (Sup Fig 6a, data not shown).31   

 

Biomarkers of sensitivity to BCT 

Understanding characteristics of AML blasts which correlate with drug sensitivity is important 

for patient risk stratification.  Of the 20 AML samples tested for sensitivity to BCT-100 in 

vitro, ASS and OTC expression did not correlate with response to BCT-100, consistent with 

our previous reports in adult solid tumours (Sup Fig 6b). CAT 1 and CAT 2B expression did 

not correlate strongly with BCT sensitivity  (CAT1 r=0.11, p=0.74; CAT2B r=-0.31, p=0.41) 

(Figure  6c, 6d,  Sup Fig 6c). 

 

As multiple pathways, other than arginine recycling may be important in AML pathogenesis, 

we used RNA-sequencing to identify genes predictive of BCT-100 response. RNA was isolated 

from 6 sensitive and 6 resistant patient samples, based on their IC50s post treatment with BCT-

100.  (Figure 3b). We identified 20 genes which were differentially expressed between resistant 

and sensitive samples (Table 3) The top differentially expressed gene was EREG (epiregulin), 

which codes for a ligand of the epidermal growth factor family (EGF) capable of binding to 
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the EGF receptor and the ERBB family of tyrosine kinase receptors. Other genes of interest 

included ZIC5, which have a zinc finger protein known to be an upstream regulator of the Wnt 

pathway; EN2, a homeobox gene that regulates the forkhead box transcription factor FOXA2; 

HSPA6, a heat shock associated protein that seems to be associated with drug sensitivity in 

AML; and RGL3, a paralog of RASGRF2. 

 In comparing FPKM between resistant and sensitive cells (Table 4), there were 2 differentially 

expressed arginine pathway associated genes. Over-expression of the AKT1 gene (FPKM = 

7.1) was observed in sensitive cells, although there was no change in MTOR gene expression 

(FPKM=-0.704). Type I arginase (ARG1,FPKM=8.87) was also overexpressed in sensitive 

cells as compared to resistant cells. No changes in arginine transporter genes (SLC7A1-4) or 

ASS and OTC were identified.  These findings identify pathways that might be predictive of 

sensitivity to therapeutic arginine depletion in AML, and shed light on new aspects of AML 

disease biology. 

 

 

 

 

 

 

 

Discussion 

Normal myeloid cells differ in their requirement for arginine, ranging from maintenance of 

neutrophil activity, through to the consumption of arginine by Myeloid Derived Suppressor 

Cells and inflammatory macrophages.32-34 We previously showed that AML blasts have a high 
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arginase activity, creating an immunosuppressive microenvironment.13 However the 

mechanism by which arginine is imported from the microenvironment by AML blasts had not 

been described. We identify that human AML blasts predominantly express the CAT-1 and 

CAT-2B isoforms. Interrogation of the 'R2: microarray analysis and visualization platform’ 

(http://r2.amc.nl) confirms the expression of these transporters across all FAB subtypes of 

AML. The role of the CAT family of proteins in haematopoiesis has only received limited 

study, identifying CAT-1 and CAT-2B as the main transporters responsible for arginine uptake 

in in vitro models of  non-malignant myeloid and erythroid cells.35-37  

Arginine can be produced within healthy cells, by the ornithine-citrulline-arginine cycle.38,39 

We identified that the majority of patients’ blasts are deficient in either ASS or OTC enzymes, 

strongly suggesting that AML blasts are reliant on extracellular arginine availability. The 

contribution of bone marrow stroma in producing arginine to support AML expansion is 

unknown, but analogous mechanisms exist. For example CNS neurons are reliant on astrocyte 

derived arginine, and asparaginine is produced by bone marrow stromal cells in cases of 

ALL.40,41  Additionally it has been shown that ASS has a tumour suppressor function in 

sarcoma,42,43 perhaps suggesting ASS may play a more fundamental role in the malignant 

transformation of blasts.  

These findings are consistent with the auxotrophic requirement of arginine by AML blasts. We 

identified that the need for arginine by AML blasts lead to a significant decrease in arginine 

concentrations both locally, but also in the plasma of patients at diagnosis.  To our knowledge 

this is the first report of a fall in plasma arginine due to a haematological malignancy and  

plasma arginine may correlate with AML disease burden. Decreases in plasma arginine 

concentrations occur in cervical cancer and renal cell carcinoma patients.44,45   Physiological 

compensation  through protein breakdown, contributing to cancer induced cachexia, and 

http://r2.amc.nl/
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arginine recycling by the intestinal-renal axis may try to compensate for lowered arginine 

levels.46  

Since arginine is essential for proliferation and the maintenance of AML viability,  arginine 

starvation by the pegylated recombinant arginase BCT-100 should be cytotoxic to AML, as in 

other tumours types. Normal human arginase has limited clinical value because of a short 

plasma-half life.7 The addition of a 5000 MW polyethylene glycol molecule (PEG) 

significantly increases the plasma half-life of arginase 1 from 10-20 min to up to 3.5 days in 

man with minimal loss of enzyme activity.8 

We report for the first time that the majority of AML patients’ blasts from children and adults, 

including those at relapse, are sensitive to arginine depletion, leading to  necrotic cell death. 

BCT-100 may be internalised by AML blasts, consistent with other pegylated molecules in 

myeloid cells, which would further contribute to  low intracellular arginine concentrations.47 

BCT-100 can work in combination with cytarabine. Cytarabine in its triphosphorylated form 

is a substrate for DNA polymerases and is incorporated into phosphodiester linkages in the 

DNA strand. The addition of subsequent deoxynucleotides are inhibited, resulting in S-phase 

arrest and cell death.20,21 As BCT-100 may induce G0/G1 arrest, the synergistic effect of the 

two agents may be due to their targeting of different phases of the cell cycle. Similar findings 

have been described against T-ALL.48 Non-malignant cells show little cytotoxicity to BCT-100 

because the cells tend to become quiescent, a state they can survive in for prolonged periods, 

due to intact restriction (R) checkpoints.49,50 However tumour cells are less tolerant of this 

condition, and metabolic stressors may induce G1 cell cycle arrest and  ultimately death by 

necrosis in tumour cells.51 Tumour-specific arginine requirements and the concurrent use of 

drugs to drive cell death along a particular mechanistic pathway may explain tumour-specific 

effects of arginine depletion.52-54 
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RNA sequencing of sensitive and resistant samples identified 20 genes which predict response 

to arginine depletion. Pathway analysis confirmed that expression of arginine recycling or 

transport molecules did not correlate with sensitivity to arginine depletion. Most intriguing was 

the finding that epiregulin (EREG), was differentially expressed, with arginase sensitive AML 

overexpressing EREG. Overexpressed EREG has been linked to dysregulation of MAPK 

signalling via the EGF pathway as well as the ERBB pathway, and this overexpression in the 

sensitive cells may reflect an underlying drive towards the MAPK/ERBB pathways.55,56 

Conversely, in the arginase resistant cells, over-expression of the heat shock protein HSPA6 

was demonstrated, suggesting that this may be a mechanism by which these cells attain 

resistance, especially in light of the finding that HSP inhibition is cytotoxic to AML.57 EREG 

and EGFR signalling, as well as the heat shock protein family, play key roles in solid tumour 

cell proliferation. Small molecule inhibitors are currently under development in AML to target 

these pathways, providing the potential for rationale combinations of other drugs with BCT-

100 for maximal anti-leukaemia effect.58,59  

The findings could important translational consequences for a disease which is in desperate 

need of new therapies. Although small molecule arginase pathway inhibitors are available for 

laboratory use (NG-hydroxy-L-arginine: NOHA and L-NG-monomethyl arginine: L-

NMMA),14 their clinical application has been limited by the requirement for the molecules to 

be given together and by off-target toxicity in vivo. An alternative approach is through the 

depletion of arginine from the microenvironment, thus starving AML blasts of this key amino 

acid.  

Pre-clinically BCT-100 has demonstrable activity against hepatocellular, melanoma and 

prostate carcinoma. A Phase I and II clinical trial has been completed in adults with refractory 

hepatocellular carcinoma, in which 1600U/kg BCT-100 (OBD) resulted in plasma arginine 

falling below 8µM (Adequate Arginine Depletion - ADD) and can be maintained for up to 5 
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or more days after a single treatment (the maintenance level of arginine in human blood is 

~40µM).  Interim analysis of patients enrolled on a Phase II trial in hepatocellular carcinoma 

suggest that patients experience significant improvements in overall survival, comparable to 

the standard of care (personal communication Dr P. Cheng, BCTI).8 For both paediatric and 

elderly AML patients in particular, concerns over treatment side-effects limits the type of 

therapies that can be given safely.60,61 In this study we show that arginine depletion is not 

cytotoxic to T cells and monocytes and is well tolerated in vivo. Clinically this is supported by 

the excellent toxicity profile of BCT-100 in trial with no evidence of increased patient 

infections.   

 Two alternative arginine depleting enzymes are  also undergoing early preclinical and clinical 

evaluation, but  have been subject to a number of limiting toxicities. The first is ADI-PEG, a 

pegylated form of mycoplasma derived arginine deiminase.62 ADI converts arginine into 

citrulline and ammonia, potentially leading to toxic hyperammonemia, and ensuing 

neutropenia.62 The bacterial origin of the molecule leads to neutralising antibody formation and 

intramuscular injection site hypersensitivity reactions, limiting continued drug administration 

and a failure to sustain adequately low plasma arginine.63,65 An alternative pegylated human 

arginase has also been described, in which the enzyme co-factor has been replaced with cobalt 

to increase arginase activity,53 but unfortunately seems from in early preclinical studies to be 

significantly more toxic. Thus the natural enzyme seems to be the best option. 

A similar paradigm of bacterial versus recombinant protein therapy occurred in paediatric ALL, 

with PEG-asparaginase. The bacterial derivative (Erwinia)  was eventually superseded by 

recombinant asparaginase, due to side-effects such as immunogenicity. Recombinant 

asparaginase has resulted in significant improvements in overall survival for children and its 

incorporation into upfront treatment protocols.66 
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The findings of our study highlight a role for arginine in AML pathogenesis and support the 

ongoing development of BCT-100 and similar arginase preparations in early Phase trials for 

patients with AML. 
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Table 1: Table of patient characteristics 

Patient ID Time point Age (years) Sex Blast count 
at diagnosis 
(x109/L) 

Cytogenetics 

P1 Diagnosis 1 M 92 ins(X;11) MLL 
rearrangement 

P2 Diagnosis 74 F 72 Complex, dup 3q, FLT3-, 
NPM1- 

P3 Diagnosis 73 F 16 Complex, 5q-, FLT3-, 
NPM1- 

P4 Diagnosis 63 M 43 Normal 
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P5 Diagnosis 6 M 9 Inv(16)(p13;1q22) CBFB-
MYH11 

P6 Diagnosis 6 M 16 Monosomy 7 

P7 Relapse 77 F 60 Del(16), Monosomy 7, 
FLT3-NPM1- 

P8 Diagnosis 20 F 7 t(8;21) 

P9 Diagnosis 22 F 13 Abnormal 7q and 17p, 
FLT3-,NPM1- 

P10 Diagnosis 5 F 54 Normal 

P11 Diagnosis 93 M 4 Normal 

P12 Diagnosis 69 M 33 Normal 

P13 Diagnosis 77 F 5 Normal 

P14 Relapse 58 M 47 Normal 

P15 Diagnosis 79 M 58 Normal 

P16 Diagnosis 76 M 31 Normal 

P17 Diagnosis 0.5 F 275 t(9;11)(p22;q23); MLLT3-
KMT2A 

P18 Diagnosis 53 F 54 Normal 

P19 Relapse 68 M 94 Trisomy 11, FLT3- 

P20 Relapse 63 M 87 Normal 

 

 

 

 

 

 

 

 

 

 

Table 2: Combination Index calculated according to the Chou-Talalay Method, using 

Compusyn software13 

 

Patient Chou-Talalay 
Combination Index 

P1  0.55 
P2 0.32 
P3 0.30 
P4 0.42 
P5 0.63 
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P6 0.13 
P7 0.81 
P8 0.27 
P9 0.43 

P10 0.43 
P11 0.02 
P12 0.48 
P13 0.37 
P14 0.27 
P15 0.04 
P16 0.81 
P17 0.21 
P18 0.99 
P19 0.36 
P20 0.35 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3: Table of ranked gene expression in arginase sensitive vs. resistant cells as 

determined via RNA-seq 

Rank Gene Ensembl ID Name log2(fold_change) p_value q_value 

1 EREG ENSG00000124882 Epiregulin 4.61947 5x10-5 0.03 

2 CCL4 ENSG00000129277 Chemokine (C-C motif) ligand 
4 

-3.42043 5x10-5 0.03 

3 ZIC5 ENSG00000139800 Zic Family Member 5 >30 5x10-5 0.03 

4 EN2 ENSG00000164778 Engrailed homeobox 2 >30 5x10-5 0.03 

5 HSPA6 ENSG00000173110 Heat Shock 70kDa Protein 6 -4.11747 5x10-5 0.03 
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Table 4: Table of Fragments Per Kilobase of transcript per Million mapped reads (FPKM) for 

resistant vs. sensitive AML lines for arginine related genes  

 

Key: FPKM = Fragments Per Kilobase of transcript per Million mapped reads 

 

6 RGL3 ENSG00000205517 Ral Guanine Nucleotide 
Dissociation Stimulator-Like 3 

>30 5x10-5 0.03 

7 C17orf98 ENSG00000214556 Chromosome 17 open reading 
frame 98 

>30 5x10-5 0.03 

8 RP11-65C6.1 ENSG00000217684 ribosomal protein S3a 
pseudogene  

>30 5x10-5 0.03 

9 EIF3EP2 ENSG00000224674 eukaryotic translation 
initiation factor 3, subunit E 
pseudogene 2 

>30 5x10-5 0.03 

10 RP1-272E8.1 ENSG00000225066 X chromosome processed 
pseudogene 

>30 5x10-5 0.03 

11 AC009313.2 ENSG00000232337 Pseudogene >30 5x10-5 0.03 

12 AC007386.2 ENSG00000237638 Pseudogene >30 5x10-5 0.03 

13 DDR1-AS1 ENSG00000237775 DDR1 antisense RNA 1 >30 5x10-5 0.03 

14 IGKV1-17 ENSG00000240382 immunoglobulin kappa 
variable 1-17 

>30 5x10-5 0.03 

15 OR10J2P ENSG00000248642 olfactory receptor, family 10, 
subfamily J, member 2 
pseudogene 

>30 5x10-5 0.03 

16 RP11-
263I1.1 

ENSG00000248659 lncRNA >30 5x10-5 0.03 

17 CIR1P1 ENSG00000253146 Corepressor interacting with 
RBPJ, 1 pseudogene 1 

>30 5x10-5 0.03 

18 NF1P1 ENSG00000258997 Neurofibromin 1 pseudogene 
1 

>30 5x10-5 0.03 

19 RP11-
476D10.1 

ENSG00000260943 lncRNA >30 5x10-5 0.03 

20 RP11-
152O14.1 

ENSG00000261749 lncRNA >30 5x10-5 0.03 
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Figure 1: AML blasts are auxotrophic for arginine 

a) AML patients’ blasts and AML cell lines were cultured in complete or arginine depleted 

media. The viability of AML blasts from patients and cell lines was assessed by flow cytometry 

after 72hours. Arginine depletion leads to a decrease percentage of viable blasts. 

Representative of two independent experiments b) Expression of CAT-1, CAT-2A, and CAT-

2B in blasts from 10 patients was confirmed by qPCR. Patients are identified by unique 

symbols, which are used consistently throughout the manuscript. c) Staining of 39 bone marrow 

samples from AML patients at diagnosis with haematoxylin eosin (left panel), anti-OTC (centre 

Ensembl Gene ID Gene Resistant FPKM Sensitive FPKM Change in FPKM Direction 

ENSG00000007171 NOS2 0.000 0.000 0.000 - 

ENSG00000118520 ARG1 1.471 10.333 8.862 Over 

ENSG00000081181 ARG2 0.398 0.054 -0.344 - 

ENSG00000126522 ASL 2.248 2.522 0.274 - 

ENSG00000130707 ASS1 0.062 0.036 -0.026 - 

ENSG00000036473 OTC 0.000 0.078 0.078 - 

ENSG00000139514 SLC7A1 0.705 0.295 -0.410 - 

ENSG00000003989 SLC7A2 0.028 0.309 0.281 - 

ENSG00000165349 SLC7A3 0.000 0.003 0.003 - 

ENSG00000099960 SLC7A4 0.001 0.001 0.000 - 

ENSG00000142208 AKT1 5.602 12.701 7.100 Over 

ENSG00000198793 MTOR 1.560 0.856 -0.704 - 

ENSG00000121879 PIK3CA 1.327 0.741 -0.586 - 
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panel), and anti-ASS (right panel). Representative marrows from two patients showing positive 

antigen staining (upper) and negative antigen staining (lower). d) Histoscores of ASS and OTC 

staining in adult and paediatric AML bone marrow samples e) Plasma from 20 AML patients 

at diagnosis and 16 healthy donors were analysed for arginine concentration by ELISA. Plasma 

arginine levels are significantly lower in newly diagnosed patients (p<0.0001). 

 

Figure 2: BCT-100 arginine depletion reduces the number of viable AML blasts in vitro 

and in vivo 

a) Plasma from control and  BCT-100 treated NOG mice were collected after 14 days. The 

concentration of arginine was determined by ELISA. BCT-100 significantly lowers the plasma 

arginine concentration in vivo (p<0.0244). b) NOG mice were injected with HL-60 AML 

blasts. BCT-100 (5mg/kg) or cytarabine (25mg/kg) was given i.p. injection twice a week. Bone 

marrow was sampled from the femurs after 5 weeks to assess hCD45+ cells by flow cytometry. 

BCT-100 leads to significantly lower AML engraftment (p=0.029), equivalent to cytarbine 

treatment. Data are representative of 2 independent experiments. c) Untreated and BCT-100 

NOG mice engrafted with HL-60 AML showed no significant difference in body weight in 

response to  treatment 

 

Figure 3: BCT-100 is cytotoxic against primary blasts from patients 
 

a) AML blasts from 20 newly diagnosed patients were cultured with BCT-100 (0-4000ng/mL) 

for 72hours. The percentage of viable blasts relative to untreated was determined by flow 

cytometry. BCT-100 leads to a dose-dependent decrease in AML blast viability. b) IC50 values 

for the activity of BCT-100 against AML patient blasts are shown. c) AML blasts from patients 

were cultured with 600ng/mL BCT-100 (OBD) alone, 500ng/mL cytarabine or both for 

72hours. The percentage of viable cells relative to control after 72hours was measured by flow 

cytometry. BCT-100 cytotoxicity is synergistic in combination with cytarabine (BCT vs 

combination p=0.0054; cytarabine vs combination p=0.0059.2-Way ANOVA: F(1,57) = 6.405, 

p<0.0001). d) The percentage of viable cells following treatment with 600ng/mL BCT-100 and 

500ng/mL cytarabine was correlated. Sensitivity to BCT-100 correlates moderately with 

sensitivity to cytarabine (r=0.5128, p=0.0208) 

 

Figure 4: BCT-100 depletes arginine intracellularly 

a) Cell lines or patient samples were cultured with BCT-100 (600ng/mL) for 72hours. 

Intracellular arginine concentrations were measure by ELISA. BCT-100 causes a depletion of 

intracellular arginine. Data are representative of 2 independent experiments. b) Internalisation 

of BCT-100-AF647. AML blasts (top panel) and HL60 cells (lower panel) were incubated with 

fluorescently labelled BCT-100 for 8 hours. Unbound drug was removed with stripping buffer 

and extensive washing. Nucleus was stained with DAPI. Images of representative cells were 

collected by LSM510 system (Zeiss). Arrows indicate intracellular localisation of labelled 
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BCT-100; arrowheads indicate surface-bound drug. Scale 10um.Representative patient sample 

of 3 different patient samples.   

 

Figure 5: BCT-100 halts proliferation and cell cycle arrest  

a) BCT-100 halts AML cell division. CFSE labelled cell lines were cultured in the presence of 

600ng/mL BCT-100. Representative histogram plots shown. Independent experiments were 

performed on two separate occasions. b) Cell lines were cultured with BCT-100 (0-

2000ng/mL) for 72hours. AML proliferation was measured by 3H-thymidine incorporation 

after 72hours. Data are representative of 2 independent experiments. BCT-100 causes a dose-

dependent decrease in AML proliferation. c) AML cell lines were cultured with 600ng/ml 

BCT-100. Cell cycle analysis was performed after 72 hours. BCT-100 increases the percentage 

of cells in G0/G1 arrest. Representative histogram plots for untreated and treated HL-60 shown. 

Independent experiments were performed on four separate occasions. d) Table showing the 

relative percentages of cells in G0/G1, S, G2/M based on flow cytometry cell cycle analysis. 

 

Figure 6: BCT-100 induced cell cycle arrest leads to necrotic cell death 

a) Relative expression of cyclins A, B, E in BCT-100 treated AML patient blasts compared to 

untreated controls (hashed line) were investigated by qPCR. Representative data of 4 patients 

shown.  b) AML blasts from patients were treated with BCT-100 (600ng/mL) or cytarabine 

(500ng/mL) for 72 hours. Analysis of cell death was performed by transmission electron 

microscopy. Representative micrographs of 2 out of 5 patients shown. Left panel – untreated 

cells. Middle panels – post treatment with 600ng/mL BCT-100. Features consistent with 

organelle enlargement and cell membrane permeablisation. Right panels – post treatment with 

500ng/mL cytarabine. Features consistent with nuclear fragmentation bodies and preserved 

membrane integrity. Experiments performed on 3 separate occasions. c) Sensitivity to BCT-

100 does not correlate with CAT1  expression (d) and only mildly with CAT-2B expression 

(r=-0.31, p=0.41)  
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Supplemental Methods 

 

Cell lines 

Cell lines were cultured in RPMI-1640 (Invitrogen, CA, USA) with 10% heat-inactivated fetal 

bovine serum, glutamine (1x), sodium pyruvate (1x) and Penicillin-Streptomycin (RPMI 10%) 

using T-75 flasks kept in a humidified air atmosphere with 5% CO2 at 37oC. 

 

Arginine ELISA 

Complete media was treated with BCT-100 as described above. Aliquots were collected after 

8, 24, 48, and 72h. The concentration of arginine within the media was quantified using a 

competitive enzyme linked immunoassay (Immunodiagnostik K7733) according to the 

manufacturers’ instructions. In brief this assay uses a competitive enzyme immunoassay in 

which L-arginine is derivatized from samples, and competes with an L-arginine-tracer for 

binding of polyclonal antibodies, in the microtiter wells. The concentration of the tracer-bound 

antibody is inversely proportional to the L-arginine concentration in the samples. Plasma 

collected from the blood of NOG AML murine xenografts was similarly tested. For 

intracellular concentrations of arginine, AML blasts were treated with BCT-100 (600ng/ml) 

for 72hours. Cells were collected, washed twice in PBS and counted. Equal numbers of treated 

and untreated cells were lysed using lysis buffer (20nM Tris-Hcl pH7.5, 150nM NaCl, 2mM 

EDTA, 1.0% triton X-100) and lysates tested for arginine concentration as above. 
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3H-thymidine incorporation  

The effect of BCT-100 on AML cell line proliferation was tested by 3H-thymidine 

incorporation. Cells were plated as above with BCT-100 for 50h and then 1Ci/well 3H-

thymidine (Perkin Elmer Life Sciences, Beaconsfield, UK) was added for 12-16 hours. 3H-

thymidine incorporation was measured using a Wallac Microbeta Jet 1450 reader (Perkin 

Elmer).  

 

 

PCR analysis 

RT-PCR was used to detect ASS and OTC  in patient-derived AML blasts. RNA was extracted 

using an RNeasy Mini kit (Qiagen). cDNA was prepared using SuperScriptTM III Reverse 

Transcriptase (Invitrogen) following the manufacturer’s instructions. The PCR products 

separated by electrophoresis on a 2% agarose gel were visualised by staining with ethidium 

bromide. Primers sequence (Eurofin) were: OTC forward 5'-tcccaattatcaatgggctg-

3' and reverse 5'-catgcttatccaaagtgtctg-3', ASS: forward 5'-

GGGGTCCCTGTGAAGGTGACC-3' and reverse 5'-CGTTCATGCTCACCAGCTC-3'. 

 

mRNA levels following treatment of blasts with BCT-100, were measured using 

Q-PCR. cDNA was generated from RNA of untreated and treated AML blasts from 

patients using the protocol described above. RT-Q-PCR was done in duplicate 

using FAST SYBR Green Master Mix (Applied Biosystems) and the Applied 

Biosystems 7500 Fast Real-Time PCR system. Analysis of gene expression was 
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calculated according to 2-
ΔT method described by Livak et al. plotted as arbitrary units 

of mRNA relative to GAPDH. Primer sequences (Eurofins) were:  

Cyclin A: forward 5'-AATGGGCAGTACAGGAGGAC-3'  

reverse 5'-CCACAGTCAGGGAGTGCTTT-3',  

Cyclin B1: forward 5'-CATGGTGCACTTTCCTCCTT-3'  

Reverse 5'-AGGTAATGTTGTAGAGTTGGTGTCC-3',  

Cyclin E: forward 5'-GGCCAAAATCGACAGGAC-3'  

reverse 5'-GGGTCTGCACAGACTGCAT-3',     

CAT1: forward 5'-ATGGGTGGAAACGCTGATGATAC-3'  

reverse 5'-ACCTTGCCTGTTAAGTCTGGGTG-3',        

CAT2A: forward 5'-TTAACACTTATGATGCCGTACTACCT-3'  

reverse  5'-GCAACTGGTGACTGCCTCTTACT-3',       

CAT 2B: forward  5'-ATGCCTCGTGTAATCTATGCTATG-3  

reverse  5'-ACTGCACCCGATGATAAAGTAGC-3';  

GAPDH: forward 5'-CCAGCCGAGCCACATCGCTC-3'  

reverse 5'-ATGAGCCCCAGCCTTCTC-3' 

 

Immunohistochemistry scoring 

Antigen expression in immunohistochemistry sections were assigned independently by 2 

experienced pathologists, as described by Nenutil et al.11 Briefly, to evaluate the 

immunostaining intensity each slide was examined on an Olympus BX51 microscope. 

Representative 400x magnification fields of at least 100 tumor cells were selected and 

photographed with an Olympus DP70 camera and accompanying image software. Fields were 

assigned an antigen staining intensity score of 0 = negative, 1= weak, 2 = moderate, 3 = strong. 
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The product of the percent positive cells and staining intensity was then derived to create a 

histoscore of 0-300 for each high power field. A final histoscore was then given to each 

specimen for each antigen. 

 

 

 

BCT-100 Internalisation and Confocal Microscopy 

BCT-100 was labeled with Alexa 647 using the Alexa-Fluro 647 Protein Labelling Kit 

according to manufacturer’s instructions (Molecular Probes A20173, Invitrogen, Carlsbard, 

CA). To measure the internalisation BCT-100, 2x105 AML cells were suspended in 200L of 

RPMI-10% with 1g/ml BCT-Alexa-647 on ice for 30 minutes to saturate the cell surface. The 

cells were placed on a 37o C heat block and incubated for 0, 1, 2, 4, and 8h. They were washed 

with FACS buffer and stripped with 0.2M glycine-HCl (pH 2.2, with 1mg/ml BSA) on ice for 

15 minutes, to remove unbound BCT-Alexa-647. After resuspension in 200mL of FACS buffer 

they were analysed by flow cytometry. To confirm internalization of BCT-Alexa-647, stripped 

AML cells were cytospun (1000 rpm) for 5 minutes, fixed for 30 minutes in 2% 

paraformaldeyde (Sigma), washed and mounted onto glass slides using DAPI-Fluromount G 

(Southern Biotech). Z-stacks of 0.7m sections were collected at 0.5 m intervals using 

LSM510-META confocal system with 63x/NA1.4 oil objective. 2.5D projections were 

produced using ZEN2009 software from Zeiss. XZ and YZ sections through Z-stacks were 

produced using ImageJ software. In instances where images of single cells are presented, these 

images are representative of the population of cells studied. 
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Reactive Oxygen Species (ROS) detection 

To measure ROS production cells were cultured in the presence of 2.5 μM DCFDA (Molecular 

Probes/Invitrogen) for 30 min prior to analysis by flow cytometry as described above.  The 

Greiss Reaction (Cayman) was used to estimate reactive nitrate/nitric species.  

Supplementary Figures: 

S1: BCT-100 leads to arginine depletion and reduction in AML blast viability 

a)  Complete media was treated with BCT-100 (0-4000ng/mL). A dose- and time-dependent 

decrease in arginine concentration was determined after 72hours by ELISA. The OBD was 

determined as 600ng/mL in vitro. Representative of 2 independent experiments. b) Cell lines 

were cultured with BCT-100 (0-2000ng/mL) for 72hours. The percentage of viable cells 

relative to untreated controls was determined by flow cytometry. BCT-100 leads to a dose-

dependent decrease in AML cell line viability.  

 

S2: Internalisation of BCT-100-ALEXA647 into AML cells  

Internalisation of BCT-100-AF647 was confirmed by confocal microscopy. Z-stacks of 0.7m 

sections through individual cells were collected: HL60 (a) and AML5 (b). Three sections at 

various distances from the cell surface indicate intracellular localisation of BCT-100. 2.5D 

projections and XZ and YZ sections through the slices confirm intracellular distribution of the 

drug. 

 

S3: BCT-100 is internalised into AML blasts over time 

Internalisation of BCT-100-ALEXA647 into AML cell lines was confirmed by flow 

cytometery. Cell lines were incubated with labelled BCT-100 for 0,1,2,4, 8hours. Unbound 

drug was removed with stripping buffer and washing. Intracellular accumulation of labelled 

BCT was measured by flow cytometry. 

 

S4: Arginine depletion by BCT-100 is not cytotoxic to non-malignant haematopoietic 

cells. 

a) Cell lines, and patient-derived monocytes and T cells were treated with BCT-100 

(600ng/mL) for 72 hours. Analysis of cell death was performed by electron microscopy. 

Representative micrographs. Left panel – untreated cells. Right panels – post treatment with 

600ng/mL BCT-100. HL60 post-treatment undergoing necrotic cell death. Monocytes and T 

cells display no features of cell death. Experiments performed on 3 separate occasions. 
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S5: BCT-100 does not activate apoptotic or autophagy pathways 

a) Cell lines were cultured alone (A), PEG (B), or BCT-100 (C). Expression of PARP, Caspase 

9, and Caspase 3 in whole cell lystaes was determined by immunoblotting. Actin was used as 

the housekeeping gene to ensure equal loading. No significant cleavage of PARP, Caspase 9 

or 3 is seen, indicating the apoptosis pathway was not activated. b) AML cell lines were treated 

with BCT-100 for 72hours and stained with Annexin-PI. Percentages of Annexin and PI 

positive cells, compared to untreated controls, is shown, as tested by flow cytometry. No 

significant increase in Annexin+PI+ cells is seen, confirming the lack of apoptosis. 

Representative of 3 independent experiments c) AML patient blasts were treated with BCT-

100 for 72hours and stained with Annexin-PI. Percentages of Annexin and PI positive cells, 

compared to untreated controls, is shown, as tested by flow cytometry. No significant increase 

in Annexin+PI+ cells is seen, confirming the lack of apoptosis. One representative patient 

sample of 5. d) Cell lines were treated with BCT-100 in the presence or absence of bafilomycin. 

Whole cell lysates were tested for LC3-I and LC3-II turnover by immunoblotting at 

0H,24H,48H, 72H of culture. No increase in conversion of LC3-I to LC3-II is seen, confirming 

the lack of autophagy induction above baseline 

 

S6: BCT-100 activity is not related to reactive oxygen species or arginine recycling 

enzyme expression 

a) AML patient blasts were treated with BCT-100 for 72hours and stained with DCFDA. No 

increase ROS species evidence by DCFDA staining is seen. Representative of 2 independent 

experiments b) ASS and OTC expression was determined by RT-PCR. Representative data 

from eleven patients are shown.  GAPDH was used as the housekeeping gene to ensure equal 

loading. c) Relative expression of CAT 1 and CAT2B in BCT-100 treated AML cell lines or 

patient blasts compared to untreated controls were investigated by qPCR. Representative data 

of 4 cell lines and 7 patients shown. 

 

 

 

 

 

 

 

 



MUSSAI et al.  BCT-100 ARGINASE THERAPY FOR AML 

47 

 

 

 

 



MUSSAI et al.  BCT-100 ARGINASE THERAPY FOR AML 

48 

 

 

 

 



MUSSAI et al.  BCT-100 ARGINASE THERAPY FOR AML 

49 

 

 

 



MUSSAI et al.  BCT-100 ARGINASE THERAPY FOR AML 

50 

 

 

 

 



MUSSAI et al.  BCT-100 ARGINASE THERAPY FOR AML 

51 

 

 

 

 

 



MUSSAI et al.  BCT-100 ARGINASE THERAPY FOR AML 

52 

 

 

 


