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Abstract: Land surface temperature (LST) is an important environmental variable for urban studies
such as those focused on the urban heat island (UHI). Though satellite-derived LST could be a useful
complement to traditional LST data sources, the spatial resolution of the thermal sensors limits the
utility of remotely sensed thermal data. Here, a thermal sharpening technique is proposed which could
enhance the spatial resolution of satellite-derived LST based on super-resolution mapping (SRM) and
super-resolution reconstruction (SRR). This method overcomes the limitation of traditional thermal
image sharpeners that require fine spatial resolution images for resolution enhancement.
Furthermore, environmental studies such as UHI modelling typically use statistical methods which
require the input variables to be independent, which means the input LST and other indices should be
uncorrelated. The proposed Super-Resolution Thermal Sharpener (SRTS) does not rely on any surface
index, ensuring the independence of the derived LST to be as independent as possible from the other
variables that UHI modelling often requires. To validate the SRTS, its performance is compared against
that of four popular thermal sharpeners: the thermal sharpening algorithm (TsHARP), adjusted
stratified stepwise regression method (Stepwise), pixel block intensity modulation (PBIM), and
emissivity modulation (EM). The privilege of using the combination of SRR and SRM was also verified
by comparing the accuracy of SRTS with sharpening process only based on SRM or SRR. The results
show that the SRTS can enhance the spatial resolution of LST with a magnitude of accuracy that is
equal or even superior to other thermal sharpeners, even without requiring fine spatial resolution
input. This shows the potential of SRTS for application in conditions where only limited meteorological

data sources are available yet where fine spatial resolution LST is desirable.


mailto:lgxxf@nottingham.ac.uk

Keywords: thermal sharpening, urban remote sensing, urban heat island, super-resolution mapping,

super-resolution reconstruction.

1. Introduction

The majority of the global population resides in urban areas and the urban population is expected to
further increase to more than 3 billion people by 2050 (Buhaug & Urdal, 2013). Cities are a focal point
for economic and social activities and, therefore, are closely related to human daily life (Madlener &
Sunak, 2011; Mirzaei & Haghighat, 2010). Attention is increasingly being given to the pursuit of more
comfortable living conditions in urban areas in the face of increasing urbanisation. There is, therefore,
growing interests in the factors that impact on human comfort and well-being in cities (Gago, Roldan,
Pacheco-Torres, & Orddiiez, 2013; Kleerekoper, Van Esch, & Salcedo, 2012; Oke, 1982; Quattrochi &

Luvall, 1999; Santamouris, 2013).

Many researchers have shown that the temperature of an urban area is generally higher than that of
its surroundings (Gago, et al., 2013; Mirzaei & Haghighat, 2010). This phenomenon is known as the
urban heat island (UHI) and this can be detrimental to human comfort. For instance, UHIs are often
linked to poor air quality (Sarrat, Lemonsu, Masson, & Guedalia, 2006), and they can increase the
energy demand of cities (M. Kolokotroni, Ren, Davies, & Mavrogianni, 2012; Maria Kolokotroni, Zhang,
& Watkins, 2007; Kondo & Kikegawa, 2003; Mirzaei & Haghighat, 2010; Santamouris et al., 2001). UHIs
can even contribute to human mortality rates, with thousands of heat-related deaths in cities every
year (Ashley, Lemay, & Lionel; Cleveland, 2007; Gosling, Lowe, McGregor, Pelling, & Malamud, 2009).
For example, some 50,000 deaths were caused by the 2003 European heat wave (Mirzaei & Haghighat,
2010). The UHI has been directly linked to adverse impacts on human health, and human thermal
comfort in urban areas is expected to decline with climate change (Cheung & Hart, 2014; Tan et al.,
2010). A considerable body of literature reports approaches to relieve the effect of the UHI with some
initiatives already in operation (Rosenzweig et al., 2006; Schmidt, 2006). However, causes of the UHI

can vary from place to place and thus there is no general or global understanding of, or solution for



problems associated with, UHIs (Mirzaei & Haghighat, 2010). It is acknowledged that temperature is
closely related to land cover and hence much research has focused on this aspect (Weng, 2009). Urban
areas represent a highly complex surface type which makes urban surface temperatures highly
variable, both temporally and spatially (Prata, Caselles, Coll, Sobrino, & Ottlé, 1995; Vauclin, Vieira,
Bernard, & Hatfield, 1982). Constructing high spatial resolution maps of urban temperature is an
important first step towards analysing the UHI and in working towards solutions for its negative

consequence for humans.

Traditional approaches to collect temperature data for mapping purposes are based upon weather
station records and mobile equipment such as thermometers or sensors mounted on vehicles
(Borbora & Das, 2014). Such approaches suffer from several major limitations. The spatial resolution
of weather station data is, for example, typically very coarse since stations tend to be distributed very
sparsely. For example, there are only 34 weather stations which record daily or hourly temperature
2

throughout Greater London, an area of 1572 km

(http://badc.nerc.ac.uk/googlemap/midas googlemap.cgi). Moreover, the temporal coverage of

these stations is inconsistent, which means not all of them can be used for any specific date. When it
comes to smaller cities such as Nottingham, UK, which covers around 422 km?, there are only six
weather stations recording daily or hourly temperature. Although mobile temperature sensors can
address the spatial resolution limitation to some extent by providing more measurements across a
city, this approach cannot give a fully synchronised view over the whole city (Weng, 2009), and is also

limited in terms of temporal coverage and can be a very costly undertaking.

Because of the problems with traditional methods, interest in remote sensing data for estimating land
surface temperature (LST) is increasing as this approach can acquire data across large areas rapidly
and regularly and has a much higher spatial sample density than weather station data. However,
effective UHI analysis requires detailed and accurate information on urban heat flux and energy

dynamics, and the relatively coarse spatial resolution of most spaceborne remote sensing systems
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may be inadequate for this purpose. For example, the spatial resolution of one of the most widely
used thermal image data sources, the Moderate Resolution Imaging Spectroradiometer (MODIS), is 1
km for the thermal bands, and 500 m/250 m for the optical bands. The spatial resolution of other
meteorological satellite sensors such as the Geostationary Operational Environmental Satellite (GOES)
can be as coarse as 4 km/8 km for the thermal band and 1 km/4 km for the optical bands. It can be
noticed that optical bands tend to have finer spatial resolutions than thermal bands because they
operate at shorter, more energy-rich, wavelengths. While some visible and near infrared (NIR) satellite
sensors can provide imagery with sub-meter resolution, currently the finest spatial resolution thermal
spaceborne image data is 60 m, provided by the Enhanced Thematic Mapper Plus (ETM+) on board
Landsat 7. Although the Landsat 8 was launched in 2013, its thermal sensor has a spatial resolution of
only 100 m, even coarser than that of Landsat 7. This relatively coarse spatial resolution may be
affected strongly by mixed pixels, whereby each pixel comprises a mixture of two or more land cover
types, especially in complex and spatially heterogeneous urban areas. Consequently, any attempt to
predict urban LST from spaceborne imagery may suffer from considerable inaccuracy. One solution to
this problem may be to use imagery from airborne sensors since these can provide considerably finer
spatial resolution data than satellite sensors, but such sources are costly and not routinely available.
A more realistic and achievable solution may be offered by ‘thermal sharpening’ methodologies,
whereby fine spatial resolution optical imagery is integrated with coarser resolution thermal imagery
to create a finer resolution thermal image output (Dominguez, Kleissl, Luvall, & Rickman, 2011; Zhan
et al., 2013). Some such approaches are well-established; the earliest thermal sharpening technique
dates back to the 1980s when, for example, Tom, Carlotto, & Scholten (1985) demonstrated such

analysis on Landsat TM thermal data.

Various thermal sharpening methods are now available for use, but the accuracy of different methods
can vary considerably for different land surface types. Given the major role of vegetation in
modulating urban temperatures, most thermal sharpening methods are based on the empirical
relationship between LST and a vegetation index (e.g. the Normalised Difference Vegetation Index
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(NDVI)). For instance, fine spatial resolution NDVI data derived from optical imagery may be combined
with coarser spatial resolution thermal imagery to predict LST at the finer resolution (Essa, Verbeiren,
Van der Kwast, Van de Voorde, & Batelaan, 2012). However, the relationship between LST and NDVI
can be unreliable under certain conditions such as where study areas have little vegetation present or
where atmospheric conditions have high water vapour content (Chen, Yan, Ren, & Li, 2010; H. Yang,
Cong, Liu, & Lei, 2010). In addition, the surface indices derived from remote sensing data are widely
used as predictor variables in urban studies (e.g. UHI). Theoretically, the predictors in an analytical
model should be independent (Osborne & Waters, 2002). It might be difficult to achieve absolute
independence. However, the predictors for modelling should at least be as independent as possible.
If the LST is derived with the aid of a surface index, that index will have a high correlation with the
sharpened LST and may no longer be suitable for use as a predictor in a model together with the
sharpened LST. This reduces the range of appropriate predictors available for the modelling work, thus
limiting analysis. Further significant limitations of most current thermal sharpening methods are their
requirement for both coarse and fine spatial resolution data and that the target (sharpened) spatial
resolution is determined by the fine resolution input. That is, while it is possible to sharpen the coarse
resolution data to a target resolution between that of the coarse and fine spatial resolution data, it is
impossible to sharpen the coarse resolution data to a target resolution which is finer than the available
fine resolution data. Additionally, while some sensors do acquire both fine resolution optical imagery
and coarse resolution thermal imagery simultaneously (e.g. Landsat ETM+), this is not always the case.
Where land cover changes slowly the optical and thermal data may not need to be strictly
simultaneous. In this case, the data from different satellite sensors may be used. However, if a very
fine spatial resolution (<30 m) is required, the optical data is generally costly. In this paper, a method
is proposed to enhance the spatial resolution of satellite-derived LST maps that does not require a fine
resolution input and does not rely on any surface indices to sharpen the LST. It is based on two image
processing techniques which could be used to enhance image spatial resolution: super-resolution

mapping (SRM) and super-resolution reconstruction (SRR). Previous studies on SRM have focused on



enhancing the spatial resolution of land cover maps obtained from remotely sensed imagery. In this
paper, SRM is used to enhance the spatial resolution of image-derived emissivity maps, one of the
variables required to estimate LST from remotely sensed data. SRR has been widely used to generate
a fine spatial resolution image by using a set of coarse spatial resolution images. This approach seeks
to use the sub-pixel shifts between all the scenes to accumulate more detailed spatial information on
the imaged area. Here, SRR has been used to enhance the spatial resolution of both the thermal
radiance derived from the original satellite sensor image and atmospheric profiles involved in LST
estimation which can either be derived from satellite sensor data or from other sources. This is
achieved without use of a vegetation index. Many urban studies do not require ‘absolute’ temperature
of each pixel and instead simply need to show the spatial pattern of ‘relative’ temperature variation
across the study area (Weng, 2009). In this paper, the new SRTS is assessed for extracting spatial
patterns of LST relative to established thermal sharpening methods which typically require additional

data (e.g. vegetation index or fine spatial resolution image).

2. Super-Resolution Thermal Sharpener (SRTS)

The new thermal sharpening approach, which exploits SRM and SRR procedures, is hereby referred to
as the Super-Resolution Thermal Sharpener (SRTS). This method provides the novelty and benefit of
enhancing LST spatial resolution, but it also offers considerable flexibility since it can be implemented
using any of a range of standard methods to derive LST in the first place. For instance, standard single-
band (Qin, Karnieli, & Berliner, 2001) or split-window algorithms (Qin, Zhang, & Karnieli, 2001) can be

used to derive LST, while SRTS enhances the resolution of the derived LST product.

Broadly, there are three main categories of LST estimation methods with known emissivity for each
pixel in an image: (i) single-band methods, (ii) split-window methods which require imagery with two

thermal bands, and (iii) multi-band methods which involve three or more bands. Here, since this



research uses MODIS data which has two thermal bands, a split-window method (Mao, Qin, Shi, &
Gong, 2005) was used to estimate LST. This method has been shown to be relatively accurate and
simple, requiring only three inputs: radiance, emissivity and atmospheric transmittance. All of these
inputs are provided from the MODIS imagery. The SRTS operates essentially by enhancing the spatial
resolution of the inputs to the split-window algorithm, thus rendering a fine spatial resolution LST data
set. Initially, therefore, each of the three inputs must be processed independently before being
combined to derive LST. The structure of the SRTS is shown in figure 1. After the fine spatial resolution
inputs have been obtained from SRM and SRR algorithms, they are then input to the split-window

algorithm and fine spatial resolution LST can be derived.
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Fig 1. Workflow of the Super-Resolution Thermal Sharpener. CBEM represents the classification-based emissivity
method and HNN means the Hopfield neural network.

2.1 Enhancing the spatial resolution of emissivity maps

It is known that emissivity is a crucial variable for LST estimation (Li, Tang, et al., 2013; Li, Wu, et al.,
2013). The emissivity of a material is the ratio between the emittance of that material at temperature
T and the emittance of a blackbody at the same temperature. Many previous studies have used
spectral indices such as NDVI to calculate emissivity, based on the assumption that NDVI is associated

with emissivity. As mentioned above, if the surface index (e.g. NDVI) is used to sharpen the LST, the



derived LST may have high correlation with the surface index used, limiting the value of the index for
use in a later analysis of the fine resolution LST image. To avoid this problem, emissivity is derived
without using spectral indices. Instead, land cover is used as the variable that determines emissivity.
This approach assumes that each land cover class has a constant and predictable emissivity. First, land
cover classification is conducted on the optical remotely sensed image and then emissivity values (as
determined originally from laboratory tests) are allocated to each pixel according to its land cover
type. This approach is known as the Classification-Based Emissivity derivation Method (CBEM) (Snyder,
Wan, Zhang, & Feng, 1998). SRM may be incorporated into this emissivity estimation method to
enhance the spatial resolution of a land cover and so ultimately an emissivity map. Using soft
classification as an input (Foody, 1996), SRM exploits the class composition information of each pixel
to map land cover at a fine (sub-pixel) resolution often through some form of iterative spatial analysis
(Muad & Foody, 2012; Tatem, Lewis, Atkinson, & Nixon, 2001b). The final product is a fine spatial
resolution land cover map which allows the characterisation of emissivity at this fine resolution. The
zoom factor which determines the degree of sharpening achieved (e.g. sharpening or zooming from
input coarse 1 km resolution imagery to output fine 250 m resolution imagery has a zoom factor of 4)
can be specified by users. Various algorithms have been proposed for SRM (Boucher & Kyriakidis, 2006;
Boucher, Kyriakidis, & Cronkite-Ratcliff, 2008; Verhoeye & De Wulf, 2002), but the Hopfield Neural
Network (HNN) has proved popular(Tatem, Lewis, Atkinson, & Nixon, 2001a; Tatem, et al., 2001b).
Here, a HNN-based SRM technique was used (Tatem, et al., 2001a). The fine resolution land cover map
produced by SRM is then used to produce a fine resolution emissivity map which is used subsequently

to calculate a fine resolution LST image.

The basis of the HNN is detailed by Tatem et al. (2001b) but some salient issues are outlined here. The
structure of the HNN is designed as a representation of the fine spatial resolution image. Each neuron
represents a sub-pixel of the original coarse resolution image (a pixel of the fine resolution image).

For each class, there is a layer in which the number of neurons is the same as the number of the sub-



pixels of the original coarse resolution image. The HNN operates by minimising an energy function

while maximising the spatial correlation of all the neurons (Muad, 2011).

2.2 Enhancing the spatial resolution of radiance and atmospheric parameters

Radiance can be estimated from the thermal band of a sensor through the offset and scale factor
provided for the sensor, and atmospheric parameters can be obtained either from the satellite
imagery or weather station data (Qin, Zhang, et al., 2001). In this study, both of these variables are
first estimated at the image’s original (coarse) spatial resolution, and then the resolution is enhanced
through SRR. Traditionally, SRR reconstructs a fine spatial resolution image based on a series of coarse
spatial resolution images (Siu & Hung, 2012). Standard SRR methods exploit sub-pixel shifts between
multiple coarse resolution images, extracting information on high frequency details by projecting all
the coarse images to a sub-pixel grid. However, it is not always possible to obtain a series of images
over a short period of time. Thus, where the phenomenon of interest varies rapidly, as with
temperature, traditional SRR can be impractical. Instead, here, a learning-based SRR method which
involves a sparse representation model was used since this has no requirement for multi-temporal

imagery (Yang, Wright, Huang, & Ma, 2008; Zeyde, Elad, & Protter, 2012).

The sparse representation model uses a vector with very limited number of non-zero elements and a
matrix to represent another vector. Image can be expressed as one vector and thus the sparse
representation model is considered to be applicable for representing an image (Yang, et al., 2008). In
the sparse representation field, the vector with a small number of non-zero elements is called as

sparse vector, while the matrix is called a dictionary (Aharon, Elad, & Bruckstein, 2006).

The basis of image sharpening through sparse representation modelling is that the images at different
spatial resolutions share the same sparse vector (Yang, Wright, Huang, & Ma, 2010). This is the case

because the sparse vector actually represents the characteristics of the land surface covered by the



image, but the dictionary matrix is the description of the land surface by the image. Hence, images at
different spatial resolutions providing different descriptions of the surface use different dictionary

matrices.

Based on the above discovery about the shared sparse vector, the sparse representation modelling
based SRR method was developed (Yang, et al., 2008, 2010). This involves the derivation of dictionaries
for the fine and coarse spatial resolution images; training images are used for this purpose (Aharon,
et al., 2006; Zeyde, et al., 2012). These two dictionaries can then be used directly with images which
have the same statistical characteristics as the training images (Yang, et al., 2008). This means, if the
input image is a satellite-derived thermal image, such as in this study, the training images should be
the same type of images. Because the training procedure will generate a corresponding coarse spatial
resolution image for each training image, the training procedure does not require fine resolution
images. Instead, training images have no limitation on spatial resolution but just need to be the same

data type as the input image (Yang, et al., 2008).

3. Research methods and materials

This section outlines the established thermal sharpening methods that were used as the comparisons

to the SRTS as well as the study area and data sets employed.

3.1 Study area and data preparation

London was selected as the study area for its large area and complex composition. Attention focused
on four major surface land cover types of varying emissivity: impervious area, vegetation, water and
bare soil. The image data used was a MODIS image acquired on 26/05/2012 and a Landsat Thematic

Mapper (TM) image acquired on 25/05/2011. These near-anniversary images were used because
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concurrent MODIS and Landsat images were not available for analysis. The best temporal match within
the same calendar year was several month apart, with images affected significantly by cloud.

Therefore, anniversary images were felt most appropriate since they avoid any seasonal effects.

With the SRTS, MODIS optical bands 1 -7 with 500 m spatial resolution were used firstly to derive the
soft classification results by linear spectral unmixing (Mather, 2004), and then to obtain an emissivity
map through the CBEM; bands 2 and 19 with 1 km spatial resolution were used to derive atmospheric
transmittance; and thermal bands (31 and 32) at 1km resolution were used to calculate radiance. For
the other thermal sharpening methods, coarse (1 km) spatial resolution LST and the associated indices
were estimated directly from the 1 km MODIS data. The corresponding fine resolution indices are
extracted from Landsat TM imagery (30 m). The reference data used for correlation analysis with the
various sharpened LST outputs is the LST product from Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) with a spatial resolution of 90 m. ASTER data was used since this sensor
shares the same satellite platform as MODIS thus ensuring acquisition time and atmospheric
conditions are identical for both analysis and reference imagery. The Ordnance Survey (OS) Street
View map created from (0N and downloaded from Digimap

(http://digimap.edina.ac.uk/digimap/home) was used as another type of reference for examining the

accuracy of spatial distribution of the LST.

The target fine spatial resolution of the resolution-enhanced LST by each method in this experiment
was set as 50 m. As such the analysis has a zoom factor of 20 (since the original MODIS image has a
resolution of 1 km), larger than previous studies that have typically not exceeded 10 (Agam, Kustas,
Anderson, Li, & Colaizzi, 2008; Agam, Kustas, Anderson, Li, & Neale, 2007).If successful this method
allows the acquisition of LST with both high temporal and spatial resolution by sharpening MODIS
thermal imagery (which has a high temporal resolution) to a relatively high spatial resolution similar

to Landsat ETM+ thermal imagery (which has a low temporal resolution). This would aid monitoring
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applications. Therefore, all the fine resolution indices as well as the ASTER validation data were

resampled to 50 m using the nearest neighbour resampling algorithm.

3.2 Implementation of the SRTS and sharpening processes based on SRM or SRR only

The SRTS, on the one hand, firstly soft classified the MODIS band 1-7 to derive a series of fractional
images at 500 m resolution for each land cover class. Then the HNN based SRM method was conducted
based on those fractional images and output a classification map at 50 m resolution. Thereafter, the
CBEM was implemented for this resolution-enhanced classified map and the emissivity map at 50m

resolution was produced.

On the other hand, the sparse representation modelling based SRR method that the SRTS adopted
was conducted to the 1 km radiance and atmospheric transmittance derived from the MODIS data,
and output the 50 m radiance and transmittance images. Finally, all the 50 m emissivity, radiance and
transmittance were input to the split-window algorithm to generate a LST map with 50m spatial

resolution.

Here, to see the contributions of the SRM and SRR to the SRTS separately, thermal sharpening process
based on only SRM or SRR was also designed (hereafter referred as SRM-only and SRR-only). These
two processes only use one of the SRM and SRR in the thermal sharpening process of the SRTS. This
means only some of the inputs to split-window were sharpened to 50 m. The solution to the rest inputs
is to resample them by nearest neighbourhood sampling to make their image dimension the same as

the resolution-enhanced input to split-window algorithm.

3.3 Traditional thermal sharpening methods

The implementation of other chosen comparing thermal sharpening methods is introduced here. All

of them require both coarse and fine spatial resolution inputs. The coarse input in this experiment is
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the 1 km LST derived from the original MODIS data, while the fine resolution inputs are derived from

the resampled 50 m Landsat TM data.

TsHARP, adjusted stratified stepwise regression method (Stepwise) and pixel block intensity method
(PBIM), all make use of the relationship between LST and remote sensing indices, such as NDVI or
normalised difference of built-up area index (NDBI), to enhance the spatial resolution of the coarse
resolution LST image. The assumption underlying these methods is that the relationship between LST
and the selected index is scale-invariant. This means the relationship constructed between the coarse
resolution index and LST should be the same as that between a fine resolution index and LST (Agam,
et al., 2007). Traditional TsHARP is only based on the relationship between the NDVI and LST (Kustas,
Norman, Anderson, & French, 2003). Here, the work of Agam et al. (2007) is followed in which not
only NDVI is used; also used are the relationship of the fractional vegetation cover (Fc) and simplified
fractional vegetation cover (sFc) with LST. Also, different regression tools have been tested for TsHARP.
Thus, in the later results section, four results are presented for TSHARP with different combination of
index and regression tool, including the linear regression with NDVI, Fc and sFc, and the quadratic

regression with NDVI.

PBIM uses a fine spatial resolution LST image to sharpen a coarse LST image. The input coarse and fine
spatial resolution LST images, however, are not necessarily acquired on the same day, but simply need
to be acquired in the same season or month (Nichol, 2009). Stepwise uses NDVI, NDBI, Modified
Normalised Difference Water Index (MNDWI) and albedo as predictors to build a statistical
relationship with LST through an approach called stepwise multiple parameters regression (Zhu, Guan,

Millington, & Zhang, 2012).

Emissivity modulation (EM) enhances spatial resolution of LST by using a resolution-enhanced
emissivity image during the LST estimation procedure from the original thermal image (Nichol, 2009).

It uses a fine spatial resolution map of emissivity, which is derived from a classification of fine
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resolution optical imagery covering the same area of the thermal data through the CBEM, to sharpen

the coarse resolution LST (Snyder, et al., 1998).

3.4 Validation

There is no ‘standard’ accuracy for the validation of thermal sharpening methods, and thus the
validation of the proposed SRTS was in the comparing form with other existing popular thermal
sharpening methods which were introduced in section 3.3. The focus of the research was to derive an
enhanced ‘spatial’ representation of LST, rather than to necessarily calculate ‘absolute’ LST
measurements. This focus was necessary partly because of fundamental difficulties in determining
fully accurate LST values from remotely sensed imagery; however it has been shown that the spatial
pattern of LST is very useful in urban planning or UHI analysis (Weng, 2009). Therefore, validation was
conducted by comparing the ‘shape’ of objects with distinctive temperature characteristics, rather
than their actual ‘temperature’. To assess the accuracy of the SRTS comprehensively, the similarity of
both the statistical properties of the imagery and the spatial distribution of LST between predicted

and reference LST were tested in this study.

Two metrics were used for accuracy assessment: root mean square error (RMSE) of the boundary of
the selected object (which will be hereafter referred as boundary RMSE) and correlation coefficient
between the predicted fine spatial resolution LST and the reference fine resolution LST (ASTER LST).
The accuracy of mapping the boundary of an object was expressed as the RMSE of distance between
predicted and reference boundary. Here the calculation was based on the Euclidean distance from
equally spaced points with 50 meters interval along the predicted boundary to the reference boundary.
For this LST-distinctive objects with clear boundaries were required. Five water reservoirs and three
vegetated parks were chosen as the LST-distinctive objects for calculation of boundary RMSE. These

are all man-made objects and for the most comprise relatively straight or smooth boundaries
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representing features that are easily detectable. However, the objects do also contain some irregular
boundary features such as sharp corners and these represent features that are not easily detectable.
The existence of both simple and complex boundary features ensure a comprehensive test of the
ability of each method to characterise shape and location of LST. The boundaries of reservoirs and
parks on both the vector map and the derived LST images were extracted manually. Because TsHARP,
which is based on NDVI, is theoretically unavailable for water surface, only the boundary RMSE of

parks was used for comparison between different methods including TsHARP results.

4. Results and discussion

Analysis was conducted using the methods and data described in section 3, producing, in total, ten
fine (50m) spatial resolution LST images derived by (a) TSHARP_NDVI, (b) TsHARP_Fc, (c) TsHARP_sFc,
(d) TSHARP_quad, (e) Stepwise, (f) PBIM, (g) EM, (h) SRTS, (i) SRR-only, and (j) SRM-only. These were
compared against the ASTER-derived reference LST map and, in each case, correlation coefficient
between the sharpened LST and the ASTER LST was calculated (figure 2(a)). Also, average boundary
RMSE with its standard error of the LST sharpened by different thermal sharpening methods were
calculated based on different types of surface. Comparison of average boundary RMSE of parks
between all methods was shown in figure 2(b), while boundary RMSE of all extracted objects was

conducted on all methods except TsHARP (figure 2(c)).

Through the comprehensive comparison of different thermal sharpening methods by correlation
analysis between the thermal sharpeners and the reference, and boundary RMSE of the objects
extracted from the sharpened LSTs, it can be seen that the accuracy of the proposed SRTS is
comparable with other thermal sharpening methods. Given that the SRTS does not rely on any fine
resolution information while enhancing the spatial resolution of LST with a large zoom factor, this

indicates the value of the technique. The overall comparison of correlation coefficients shows that the
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SRTS obtained the second highest correlation with the reference, higher than most of the existing
thermal methods, indicating the statistical nature of the SRTS sharpened LST is more similar to that of

the reference LST than most other methods.
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Fig 2. Evaluation of thermal sharpening results. (a) Whole image correlation with reference data for ten
different thermal sharpening methods (b) Average boundary RMSE plus/minus 1x standard error of exacted
parks from LST sharpened by each method. (c) Average boundary RMSE plus/minus 1x standard error of all the
extracted objects from LST sharpened by all the methods except TsHARP. TsHARP_NDVI = TsHARP method
using linear regression and NDVI, TsHARP_Fc = TsHARP method using linear regression and Fc, TsSHARP_sFc =
TsHARP method using linear regression and sFc, TSHARP_quad = TsHARP method using quadratic regression
and NDVI, Stepwise = adjusted stratified stepwise regression method, PBIM = pixel block intensity modulation,
EM = emissivity modulation, SRTS = super-resolution thermal sharpener, SRR-only = thermal sharpening
procedure of SRTS only using SRR sharpened product, SRM-only = thermal sharpening procedure of SRTS only
using SRM sharpened product.

Through the average RMSE with its standard error of parks (figure 2(b)), it can be seen that, except
Stepwise which obtained a significantly small RMSE, the ability of SRTS on detecting boundary is
similar to those of all other methods because their RMSEs do not significantly different from RMSE of
the SRTS. Although the boundary RMSEs of parks of both EM and SRTS seem to be higher than that of

PBIM (figure 2(b)), which may suggest that they are not good at detecting clear boundary for
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vegetation, the boundary RMSE of all extracted objects (figure 2(c)) shows that the RMSEs of EM, SRTS

and PBIM are generally similar when other type of surfaces were considered.

All the above figures indicate that though the SRTS may be as good as Stepwise, it has the similar
accuracy of detecting boundary with most other methods. Moreover, this accuracy is achieved by SRTS
without any fine spatial resolution information during sharpening and this is the most important
priority of the proposed SRTS, as it could be implemented to any conditions no matter whether the

fine spatial resolution data is available.

In comparison of SRTS, SRR-only and SRM-only methods through correlation coefficient (figure 2(a))
and boundary RMSE of all extracted objects (figure 2(c)), it can be seen that the correlation between
the sharpened LST and the reference LST was enhanced largely by the combining usage of SRM and
SRR. The boundary RMSE of objects extracted from the LST sharpened by SRTS was also enhanced to
some extent. This might be because the blocky nature of the SRM-only result was balanced by
introducing the SRR to sharpen the radiance and atmospheric transmittance (figure 3(a)), while the
boundary definition in SRR result was enhanced by incorporating the SRM-processed emissivity (figure

3(b)).

322

Fig 3 Comparison of the LST derived by SRM-only method (a), SRR-only method (b) and SRTS (c). These are three
lakes in the study area where the surrounding area of the lakes are vegetation and impervious surfaces. The
spatial resolution for each image is 50 m.

The boundary RMSE is only based on some extracted objects, using for reflecting the ability of
methods on detecting exact boundary of objects. It could indicate the shape and locational accuracies

of the spatial distribution of LST from certain aspects. Nevertheless, the visual comparison of the
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entire LST image derived from all the methods may be able to provide a more straight forward and

comprehensive way to illustrate their ability on extracting spatial pattern of LST.

The sharpened LST images obtained from the SRTS, Stepwise, EM, PBIM and TsHARP with NDVI were
illustrated in figure 4 as well as the ASTER LST which was used as the reference data. It can be seen
that the spatial pattern of the SRTS sharpened LST is generally consistent with the ASTER LST.
Noticeably, this LST is sharpened without any fine spatial resolution information which is what all
other methods required for sharpening. The visual interpretation of the LST images derived by
different methods over the entire study area supports the conclusion that the accuracy of the SRTS is

competitive with other existing thermal sharpeners.

In total, the results show that SRTS is broadly comparable with the traditional thermal sharpening
methods. However, it is particularly important to recognise here that the SRTS uses only coarse
spatial resolution data to calculate LST, while the other, pre-existing methods all require fine spatial
resolution imagery as an input to identify LST-related factors such as vegetation. Thus, when the
imagery with the desired fine spatial resolution is not available or very costly for analysis, the SRTS
holds a major advantage over other thermal sharpening approaches, still enabling relatively high LST

mapping accuracy.

More importantly, the SRTS is not especially proposed for MODIS. Actually SRTS is a method frame in
which the structure can be altered according to different LST estimation method. For example, this
experiment use split-window algorithm proposed by Qin et al. (2001b) which require radiance,
emissivity and atmospheric transmittance as inputs. Thus the SRR was conducted to radiance and
transmittance while SRM was conducted to emissivity. However, if SRTS is used to Landsat TM
thermal data by using a single-window algorithm (Qin, et al., 2001a), the processing data for SRR will
only be the radiance, while the SRM will still be implemented for emissivity. Therefore, the SRTS can
be used for a wide range of data type and does not require the fine spatial resolution data for

sharpening. This provide the urban-related studies the possibility to derive a fine or very fine spatial
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resolution LST from a coarse or medium resolution data without requirement of additional fine

resolution input.

N

Fig 4 The sharpened LST images obtained from the different thermal sharpening methods for the entire study
area (Great London), of which are (a) SRTS sharpened LST, (b) ASTER LST, (c) EM sharpened LST, (d) Stepwise
sharpened LST, (e) TsHARP sharpened LST with NDVI, and (f) PBIM sharpened LST.

5. Conclusion

This paper introduced a new thermal sharpening approach for urban area: the Super-Resolution
Thermal Sharpener (SRTS). Results show that the SRTS can enhance the spatial resolution of LST and
achieve an accuracy that is comparable with existing thermal sharpening approaches. Importantly,
however, the SRTS uses only coarse resolution data input while the other methods require fine
spatial resolution data. Thus the SRTS holds considerable advantage over other thermal sharpeners

and offers much greater flexibility for application where data sources are limited. In addition, the
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zoom factor is no longer dictated by the fine resolution input but is set by users themselves. A
further strength and novelty of the proposed method is that the enhanced resolution LST is derived
independent from land cover related indices such as the NDVI, NDBI, or albedo, which may facilitate
later environmental analyses, such as UHI, which use the fine resolution LST image derived. Further
research will focus on addressing improving the locational accuracy of the boundary as well as
seeking to improve boundary smoothness by enhancing the accuracy of SRM. Nevertheless, the
significant potential of the proposed SRTS for enhancing the spatial resolution of LST when no
corresponding fine resolution data is available has been demonstrated. Importantly, the method
provides a convenient technique for application in future studies of urban climate, which require

information on spatial patterns of LST at both frequent temporal and fine spatial resolutions.
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