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Abstract 16 
 17 

Background 18 

In this review, we examine the potential of Zn-enriched fertilisers to alleviate human dietary Zn 19 

deficiency. The focus is on 10 African countries where dietary Zn supply is low and where fertiliser 20 

subsidies are routinely deployed on cereal crops.  21 

 22 

Scope 23 

Dietary Zn supply and deficiency prevalence were quantified from food supply and composition data. 24 

Typical effects of soil (granular) and foliar Zn applications on Zn concentrations in maize (Zea mays 25 

L.), rice (Oryza sativa L.) and wheat (Triticum aestivum L.) grains were based on a systematic 26 

literature review. Reductions in disease burdens attributable to Zn deficiency and cost-effectiveness 27 

were estimated using a disability-adjusted life years (DALYs) approach.  28 

 29 

Conclusions 30 

Baseline Zn supply in 2009 ranged from 7.1 (Zambia) to 11.9 (Mali) mg capita
-1

 d
-1

; prevalence of Zn 31 

deficiency ranged from 24 (Nigeria) to 66 % (Zambia). In reviewed studies, soil Zn application led to 32 

an increase in median Zn concentration in maize, rice and wheat grains of 23, 7 and 19 %; foliar 33 

application led to increases of 30, 25 and 63 %. Enriching granular fertilisers within current subsidy 34 

schemes would be most effective in Malawi, reducing DALYs lost due to Zn deficiency by 10 %. The 35 

cost per DALY saved ranged from US$ 624 to 5,893 via granular fertilisers and from US$ 46 to 347 36 

via foliar fertilisers. Foliar applications are likely to be more cost effective than soil applications due 37 

to fixation of Zn in the soil but may be more difficult to deploy. Zinc fertilisation is likely to be less 38 

cost-effective than breeding in the longer term although other micronutrients such as selenium could 39 

be incorporated. 40 
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Introduction 45 
 46 

Zinc (Zn) is an integral component of thousands of proteins for all organisms. Adult human bodies 47 

contain 1.5-2.5 g of Zn with a daily intake requirement of 10-14 mg (WHO and FAO 2004). The 48 

estimated prevalence of inadequate dietary Zn intake is >25 % in sub-Saharan Africa (Wessells and 49 

Brown 2012; Wessells et al. 2012; Joy et al. 2014). Dietary Zn deficiency can have a range of health 50 

impacts including increased risk of child mortality due to diarrhoeal disease and stunting (Salgueiro et 51 

al. 2002) and imposes considerable individual suffering as well as social and economic costs (Stein 52 

2010, 2014). An estimated 0.7 % of the global disease burden is attributable to Zn deficiency, rising to 53 

1.5 % in low income countries (WHO 2009). Factors contributing to Zn deficiency in humans include 54 

low consumption of animal products, high phytate intakes that inhibit Zn absorption and low 55 

concentrations of Zn in crops grown on Zn deficient soils (Cakmak et al. 1999; Sandstead 2000; 56 

Gibson 2012). Phytate refers to mixed salts of phytic acid (PA), the principal form of phosphorus (P) 57 

in cereal grains, and is a potent inhibitor of Zn absorption in the human gut. A PA:Zn molar ratio of 58 

>15 is commonly used to classify diets having low levels of bioavailable Zn.  59 

 60 

In crop plants, a leaf Zn concentration of 15-20 mg Zn kg
-1

 dry weight (DW) is typically required for 61 

adequate growth (Broadley et al. 2007). However, Zn deficiency in crops is widespread globally, in 62 

particular, due to low phytoavailability of Zn in soils. Such soils are commonly defined as having a 63 

Zn concentration extractable by ethylene diamine tetra-acetic acid (EDTA) or diethyl triamine penta-64 

acetic acid (DTPA) less than 1.5 and 1.0 mg kg
-1

 DW of soil, respectively (Trierweiler and Lindsay 65 

1969; Lindsay and Norvell 1978). Low phytoavailability of Zn can result from low soil Zn 66 

concentrations or the influence of soil characteristics that limit Zn solubility such as high pH values or 67 

large concentrations of available phosphate or CaCO3 (Brümmer et al. 1983; Graham et al. 1992; 68 

White and Zasoski 1999; Cakmak 2002, 2004; Alloway 2008; Lu et al. 2011). Deficiency of Zn on 69 

cultivated soils is widespread, affecting >50 % of soils in India, Pakistan and Turkey, >30 % of soils 70 

in China and most soils in Western Australia and Africa (Alloway 2008).  71 

 72 

Zinc fertilisers are widely used to improve crop yields where soil Zn phytoavailability is low (Ahmad 73 

et al. 2012). The first reports of using Zn fertilisers to ameliorate crop Zn deficiency were in peach, 74 

pecan and pineapple orchards (Hoagland 1948). However, major increases in arable crop production 75 

due to Zn fertiliser use are now well-established. For example, wheat grain yield increases of >600 % 76 

were reported in Central Anatolia in Turkey from the mid-1990s which returned economic benefits of 77 

ca. US$ 100 million annually in the following decade (Cakmak 2004). More recently, there has been 78 

research exploring the use of Zn fertilisers to increase Zn concentrations beyond that which is needed 79 

for maximum yield, to enrich the edible portions of crops for human health benefits (Rengel et al. 80 

1999; Genc et al. 2005; Ortiz-Monasterio et al. 2007; Broadley et al. 2007; Cakmak 2008; White and 81 

Broadley 2009, 2011). However, the cost-effectiveness of this approach has not previously been 82 

determined.  83 

 84 

Several Zn forms have been used in fertilisers, including Zn-sulphate (ZnSO4) and Zn-oxide. Such 85 

forms can be delivered either in combination with granular nitrogen (N) fertilisers or as a foliar spray. 86 

An advantage of enriching granular fertilisers is that farmers already using fertilisers can be reached 87 

with no extra labour or machinery required at the farm level, nor additional distribution infrastructure. 88 

However, plant uptake of soil-applied Zn is limited by a low availability or diffusion of Zn in certain 89 

soils, particularly those with high pH, organic matter or CaCO3 contents (Tye et al. 2003; Zhao et al. 90 

2014). For example, recovery of soil-applied Zn may be <1 % in calcareous soils (Lu et al. 2012). 91 

Thus, a more effective strategy for increasing grain Zn concentrations might be via foliar sprays. With 92 

foliar application, Zn is absorbed by the leaf epidermis, remobilized and transferred to the grain 93 

through the phloem (Fernández and Eichert 2009; White and Broadley 2011).  94 

 95 

Common soil fertility management practices can also affect soil Zn status and concentrations of Zn in 96 

the grain. For example, N application can increase Zn uptake, xylem transport and remobilization via 97 

the phloem, and hence the concentration of Zn in the grain (Erenoglu et al. 2002, 2011; Kutman et al. 98 

2010, 2011; Xue et al. 2012), while excessive P fertilisation can reduce availability of Zn in the soil 99 
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(Marschner 1993; Lu et al. 2011). Manzeke et al. (2012) reported that farmer fields in Zimbabwe 100 

receiving cattle manure or leaf litter in combination with NPK had greater concentrations of EDTA-101 

extractable Zn in soils and greater concentrations of Zn in maize grain compared to unfertilised fields 102 

or those receiving only NPK, while rotation with legumes was also reported to increase concentration 103 

of Zn in maize grain.  104 

 105 

The use of Zn-containing fertilisers to increase dietary Zn supply is one of several strategies to 106 

address dietary Zn deficiency. These include dietary diversification, provision of supplements and 107 

addition of Zn during food processing (Gibson et al. 2000; Shrimpton et al. 2005). Other agricultural 108 

strategies to increase the concentration of Zn in harvested grain include crop breeding for high-Zn 109 

varieties (Cakmak 2008; White and Broadley 2009, 2011; Bouis and Welch 2010), while soaking or 110 

‘priming’ of seeds in ZnSO4 solution might be more efficient than soil applications and confer yield 111 

benefits (Slaton et al. 2001; Harris et al. 2007; Harris et al. 2008) although increased Zn concentration 112 

in progeny grain is not consistently reported (Johnson et al. 2005). It may also be possible to breed 113 

lower PA concentrations into the grains of staple crops and the benefits of even marginal reductions in 114 

grain PA concentration on Zn bioavailability could be large at population scales (Joy et al. 2014). 115 

Interestingly, it has been reported that Zn-enriched fertilisers can decrease concentrations of PA in 116 

cereal grains while Zn deficiency may lead to increased P uptake and accumulation in plants 117 

(Loneragan et al. 1982; Erdal et al. 2002). 118 

 119 

The impact of public health interventions can be measured using a disability-adjusted life-years 120 

(DALYs) approach. A DALY is equivalent to a lost year of ‘healthy life’ and is the sum of years of 121 

life lost due to premature mortality and years of life lost due to a disability (YLD; Murray 1994). The 122 

YLD is the product of the number of incident cases, average duration of the disease and a disability 123 

weight to reflect the severity of the disease, which ranges between 0 (i.e. full health) and 1 (i.e. death). 124 

As there are limited resources available to invest in public health, a DALY approach allows direct 125 

comparison between different public health interventions to guide policy making and to increase the 126 

efficient use of scarce funds. Previously, Stein et al. (2006) estimated that biofortification via breeding 127 

for high-Zn rice and wheat varieties could save up to 55 % of the 2.8 million DALYs lost annually 128 

due to Zn deficiency in India at a cost of US$ 0.68 and 8.80 per DALY saved, for optimistic and 129 

pessimistic scenarios respectively. Fielder et al. (2013) estimated that fortifying maize meal with a 130 

premix containing vitamin A, iron and Zn at large-scale mills in Zambia could save 5,657 DALYs 131 

annually of which 1,757 were due to Zn deficiency, at a cost of US$ 401 per DALY saved. Similar 132 

studies have not yet been conducted for fertilisers and so the aim of this review is to assess the cost-133 

effectiveness of Zn fertilisers in reducing disease burdens due to dietary Zn deficiency.  134 

 135 

The focus of the review is sub-Saharan Africa because of the high incidence of Zn deficiency relative 136 

to other regions of the World (Lim et al. 2012; Wessells and Brown 2012). Specifically, we have 137 

focussed on 10 countries which routinely deploy fertiliser subsidy schemes (Burkina Faso, Kenya, 138 

Ghana, Mali, Malawi, Nigeria, Senegal, Tanzania and Zambia) or which have government control of 139 

imports (Ethiopia) as this offers a mechanism for mandating Zn-enrichment of fertilisers (Jayne and 140 

Rashid 2013; Wanzala-Mlobela et al. 2013).  141 

 142 

The first aspect of this review quantifies dietary Zn supply and deficiency prevalence for the 10 focus 143 

countries using food supply and food composition data, the latter adjusted according to cereal 144 

processing methods. The second aspect is a meta-analysis of published field experiments that 145 

investigate the effect of soil- and foliar-applied Zn fertilisers on Zn and PA concentrations in the grain 146 

of three staple crops: maize (Zea mays L.), rice (Oryza sativa L.) and wheat (Triticum aestivum L.). 147 

The third aspect of this study models the effect of enriching fertilisers with Zn on dietary Zn supplies, 148 

deficiency and associated disease burdens using a DALY framework. We model the effect of 149 

enriching subsidised fertiliser with Zn and compare it to a scenario in which subsidised and non-150 

subsidised fertilisers are enriched.  151 

 152 

Materials and methods 153 
 154 
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Baseline dietary Zn supplies and deficiency prevalence 155 

 156 

Baseline national dietary Zn supplies and deficiencies were estimated for 10 countries on the basis of 157 

food supply and composition data: Burkina Faso, Ethiopia, Ghana, Kenya, Malawi, Mali, Nigeria, 158 

Senegal, Tanzania and Zambia. Food supply and population data were downloaded from United 159 

Nations datasets (UNDSEA 2013; FAO 2014a). Food Balance Sheets (FBSs) compiled by the FAO 160 

record estimates of food supply for up to 92 edible items at a national level, representing net per 161 

capita food supply calculated from national production, trade, transport loses, storage, non-food uses, 162 

livestock feed etc., but with no adjustment for household waste or inter- and intra-household variation 163 

in access to food (FAO 2001). Data are now available for 2011, but 2009 was chosen as the reference 164 

year to match with available fertiliser usage statistics (Supplementary Table 1). The Institute for 165 

Health Metrics and Evaluation’s (IHME) estimates of DALYs lost due to Zn deficiency are based on 166 

the study of Wessells and Brown (2012) (Lim et al. 2012). Thus food composition data compiled by 167 

Wessells and Brown (2012) are used in the present study, including adjustments made due to 168 

processing of staple foods, such as milling and fermentation of cereals and cassava (Manihot 169 

esculenta Crantz; Supplementary Table 2). Food supply and composition data were combined in order 170 

to generate estimates of dietary Zn and PA supplies by food item (Wessells and Brown 2012; 171 

Supplementary Tables 2 and 3). National mean supplies of Zn and PA were estimated and the amount 172 

of absorbable Zn in the diet was calculated using the Miller equation (Miller et al. 2007; 173 

Supplementary Table 4). As assumed previously (Wessells and Brown 2012; Wessells et al. 2012), 174 

variation in individual intakes was captured through a coefficient of variation in absorbable Zn intake 175 

of 25 %. We adopted the approach employed in the Estimated Average Requirement (EAR) cut-point 176 

method, in that the proportion of the population below the mean national physiological requirement 177 

for Zn was assumed to be deficient.  178 

 179 

Effect of Zn-enriched fertilisers on concentrations of Zn and PA in the grains of maize, rice and wheat 180 

 181 

A systematic literature review was conducted in order to assess the impact of Zn fertilisers on Zn 182 

concentrations in major grains. The terms ‘zinc OR Zn AND biofortification’, ‘zinc OR Zn AND 183 

fertili*’, ‘zinc OR Zn AND application’, ‘zinc OR Zn AND concentration’, ‘zinc OR Zn AND 184 

response’, ‘zinc OR Zn AND uptake’, ‘zinc OR Zn AND soil’ and ‘zinc OR Zn AND foliar’ were 185 

queried in the search engines Web of Science (Thomson Reuters, New York, U.S.A.), Science Direct 186 

(Elsevier, Philadelphia, U.S.A.) and Google Scholar (Google Inc., California, U.S.A.). Further studies 187 

were identified by searching reference sections of review and research papers found using the search 188 

terms stated. Criteria for inclusion were that studies were published in a peer-reviewed journal, that 189 

Zn was added via either soil or foliar applications under field conditions, and that concentrations of 190 

Zn in the grain were reported for treatments and controls. Both rainfed and irrigated plots were 191 

included. A number of studies assessed Zn applications in combination with varying N or P 192 

application rates. In such instances, the treatment closest to 100 kg ha
-1

 yr
-1

 of N and 25 kg ha
-1

 yr
-1

 of 193 

P was included for consistency. The effect of Zn fertiliser was determined for maize, wheat and rice; 194 

insufficient studies were identified to allow a similar systematic analysis of data on other crops. The 195 

most commonly used form of Zn in both granular and foliar fertilisers is ZnSO4.7H2O. Other forms of 196 

Zn including Zn-bonded amino acids may be more effective at increasing grain Zn concentrations 197 

(Ghasemi et al. 2013), however insufficient studies were identified to include alternatives to ZnSO4 in 198 

this review.  199 

 200 

The effect of Zn fertiliser was quantified as concentration of Zn in the grain at harvest as a percent of 201 

control and the median effect was used across studies by taking study site, crop type, cultivar, 202 

application method (soil or foliar) and application rate (kg Zn ha
-1

) as factors. Mean effect over 203 

seasons was taken for multi-season trials. Some studies examined the residual effect of Zn fertilisers 204 

but these data were not included; this is revisited in the Discussion. Studies examining the effect of 205 

different application timings of foliar sprays with later applications (i.e. post-flowering) appeared to 206 

have a greater impact on grain Zn concentration but possibly a lower impact on grain yield (Cakmak 207 

et al. 2010; Mabesa et al. 2013); in such instances, the treatment when Zn was applied at flowering or 208 

heading stages was taken for consistency.  209 
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 210 

Results from 26 journal articles were included in the literature review: four studies of maize, six of 211 

rice, 15 of wheat and one of maize and wheat (Table 1). Fourteen and four studies, respectively, 212 

reported effects of soil and foliar applications while eight reported effects of both soil and foliar 213 

applications. No studies were identified that reported the effect of Zn application via soil on PA 214 

concentration in the grain of rice, nor via foliar spray in maize. Preliminary analysis of results from all 215 

studies revealed that Zn application via soil and foliar routes tended to increase concentrations of Zn 216 

in the grain. However, larger application rates did not appear to increase concentrations more than 217 

smaller rates when comparing trials. This is likely to be due to the variety of soil characteristics 218 

encountered. The majority of studies did not report variance of Zn or PA concentration in the grain so 219 

it was not possible to perform a standard meta-analysis in which variance is used to weight the 220 

contribution of effect size (Field and Gillett 2010). For these reasons, results were pooled by crop and 221 

application method (soil or foliar) with the median effect on crop Zn and PA concentrations taken.  222 

 223 

Milling of maize, rice and wheat grains is common practice. It was assumed that the relative increase 224 

in Zn concentration in the whole grain and the endosperm fraction were equivalent (the assumption is 225 

revisited in the Discussion). Thus, studies that reported whole grain data were assumed to give a good 226 

prediction of the effect of Zn fertilisation on the Zn concentration of edible portions. Rice is most 227 

commonly eaten in its polished form; data for polished rice were used where available, otherwise, 228 

brown rice data were used.  229 

 230 

Effect of Zn fertilisers on Zn deficiency prevalence 231 

 232 

Four scenarios were modelled to quantify the impacts of agronomic biofortification with Zn on 233 

dietary Zn and PA supplies at national levels in the 10 focus countries:  234 

 235 

 the first scenario modelled a policy to enrich subsidised fertiliser, which would be easiest to 236 

implement given the pre-existing government involvement; 237 

 the second scenario modelled a policy to enrich subsidised and non-subsidised fertiliser; 238 

 the third scenario modelled a policy to introduce foliar fertilisation of cereals with a target of 239 

50 % coverage; and 240 

 the fourth scenario modelled a policy to introduce foliar fertilisation of cereals with a target of 241 

75 % coverage.  242 

 243 

All scenarios assumed that maize, rice and wheat crops were targeted. In Ethiopia, teff (Eragrostis tef 244 

(Zucc.) Trotter) was also included as this grain accounts for almost one-fifth of national energy 245 

consumption from cereals and ca. 40 % of national inorganic fertiliser consumption (CSA 2011; FAO 246 

2014a). Demand for fertiliser was also assumed to arise from millet (Eleusine coracana L. and 247 

Pennisetum glaucum L.), sorghum (various spp.), cocoa (Theobroma cacao L.), coffee (Coffea spp.), 248 

cotton (Gossypium spp.), palm oil (Elaeis guineensis Jacq.), sugarcane (Saccharum officinarum L.) 249 

and tobacco (Nicotiana spp.). Scenarios one and two assumed that fertiliser used as basal dressing was 250 

enriched using ZnSO4.7H2O to give a N:Zn mass ratio of 2:1. Assuming recommended application 251 

rates of N (see below) this would provide 23, 12, 20 and 12 kg ha
-1

 yr
-1

 of Zn for hybrid maize, local 252 

maize, rice and wheat, respectively. A compliance of 90 % was used to account for enforcement 253 

problems. Scenarios three and four assumed that 600 L ha
-1

 of 0.5 % (w/v) aqueous ZnSO4.7H2O 254 

solution was sprayed twice annually on maize, rice and wheat crops, supplying 1.36 kg ha
-1

 of Zn.  255 

 256 

The efficacy and costs of scenarios one and two are partly determined by the quantity of fertiliser 257 

enriched and the proportion of maize, rice, wheat and teff covered by this fertiliser. Fertiliser usage 258 

data were derived from the International Fertilizer Development Center (IFDC) for subsidised 259 

fertiliser consumption (IFDC 2013a) and total national fertiliser consumption (IFDC 2011, 2012a-f, 260 

2013 b,c; Supplementary Table 5) from which the supply of N was calculated. Fertiliser was assumed 261 

to contain 23 % N by mass where product information was not available. ‘Demand’ for N was 262 

calculated as the product of crop-specific fertiliser requirements and cropping areas of maize, rice, 263 
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wheat and cash crops (Supplementary Table 5). Cropping areas were derived from FAO production 264 

data (FAO 2014b; Supplementary Table 5)
1
. Half of maize production area was assumed to be hybrid 265 

varieties and half local varieties in all countries. Crop-specific recommended fertiliser application 266 

rates were identified only for Malawi, (Malawi Government Ministry of Agriculture and Food 267 

Security, date unknown, accessed 2014; Supplementary Table 5) and were applied to all countries for 268 

most crops. Teff was assumed to require the same N rate as wheat. Requirements for tea, coffee, palm 269 

oil and cocoa were identified through a literature search (FAO 1984; Grice 1990; Makono and 270 

Chanika 2008).  271 

 272 

Thus, the proportion of crops receiving Zn-enriched fertiliser in scenarios one and two was calculated 273 

as supply of N divided by demand for N (equation 1).  274 

 275 

, / ( )Zn s w a l a lP F q C A       (1) 276 

 277 

Where: 278 

PZn = proportion of crop receiving Zn-enriched fertiliser; 279 

Fs, w = national N usage (metric tonnes, t) via subsidised fertiliser (s) or subsidised and non-subsidised 280 

fertiliser (w);  281 

Ca-j = Cropping area of maize (a), rice (b), wheat (c), teff (d), millet (e), sorghum (f), cocoa (g), coffee 282 

(h), cotton (i), palm oil (j), sugarcane (k) and tobacco (l); 283 

Aa-j = Recommended N application rate (t ha
-1

 yr
-1

) for maize (a), rice (b), wheat (c), teff (d), millet 284 

(e), sorghum (f), cocoa (g), coffee (h), cotton (i), palm oil (j), sugarcane (k) and tobacco (l); and 285 

q = compliance factor (0 to 1).  286 

 287 

The effect of Zn fertilisers was modelled through changes to the concentrations of Zn and PA in the 288 

grains of maize, rice and wheat. The proportion of each crop receiving fertiliser was multiplied by the 289 

median effects of applied Zn on grain Zn and PA concentrations to generate new composition data for 290 

maize, rice, wheat and teff. Teff grain was assumed to have the same response to Zn-enriched 291 

fertiliser as wheat grain. National dietary Zn and PA supplies, quantity of absorbable Zn in the diet 292 

and estimated prevalence of Zn deficiency were re-calculated using the new composition data, 293 

assuming that composition of all other food items and quantity of food supply had not changed. The 294 

proportion of DALYs saved was assumed to equal the reduction in proportion of deficiency 295 

prevalence.  296 

 297 

Estimating the cost-effectiveness of an agronomic biofortification approach to addressing Zn 298 

deficiency in sub-Saharan Africa 299 

 300 

Baseline disease burdens attributable to Zn deficiency for the 10 focus countries were derived from 301 

the Global Burden of Disease Study in which a proportion of ‘diarrheal diseases’, ‘typhoid and 302 

paratyphoid fevers’ and ‘lower respiratory infections’ are attributed to Zn deficiency and assigned a 303 

‘disability weight’ (Lim et al. 2012; IHME 2014).  304 

 305 

The cost of enriching fertilisers with Zn was estimated assuming a wholesale retail price of 306 

ZnSO4.7H2O of US$ 500 t
-1

. Only the fertiliser used by maize, rice, wheat and teff was assumed to be 307 

enriched and, for soil applications, only the proportion applied as a basal dressing (Supplementary 308 

Table 6). The proportion of crops receiving basal fertiliser was assumed to equal the proportion of 309 

crops receiving fertiliser (equation 1). The cost of supplying knapsack sprayers was estimated for the 310 

foliar scenarios by assuming that knapsack sprayer sets cost US$ 150 per unit and that each would last 311 

10 years and cover 20 ha of cropland annually through sharing among farmers (Supplementary Table 312 

                                                      
1
 Total cereal production area in Ethiopia in 2009 was 9.2 * 10

6
 ha and teff appears to be included in the 

production sub-category ‘Cereals, nes’ (production area 2.6 * 10
6
 ha) rather than the sub-category ‘Millet’ 

(production area 0.4 * 10
6
 ha), contrary to the FAO’s own production definitions (FAO 2014c). ‘Cereals, nes’ 

production area was assumed to be solely teff. 
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6). Other implementation costs including agricultural extension services and the distribution of 313 

equipment and fertiliser were not considered.  314 

 315 

Results 316 

 317 
Baseline dietary Zn supplies and deficiency prevalence 318 

 319 

Dietary Zn deficiency is likely to be widespread in sub-Saharan Africa. Using national-level food 320 

supply and food composition data adjusted by common processing methods, we estimate a high 321 

prevalence of Zn deficiency in the 10 focus countries, ranging from 24 % in Nigeria to 66 % in 322 

Zambia (Table 2; Supplementary Table 4). The estimated large disease burden attributable to Zn 323 

deficiency is consistent with previous work. For example, IHME (2014) estimated that the burden of 324 

Zn deficiency in the 10 focus countries ranged from 161 to 1,219 DALYs lost 100 k population
-1

 in 325 

Ghana and Burkina Faso, respectively. This is two orders of magnitude greater than in the UK where 326 

it is estimated that <4 DALYs 100 k population
-1

 are lost due to Zn deficiency (IHME 2014).  327 

 328 

Effect of Zn-enriched fertilisers on concentrations of Zn and PA in the grains of maize, rice and wheat 329 

 330 

A summary of the studies included in the literature review is presented in Table 1. The trials 331 

combined a range of soil types and cultivars (Table 3; Supplementary Tables 7 and 8). In control plots 332 

(i.e. without application of Zn), concentration of Zn in maize grain ranged from 14.9 mg kg
-1

 DW on 333 

calcareous, Zn-deficient silty-clay-loam soils in Pakistan (Harris et al. 2007) to 22.5 mg kg
-1

 DW on 334 

Zn-deficient sandy-loam in Pakistan (Kanwal et al. 2010); concentration of Zn in brown rice (i.e. husk 335 

removed but grain unpolished) ranged from 9.9 mg kg
-1

 DW in Thailand (Phattarakul et al. 2012) to 336 

41.6 mg kg
-1

 DW in ‘high-Zn’, upland soil in the Philippines (Wissuwa et al. 2008); concentration of 337 

Zn in polished rice grain ranged from 12.3 mg kg
-1

 DW in pH 7.7 soils in Turkey (Phattarakul et al. 338 

2012) to 28.0 mg kg
-1

 DW in Zn-adequate soils in China (Wei et al. 2012); and concentration of Zn in 339 

wheat grain ranged from 6.6 mg kg
-1

 DW in borderline Zn-deficient soils with pH 7.8 in Iran 340 

(Khoshgoftarmanesh et al. 2012) to 40.2 mg kg
-1

 DW in Zn-adequate soils in India (Zou et al. 2012).  341 

 342 

The median increases in Zn concentration in the grains of maize, rice and wheat were, respectively, 343 

28, 11 and 18 % for soil application and 30, 24 and 63 % for foliar application (Table 4; Figure 1; 344 

Supplementary Tables 7 and 8). The result for maize with foliar-applied Zn is based on only one data 345 

point (Wang et al. 2012). Application of Zn-enriched fertilisers via the soil decreased PA 346 

concentration in the grain of wheat by 11 % while foliar application decreased concentration in the 347 

grain of rice and wheat by 1 and 13 %, respectively. No studies were identified that reported the effect 348 

of Zn application via soil on PA concentration in the grain of rice, nor via foliar spray in maize.  349 

 350 

Yield data are important to rule out the ‘concentration effect’ whereby lower yields may lead to 351 

greater Zn concentrations in the grain as the Zn taken up by the plant is distributed to fewer or smaller 352 

grains. This is particularly so for foliar applications as high concentrations of Zn in the spray solution 353 

could damage leaf cuticles (Eichert and Fernández 2012). Yield was reported for only 122 out of 273 354 

plots included in the systematic review so a consistent approach to excluding plots with low yield 355 

relative to control was not possible, although this is re-visited in the Discussion. Of the studies that 356 

reported yield data, soil application led to a median 10-11 % increase in grain yield for maize, rice 357 

and wheat, whereas foliar application had no obvious effect (Table 4; Supplementary Table 7). In 358 

addition, of the studies that did not report yield data by plot, Mabesa et al. (2013) found no significant 359 

difference in yield of rice due to foliar application of Zn, but also reported a significant negative 360 

correlation among different varieties between grain yield and grain Zn concentration, a relationship 361 

also reported by Wissuwa et al. (2008). Very high yield responses of >150 % of control were found in 362 

10 and four wheat data points for soil and foliar-applied Zn, respectively (Supplementary Table 7). 363 

All of these data points also exhibited high Zn concentrations in grains relative to controls, with Q1, 364 

median and Q3 of 170, 189 and 257 % for the soil-applied treatments and 252, 295 and 316 % for the 365 

foliar-applied treatments.  366 

 367 
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Effect of Zn fertilisers on Zn deficiency prevalence 368 

 369 

The effectiveness of the biofortification approach is greatly dependent on the coverage of fertilisers, 370 

i.e. the proportion of crops that would receive fertilisers enriched with Zn. Scenario one modelled the 371 

potential impact of Zn-enrichment of granular fertiliser currently distributed under national subsidy 372 

schemes. The Ethiopian Government control fertiliser imports so all fertiliser usage was considered 373 

under the ‘subsidised’ bracket. The percentage of cereal production receiving subsidised fertiliser 374 

was: Burkina Faso (2), Ethiopia (18), Ghana (6), Kenya (8), Malawi (24), Nigeria (10), Senegal (9), 375 

Tanzania (6) and Zambia (20) (Supplementary Table 5). Data for Mali were not available. The 376 

estimated reduction in DALYs lost due to Zn deficiency was lowest in Burkina Faso (<1 %) and 377 

greatest in Malawi (10 %) where there would be a 3 % increase in the mean amount of absorbable Zn 378 

in the diet (Table 5; Supplementary Tables 9 and 10).  379 

 380 

Scenario two modelled the potential impact of Zn-enrichment of all fertiliser currently used. The 381 

percentage of cereal production receiving both subsidised and non-subsidised fertiliser was: Ghana 382 

(24), Kenya (39), Malawi (39), Mali (14), Nigeria (22), Senegal (21), Tanzania (13) and Zambia (33) 383 

(Supplementary Table 5). Data for Burkina Faso were not available. The estimated reduction in 384 

DALYs lost due to Zn deficiency was lowest in Mali (3 %) and greatest in Malawi (15 %) where there 385 

would be a 5 % increase in the national mean amount of absorbable Zn in the diet (Table 5; 386 

Supplementary Tables 9 and 10).  387 

 388 

Scenarios three and four modelled the potential impact of foliar Zn application, covering 50 and 75 %, 389 

respectively, of maize, rice and wheat production. The response of grain Zn concentration to foliar Zn 390 

application was greater in wheat than in maize or rice and it was assumed that Zn concentration in teff 391 

grain responded as in wheat. Wheat and teff consumption combined was greatest in Ethiopia, (161 g 392 

capita
-1

 d
-1

; Supplementary Table 1), where the increase in mean amount of absorbable Zn in the diet 393 

for scenarios three and four, respectively, was 13 and 19 % and the estimate of DALYs lost due to Zn 394 

deficiency decreased by 41 and 54 %, respectively (Table 5; Supplementary Tables 9 and 10). 395 

Response of grain PA concentration to foliar Zn application was greatest for rice, and dietary PA 396 

supply in scenario four decreased by 2.8, 1.5 and 1.4 % in Senegal, Ghana and Mali where rice 397 

consumption was 188, 157 and 72 g capita
-1

 d
-1

, respectively (Table 5; Supplementary Tables 1 and 398 

9).  399 

 400 

Estimating the cost-effectiveness of an agronomic biofortification approach to addressing Zn 401 

deficiency in sub-Saharan Africa 402 

 403 

The cost effectiveness of agronomic biofortification of crops using soil or foliar-applied ZnSO4.7H2O 404 

was estimated. Where the outcomes of public health interventions are not measured in monetary 405 

terms, decision-makers cannot rely on conventional tools of economic evaluation, such as internal 406 

rates of return or benefit-cost ratios, to determine whether the ‘investment’ in an intervention 407 

represents a good use of scarce resources. Instead, their relative cost-effectiveness can be assessed by 408 

comparing the average cost of saving one DALY across interventions, or against benchmarks.  409 

 410 

Scenario one modelled a policy to enrich granular fertilisers currently distributed under government 411 

subsidy schemes with Zn. The cost per DALY saved ranged from US$ 624 to 5,747 in Burkina Faso 412 

and Ghana, respectively (Table 5; Figure 2; Supplementary Table 11). Scenario two modelled a policy 413 

to enrich subsidised and non-subsidised granular fertilisers used as basal dressings and cost per 414 

DALY saved ranged from US$ 977 to 5,893 in Senegal and Ghana, respectively (Table 5; Figure 2;  415 

Supplementary Table 11). Variation in cost effectiveness between countries was partly a function of 416 

the baseline disease burden attributable to Zn deficiency with higher burdens leading to lower costs 417 

per DALY saved. Foliar application is likely to be a more efficient use of Zn by avoiding fixation of 418 

Zn in the soil. Costs per DALY saved in scenario three, in which 50 % of cereal production received 419 

foliar Zn fertiliser, ranged from US$ 46 to 332 in Senegal and Ghana, respectively, while in scenario 420 

four, in which 75 % of cereal production received foliar Zn fertiliser, the cost ranged from US$ 49 to 421 

347, also in Senegal and Ghana, respectively (Table 5; Figure 2; Supplementary Table 11).  422 
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 423 

The World Health Organization (WHO 2001) and the World Bank (World Bank 1993) have provided 424 

benchmarks to assess the cost-effectiveness of health interventions; if the cost of saving a DALY is 425 

below the benchmark then it is considered a good investment. The WHO benchmark is calculated in 426 

relative terms as 300 % of a country's per-capita Gross Domestic Product (GDP), hence in 2009, from 427 

US$ 678 to 5,550 capita
-1

 in Malawi and Ghana, respectively (World Bank 2014; Supplementary 428 

Table 11). The World Bank benchmark is in absolute terms, taking a value of US$ 150 per DALY in 429 

1990 as a base year which is equivalent to US$ 246 in 2009 after adjusting for inflation. Thus, even in 430 

the poorest country, the World Bank benchmark is lower and harder to meet than that of WHO. 431 

According to the WHO benchmark, pursuing Zn enrichment of soil-applied granular fertilisers 432 

appears to be cost-effective in Burkina Faso, Ethiopia, Kenya, Senegal and Zambia, but not other 433 

countries, while foliar application of Zn appears to be cost-effective in all countries. According to the 434 

World Bank benchmark, the only cost-effective scenarios are foliar application of Zn in Burkina Faso, 435 

Ethiopia, Kenya, Malawi, Mali, Nigeria, Senegal and Zambia (Table 5; Figure 2; Supplementary 436 

Table 11).  437 

 438 

Discussion 439 

 440 
Baseline dietary Zn supplies and deficiency prevalence 441 

 442 

Robust estimates of dietary Zn supplies and risk of deficiency underpin the evaluation of approaches 443 

to address Zn deficiency. There are potential weaknesses in using FBS food supply data including 444 

underestimating food supply as some subsistence production is not captured, or overestimating supply 445 

by failing to account for household-level food waste (FAO 2001). These weaknesses have been 446 

discussed extensively elsewhere (de Haen et al. 2011; Wessells et al. 2012; Joy et al. 2014). A further 447 

source of error may arise from composition data derived from sources that will not capture local 448 

variation in elemental composition of crops and there is a lack of spatially-resolved food composition 449 

data in sub-Saharan Africa (Joy et al. 2014; Joy et al. 2015). However, in the absence of wide-scale 450 

analysis of biomarkers of nutrient status, e.g. blood serum, estimating national dietary supplies of 451 

bioavailable Zn remains a valuable method of estimating the prevalence of Zn deficiency at a national 452 

level (Gibson et al. 2008).  453 

 454 

An alternative to FBSs is to use food consumption data captured in nationally-representative 455 

household surveys (Fielder et al. 2008). These data are available for eight of the 10 focus countries in 456 

this study (Ethiopia, Ghana, Kenya, Malawi, Mali, Nigeria, Tanzania and Zambia). For example, 457 

Fielder et al. (2013) estimate mean and median intakes of Zn in Zambia of 5.8 and 4.4 mg capita
-1

 d
-1

 458 

and a 73.1 % prevalence of inadequate Zn intakes, compared to US Institute of Medicine dietary 459 

requirements of Zn. An advantage of household surveys is that they allow sub-national resolution of 460 

dietary estimates and shed light on distributional issues. One drawback is that they rely on household 461 

member recall, which is subject to misreporting, both intentional and unintentional (Archer et al. 462 

2013; Moltedo et al. 2014). Zinc intakes and status can also be measured directly through analysis of 463 

dietary composites or concentration of Zn in blood plasma or serum samples. Through such methods, 464 

high prevalence of Zn deficiency have been reported previously in sub-populations in Burkina Faso 465 

(e.g. Müller et al. 2003), Ethiopia (e.g. Abebe et al. 2007; Kassu et al. 2008; Stoecker et al. 2009), 466 

Kenya (e.g. Siekmann et al. 2003), Malawi (e.g. Siyame et al. 2013), Nigeria (e.g. Gegios et al. 2010), 467 

Tanzania (e.g. Veenemans et al. 2011) and Zambia (e.g. Duggan et al. 2005).  468 

 469 

New baseline Zn deficiency estimates correlated well with the IHME estimates of DALYs lost due to 470 

Zn deficiency (Spearman’s Rank, r = 0.588, p = 0.018, d.f. = 9). This is expected as both the present 471 

study and the IHME DALY estimates were derived from the underlying data and methodology 472 

developed by Wessells et al. (2012) (Wessells and Brown 2012; Lim et al. 2012). However, there is 473 

no correlation between the results of Joy et al. (2014) and Wessells and Brown (2012) which is 474 

surprising given the similar underlying methodologies. This may have arisen because the studies used 475 

different reference years and food composition tables and prevalence of deficiency in the Wessells 476 

and Brown (2012) study are based on estimated dietary supplies of ‘bioavailable’ Zn. Also, Wessells 477 



10 

 

and Brown (2012) assumed certain milling and fermentation practices of cereals and other crops and 478 

adjusted the concentrations of Zn and PA accordingly. For example, estimated dietary PA supplies in 479 

Ethiopia are 2,802 mg capita
-1

 d
-1

 in the Joy et al. (2014) study, but 1,724 mg capita
-1

 d
-1

 in the 480 

Wessells and Brown (2012) study in which 59 % of wheat, 90 % of maize, millet and sorghum and 481 

100 % of other cereals (i.e. teff) are assumed to be fermented (Supplementary Table 2).  482 

 483 

Zinc deficiency confers increased risk of diarrhoea and is a potential underlying cause of stunting 484 

which is defined as having a height-for-age more than two standard deviations below the median of 485 

the WHO growth reference (WHO 1995). Although deficiency estimates in the current study, which 486 

are based on dietary intakes of Zn and PA, show a general positive relationship with the WHO 487 

estimates of childhood stunting prevalence, the relationship is not statistically significant (P >0.1) for 488 

both the absolute and log-transformed values. Other potential underlying causes of stunting include 489 

caloric deficiency (Stein et al. 2003), mother’s body mass index (Mamiro et al. 2005) access to clean 490 

drinking water (Esrey et al. 1988) and sanitation and hygiene practices (Fink et al. 2011; Spears et al. 491 

2013).  492 

 493 

Effect of Zn-enriched fertilisers on concentrations of Zn and PA in the grains of maize, rice and wheat 494 

 495 

The efficacy of applied Zn in increasing grain Zn concentration depends in part on the crop species 496 

and cultivar. Across studies, the effect of soil-applied Zn on grain Zn concentrations was greater in 497 

maize and wheat than in rice (Table 4; Figure 1). This may be due to abiotic factors such as the 498 

reducing conditions and high organic matter content typically found in anaerobic flooded paddy soil 499 

(Alloway 2008), or biotic factors such as root morphology or root exudates (Widodo et al. 2010). 500 

Cereal crops can respond to Zn deficiency stress by releasing compounds capable of chelating soil-501 

bound Zn including low-molecular-weight organic acids and a class of non-protein amino acids 502 

known as phytosiderophores (Kochian 1993; Hoffland et al. 2006; Suzuki et al. 2006, 2008; Widodo 503 

et al. 2010). Alternatively, the lower efficacy in rice may have been due to the higher soil pH values 504 

and lower baseline DTPA-extractable Zn concentrations  in maize and wheat trials than rice trials, 505 

possibly leading to lower concentrations of Zn in grains from control plots and a greater response to 506 

Zn application (Table 3). In addition, average Zn application rates were greater in maize and wheat 507 

trials than rice (Table 3).  508 

 509 

The effect of foliar-applied Zn was greater in wheat than in rice (Table 4; Figure 1). Biotic factors 510 

including the ability to remobilize Zn from ageing leaves to the grain may be responsible, while the 511 

rate at which remobilization occurs may be dependent on the Zn nutritional status of the plant which 512 

will, in turn, be affected by soil properties. Also, a portion of the foliar-applied Zn may run down the 513 

stem and reach the rhizosphere where availability to the plant root will depend on soil properties.  514 

 515 

Several studies reported significant differences in the Zn concentration of grains and the efficacy of 516 

soil or foliar Zn application between cultivars of rice and wheat (Yilmaz et al. 1997; Ekiz et al. 1998; 517 

Erdal et al. 2002; Wissuwa et al. 2008; Yang et al. 2011a; Khoshgoftarmanesh et al. 2012; Phattarakul 518 

et al. 2012; Wei et al. 2012; Ghasemi et al. 2013; Mabesa et al. 2013), suggesting that agronomic and 519 

crop breeding biofortification efforts should be aligned. Only one study investigated different 520 

cultivars of maize, finding no significant difference between two cultivars (Kanwal et al. 2010).  521 

 522 

The majority of trials reviewed here were conducted in Western, Central and Eastern Asia where Zn-523 

deficiency in crops commonly arises in calcareous soils with pH >7.5 (Table 1; Alloway 2008). In 524 

highly-weathered tropical soils, Zn deficiency may be a product of leaching and low total Zn content 525 

(Alloway 2008). Only two of the studies reviewed here included trials located in Africa, both of soil-526 

applied Zn, reporting an 18 % increase in the concentration of Zn in the grain of maize on borderline 527 

Zn-deficient soils in Zimbabwe (Manzeke et al. 2014) and a 4 % increase in the concentration of Zn in 528 

the grain of wheat grown on Zn-deficient soils in Zambia (Zou et al. 2012). Clearly, more studies are 529 

required across the varied environmental conditions found in sub-Saharan Africa to verify the 530 

estimates of the effects of applied Zn on grain Zn concentration.  531 

 532 
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Although soil-application of Zn is likely to improve yields of crops grown on Zn-deficient soils, it 533 

could inhibit the absorption of other nutrients such as copper, while foliar sprays with high Zn 534 

concentration could damage leaf cuticles. Reduced yields could lead to a ‘concentration effect’, where 535 

Zn in the leaves or shoot is distributed to fewer or smaller grains. Although this may increase 536 

concentrations of Zn in the edible portion, it would clearly be undesirable. Yield data were reported 537 

for 122 treatment plots in total with soil applications appearing to generally improve yields while 538 

foliar applications had no obvious effect (Table 4). The yields of just six of the treatment plots were 539 

<90 % of the relevant control plot and all of these plots also exhibited increased concentration of Zn 540 

in the grain relative to the control plot (Supplementary Table 7). However, removing these data points 541 

from the study had minimal impact on the estimated efficacy and cost-effectiveness of the four Zn-542 

fertilisation scenarios: median effects across studies of soil applied Zn would remain unchanged for 543 

maize, rice and wheat and median effect of foliar-applied Zn would be unchanged for maize and 544 

would be 124 and 160 % for rice and wheat, compared to 125 and 163 %.  545 

 546 

Zinc is distributed unevenly across cereal grain fractions, with higher concentrations in the bran and 547 

embryo than the endosperm. Thus, milling and processing generally reduce the concentration of Zn in 548 

the edible product (Bityutskii et al. 2002; Ozturk et al. 2006; Liang et al. 2008; Cakmak et al. 2010; 549 

Joy et al. 2015). Many of the studies included in the meta-analysis only reported Zn concentrations in 550 

whole grain, with and without application of Zn. It is possible that greater concentration of Zn in the 551 

whole grain with Zn fertilisation is a result of increased concentrations in the bran and embryo and not 552 

the endosperm. However, Cakmak et al. (2010) examined Zn concentrations across the different 553 

fractions of wheat grain and reported that the greatest relative increase in Zn concentrations with Zn 554 

fertilisation is likely to be in the endosperm. In addition, those studies that reported milled or polished 555 

grain Zn concentrations generally found positive effects of Zn fertilisation. For example, Wei et al. 556 

(2012) found that foliar application increased Zn concentration in the polished grains of three rice 557 

cultivars by 18-28 % and Zhang et al. (2012) found significantly greater Zn concentrations in 60-65 % 558 

extraction wheat flour (i.e. bran and germ removed) with soil (P <0.05) and foliar (P <0.001) 559 

applications of Zn. Despite these findings, when looking across the studies reviewed here, application 560 

of Zn via the soil increased concentrations of Zn in brown rice (median = 110, Q1 = 102, Q3 = 120 % 561 

of control, n = 27) but not white rice (median = 99, Q1 = 98, Q3 = 104 % of control, n = 3) and foliar 562 

application increased concentrations more in brown (median = 130, Q1 = 114, Q3 = 147 % of control, 563 

n = 28) than white (median = 117, Q1 = 112, Q3 = 122 % of control, n = 6) rice. Thus, agronomic 564 

biofortification of rice may be less effective at increasing Zn in the diet than assumed and future 565 

studies could confirm or allay this concern by reporting data for both whole grain and polished rice.  566 

 567 

No studies were identified that reported the effect of Zn application via soil on PA concentration in 568 

the grain of rice, nor via foliar spray in maize. Were such data available, it is likely that estimates of 569 

efficacy and cost-effectiveness of the agronomic biofortification strategies would improve. In 570 

addition, this review excluded data reporting the effects of residual soil-applied Zn in subsequent 571 

crops. Thus, applied Zn that is not taken up by the crop or permanently ‘fixed’ within mineral phases 572 

is potentially available for subsequent crop uptake and some studies show a cumulative increase in 573 

grain Zn concentrations in successive seasons following Zn application (Srivastava et al. 2009; Wang 574 

et al. 2012; Abid et al. 2013; Manzeke et al. 2014), although positive residual effects are not always 575 

found (Lu et al. 2012; Yang et al. 2011a). Therefore, the efficacy of Zn fertilisation might be under-576 

estimated here by excluding residual effects, especially in lower-pH soils. Conversely, meta-analyses 577 

are subject to systematic bias due to preferential reporting and publishing of ‘positive’ findings 578 

(Dickersin et al. 1992). This may lead to an over-estimate of the efficacy of Zn-enrichment on 579 

concentrations of Zn in grains. 580 

 581 

Cereals contribute ca. 50 % or more of energy intake across 46 countries in Africa, but root and tuber 582 

crops contribute >30 % of energy supplies in 10 countries (Joy et al. 2014). Concentration of Zn in the 583 

tuber of potato (Solanum tuberosum L.) is generally low (i.e. 10-20 mg kg
-1

) due to limited 584 

translocation of Zn from shoots to tubers via the phloem, although there is significant variation 585 

between genotypes and concentrations up to ca. 30 mg kg
-1

 are achievable with foliar Zn application 586 

(White and Broadley 2011; White et al. 2012). Hence, Zn biofortification of potatoes appears to be 587 
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feasible, in principle. The prospect for supplying Zn via granular fertilisers to cassava and sweet 588 

potato (Ipomoea batatas L.) is likely to be more limited as these crops are generally grown with few 589 

external inputs (Kelly 2006), while a foliar fertilisation programme must consider that the leaves of 590 

these crops are consumed in some cultures in sub-Saharan Africa. Leafy vegetables contribute little to 591 

dietary energy, but substantially to dietary Zn, intakes due to greater concentrations of Zn in leaves 592 

than grains, tubers or fruits (Broadley et al. 2007). For example, Joy et al. (2015) report 593 

concentrations of Zn in edible leaves from Malawi of ca. 40-70 mg kg
-1

 DW. The concentration of Zn 594 

in edible leaves is dependent on both environmental factors, such as the concentration of extractable 595 

Zn in the soil, and genetic factors which show high heritability in some, but not all, species (Wu et al. 596 

2007, 2008; Broadley et al. 2010); thus there is scope for biofortification of edible leaves through 597 

agronomic or breeding approaches.  598 

 599 

Effect of Zn fertilisers on Zn deficiency prevalence 600 

 601 

Assumptions were made regarding the coverage of fertilisers and hence the proportion of crops that 602 

could receive fertiliser enriched with Zn. The proportion of maize, rice, wheat and teff receiving 603 

fertiliser was derived from the ratio of national N demand and usage. Demand may be underestimated 604 

(thus coverage overestimated) as some crops were not included (e.g. horticultural and oil crops), or 605 

may be over-estimated (thus coverage underestimated) as some non-target crops such as millet and 606 

sorghum are grown extensively in sub-Saharan Africa with little fertiliser applied (Ahmed et al. 607 

2000). In addition, fertiliser usage data were generally derived from national government statistics 608 

(IFDC 2011, 2012a-f, 2013 b,c) and are likely to vary in accuracy. Fertiliser usage data for 2009 were 609 

used due to the availability of IFDC reports. However, usage, and thus the potential reach of a 610 

programme to enrich granular fertilisers with Zn, is likely to vary annually depending on prices, 611 

farmer purchasing power and government subsidy programmes. For example, estimated N 612 

consumption in Zambia in 2009 was 39,400 t based on total fertiliser consumption of 171,000 t in 613 

2007/08 (IFDC 2013c). By 2012/13, estimated fertiliser consumption had increased to 250,000-614 

300,000 t (IFDC 2013c).  615 

 616 

A further limitation of the study is that average changes in the composition of maize, rice and wheat 617 

(a product of the average effect of Zn-enriched fertilisers on crop composition and coverage of 618 

fertiliser usage) were applied to all of the national supply of these food items provided in the Food 619 

Balance Sheets. However, a national programme to introduce Zn enrichment via soil or foliar applied 620 

fertilisers will only alter the composition of crops produced in-country. Thus, the effect on average Zn 621 

concentration may be over-estimated as imported crops are not enriched while some of the benefits of 622 

the fortification may not be captured as exported crops are enriched.  623 

 624 

Estimating the cost-effectiveness of an agronomic biofortification approach to address Zn deficiency 625 

in sub-Saharan Africa 626 

 627 

In the current study, costs of Zn and knapsack sprayers were considered whereas other costs, 628 

including for agricultural extension, intra-national distribution of consumables and quality control, 629 

were not. This is likely to underestimate the cost of the modelled strategies. Estimating full costs 630 

would require detailed study of national agricultural extension services, laboratory capacities etc.  631 

 632 

The EAR cut-point approach might underestimate the cost-effectiveness of a population-level 633 

fortification programme to alleviate Zn deficiency as only the reduction in deficiency prevalence is 634 

considered. In this study, ‘deficient’ status was defined as dietary Zn supply below the mean national 635 

EAR. Increasing Zn concentration in staple foods and in the national diet moves a proportion of the 636 

population from below to above the EAR cut point. However, those who remain below the EAR may 637 

still have derived health benefits from increased Zn intake, (e.g. individuals who move from ‘severe’ 638 

to ‘mild’ Zn deficiency), and this benefit is not captured. Moreover, a non-linear relationship between 639 

the level of dietary micronutrient deficiencies and the severity of related health outcomes is normally 640 

assumed (Stein et al. 2005). Hence, even if an intervention does not completely eliminate a 641 
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deficiency, it will have a relatively larger impact when alleviating the more severe levels of the 642 

deficiency.  643 

 644 

Several studies have demonstrated that Zn-enrichment of granular fertilisers can be a cost-effective 645 

strategy due to improvements in crop yield (e.g. van Asten et al. 2004; Harris et al. 2007; Cakmak 646 

2009). From the limited yield data available in the studies reviewed here, it appears that soil-applied 647 

Zn has a small (ca. 10 %) positive impact on yield of maize, rice and wheat while foliar application 648 

has minimal effect. The lack of yield response with foliar sprays may be because post-flowering 649 

applications were preferred as these late applications have a greater impact on grain Zn concentration 650 

with a smaller impact on grain yield (Cakmak et al. 2010; Mabesa et al. 2013). The very high yield 651 

responses (i.e. >150 % greater than control) found in a few cases are likely to be due to severe crop 652 

deficiency of Zn and these plots also exhibited great response in grain Zn concentration. Thus, an 653 

economic argument for the use of Zn fertilisers due to yield improvements will be highly dependent 654 

on the soil characteristics.  655 

 656 

The feasibilities of the different scenarios require consideration. Previously, it has been suggested that 657 

the yield of crop varieties bred for high-Zn concentration must be maintained or improved if farmer 658 

acceptance is to be encouraged (Welch and Graham 2004) and yield improvements have been an 659 

important driver of the uptake of Zn-enriched fertilisers in Turkey in areas of Zn-deficient soils 660 

(Cakmak 2009). Further studies are required to test whether potential yield improvements due to 661 

granular or foliar Zn application are sufficient to drive their uptake among resource-poor smallholder 662 

farmers in sub-Saharan Africa. Governments or international donors might be persuaded to subsidise 663 

or mandate Zn-enrichment of fertilisers due to the potential public health benefits, possibly 664 

implemented through existing fertiliser subsidy schemes. To the authors’ knowledge, acceptance of 665 

micronutrient sprays by smallholder farmers in sub-Saharan Africa has not been studied and is likely 666 

to depend on observable benefits such as yield improvements. In addition, it is questionable whether 667 

knapsack sprayers are suitable for foliar application of Zn to maize, which might be ca. 2 m in height 668 

at tasselling, compared to ca. 1 m for mature stands of rice, wheat and teff.  669 

 670 

Comparison of agronomic biofortification with other strategies to alleviate Zn deficiency 671 

 672 

A fertiliser approach can be compared directly against other Zn interventions. Crop breeding is 673 

another strategy to potentially decrease the prevalence and disease burden of Zn deficiency. The 674 

HarvestPlus (H+) programme is developing nutrient-rich staple crops through exploitation of existing 675 

genotypic variation including in wild relatives, setting target Zn concentrations of 38, 28 and 38 mg 676 

kg
-1

 DW in whole maize grain, polished rice grain and whole wheat grain, respectively (Bouis and 677 

Welch 2010; Velu et al. 2014). Stein et al. (2006) estimated that biofortification of crops by breeding 678 

for high Zn concentration would be one-to-three orders of magnitude more cost effective than the 679 

fertiliser approaches modelled here. However, the potential of new varieties to deliver greater 680 

concentrations of Zn in the grain depends on there being plant-accessible Zn stores in the soil, thus 681 

breeding and agronomic biofortification strategies are likely to be complementary.  682 

 683 

Fielder et al. (2013) estimated that fortifying maize meal with a premix containing Zn at large-scale 684 

mills in Zambia could save 5,657 DALYs annually of which 1,757 were due to Zn deficiency, at a 685 

cost of US$ 401 per DALY saved. The cost per DALY saved is favourable compared to application 686 

of Zn via the soil and equivalent or slightly more expensive than via foliar spray, although it should be 687 

noted that this is not a direct comparison as the premix also contained iron and vitamin A. Flour 688 

fortification during milling currently has limited reach in Zambia as few households purchase maize 689 

flour from large, centralised milling factories and those that do are generally wealthier with greater 690 

baseline Zn intakes (Fielder et al. 2013). Thus, while application of Zn to crops via the soil is 691 

approximately 10-fold more expensive than via foliar sprays or fortification of flour at centralised 692 

mills, it has the potential to reach more households and consequently be more equitable in outcome.  693 

 694 

In the studies reviewed here, median Zn concentrations in grain from control plots were 19.0 (Q1 = 695 

15.4, Q3 = 22.0, n = 7) and 15.8 (Q1 = 9.8, Q3 = 25.2, n = 141) mg kg
-1

 for whole maize and wheat 696 
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grains, respectively, and 18.8 (Q1 = 15.2, Q3 = 23.9, n = 6) and 18.8 (Q1 = 13.4, Q3 = 27.6, n = 44) 697 

mg kg
-1

 for polished and brown rice, respectively. That there was no difference in median Zn 698 

concentration between polished and brown rice samples across studies is surprising and cannot be 699 

explained with the available data. If brown and polished rice are considered together and median 700 

increases found in reviewed studies are applied, Zn concentrations of 23.4, 16.9 and 22.4 mg kg
-1

 in 701 

maize, rice and wheat appear achievable using soil-applied Zn, and 24.7, 19.8 and 30.6 mg kg
-1

 using 702 

foliar-applied Zn. Even with 100 % coverage of soil or foliar-applied Zn, these concentrations are 703 

well below the H+ breeding targets (Figure 1; White and Broadley 2009; Bouis and Welch 2010). 704 

Thus, while agronomic biofortification of staple grains with Zn may be a useful strategy to mitigate 705 

inadequate dietary Zn supplies, the elimination of Zn deficiency will require complementary 706 

approaches including crop breeding, dietary diversification and possibly fortification during 707 

processing. If synergies can be exploited when pursuing such a combined approach, the cost-708 

effectiveness of these interventions might also improve.  709 

 710 

Zinc is just one of a number of micronutrients with widespread risk of deficiency in sub-Saharan 711 

Africa. For example, in Malawi, approximately 80 % of the population is at risk of selenium (Se) 712 

deficiency due to low concentrations of Se in edible portions of crops grown on low-pH soils 713 

(Chilimba et al. 2011; Hurst et al. 2013; Joy et al. 2015). Adding Se to the staple crop maize via 714 

subsidised fertiliser could supply adequate amounts of Se in the diets of the ca. 1.5 million households 715 

who benefit from the Malawi government Fertiliser Input Subsidy Scheme, at a total cost of 250-550 716 

US$ k yr
-1

 (Chilimba et al. 2012). This is approximately 50-fold cheaper than scenario one in the 717 

present study, at US$ 0.016-0.035 capita
-1

 yr
-1

 compared to US$ 1.08 capita
-1

 yr
-1

, assuming that costs 718 

are spread equally across the national population. However, unlike for Zn, the disease burden of Se 719 

deficiency has not yet been quantified so cost per DALY saved cannot be estimated using the same 720 

frameworks. Agronomic fortification via soil-applied fertiliser requires only 5 g ha
-1

 yr
-1

 of Se 721 

compared to ca. 10-25 and 1-4 kg ha
-1

 yr
-1

 of Zn via soil and foliar application methods, respectively. 722 

Thus, although the unit cost of Se is greater than that of Zn, fortification with Zn is more expensive. 723 

However, combining multiple elements such as Zn and Se in granular or foliar fertilisers could deliver 724 

wider health benefits and improve the cost-effectiveness of agronomic biofortification strategies.  725 

 726 

Conclusions 727 
 728 

Agronomic biofortification of crops with elements important for human health has been advocated as 729 

a public health strategy to address mineral element deficiencies in humans that can have severe 730 

consequences for the well-being of individuals and the welfare of affected societies. We 731 

systematically reviewed the literature for studies of the impact of Zn fertiliser on Zn and PA 732 

concentrations in the grains of maize, rice and wheat. In a simplified meta-analysis, the median effects 733 

of soil-applied Zn on the concentration of Zn in the grains of maize, rice and wheat were 23, 7 and 19 734 

% increases above the control, respectively, while the corresponding figures for foliar applied Zn 735 

were 30, 25 and 63 %.  736 

 737 

We focused on 10 countries in sub-Saharan Africa that currently implement fertiliser subsidy schemes 738 

or have strong governmental control over fertiliser imports and therefore have the necessary leverage 739 

to implement and enforce Zn enrichment of granular fertiliser. For the nine countries with the 740 

necessary data available, enriching subsidised fertiliser with Zn could save a total of 63 k DALYs yr
-1

 741 

lost due to Zn deficiency with cost effectiveness ranging from US$ 624 to 5,747 DALY
-1

 saved. 742 

Enriching subsidised and non-subsidised fertilisers in the eight countries with necessary data could 743 

save a total of 83 k DALYs yr
-1

 with cost effectiveness ranging from US$ 977 to 5,893 DALY
-1

. 744 

Foliar sprays may be a more cost-effective approach, saving 375 k and 523 k DALYs yr
-1

 for 50 and 745 

75 % coverage of cereals, respectively, at a cost of US$ 46 to 347 DALY
-1 

although it is likely that 746 

there would be significant administrative costs in implementing such a programme and these costs 747 

were not considered here.  748 

 749 

Cost-effectiveness of the fertiliser approach varies and, if compared against international cost-750 

effectiveness benchmarks, these results indicate that adoption of a fertiliser approach needs to be 751 
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assessed on a case-by-case basis to allow decision-makers to optimise the allocation of scarce 752 

resources to alternative and complementary public health interventions. Generally, the cost-753 

effectiveness of foliar-applied Zn appears to be equivalent to fortification of staple flours at 754 

centralised milling facilities. Soil-applied Zn appears to be more expensive but has the potential 755 

advantage of reaching more households. Moreover, synergies might be realised if agronomic 756 

(fertilisation) and genetic (breeding) biofortification efforts are combined, potentially improving both 757 

impact and cost-effectiveness of these interventions. 758 



16 

 

Acknowledgements 759 
 760 

Funding for EJMJ’s Studentship is provided by the University of Nottingham, U.K. and the British 761 

Geological Survey (BGS). This study was also supported through a Royal Society-DFID Capacity 762 

Building Initiative Network Grant entitled “Strengthening African Capacity in soil geochemistry to 763 

inform agricultural and health policies” (AN130007). The study is published with the permission of 764 

the Director of BGS. The authors have no conflicts of interest to declare. 765 

 766 

References 767 
 768 

Abebe Y, Bogale A, Hambidge KM, Stoecker BJ, Arbide I, Teshome A, Krebs NF, Westcott JE, 769 

Bailey KB, Gibson RS (2007) Inadequate intakes of dietary zinc among pregnant women from 770 

subsistence households in Sidama, Southern Ethiopia. Public Health Nutr 11:379–386. doi: 771 

10.1017/S1368980007000389 772 

 773 

Abid M, Ahmed N, Qayyum MF, Shaaban M, Rashid A (2013) Residual and cumulative effect of 774 

fertilizer zinc applied in wheat-cotton production system in an irrigated aridisol. Plant Soil Environ 775 

59:505-510 776 

 777 

Ahmad W, Watts MJ, Imtiaz M, Ahmed I, Zia MH (2012) Zinc deficiency in soils, crops and humans: 778 

A review. Agrochimica 56:65–97 779 

 780 

Ahmed MM, Sanders JH, Nell WT (2000) New sorghum and millet cultivar introduction in Sub-781 

Saharan Africa: impacts and research agenda. Agr Syst 64:55–65. doi: 10.1016/S0308-782 

521X(00)00013-5 783 

 784 

Alloway BJ (2008) Zinc in soils and crop nutrition. Second Edition. International Zinc Association 785 

and International Fertilizer Industry Association, Brussels, Belgium and Paris, France 786 

 787 

Archer E, Hand GA, Blair SN (2013) Validity of U.S. nutritional surveillance: National Health and 788 

Nutrition Examination Survey caloric energy intake data, 1971–2010. PLoS ONE 8:e76632. doi: 789 

10.1371/journal.pone.0076632 790 

 791 

Bityutskii NP, Magnitkskiy SV, Korobeynikova LP, Lukina EI, Soloviova AN, Patsevitch VG, 792 

Lapshina IN, Matveeva GV (2002) Distribution of iron, manganese, and zinc in mature grain and their 793 

mobilization during germination and early seedling development in maize. J Plant Nutr 25:635–653. 794 

doi: 10.1081/PLN-120003387 795 

 796 

Bouis HE, Welch RM (2010) Biofortification – A sustainable agricultural strategy for reducing 797 

micronutrient malnutrition in the global south. Crop Sci 50:S20–S32. doi: 798 

10.2135/cropsci2009.09.0531 799 

 800 

Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–801 

702. doi: 10.1111/j.1469-8137.2007.01996.x 802 

 803 

Broadley MR, Ó Lochlainn S, Hammond JP, Bowen HC, Cakmak I, Eker S, Erdem H, King GJ, 804 

White PJ (2010) Shoot zinc (Zn) concentration varies widely within Brassica oleracea L. and is 805 

affected by soil Zn and phosphorus (P) levels. J Hortic Sci Biotechnol 85:375-380. 806 

 807 

Brümmer G, Tiller KG, Herms U, Clayton PM (1983) Adsorption-desorption and/or precipitation-808 

dissolution processes of zinc in soils. Geoderma 31:337–354. doi: 10.1016/0016-7061(83)90045-9 809 

 810 

Cakmak I (2002) Plant nutrition research: priorities to meet human needs for food in sustainable 811 

ways. Plant Soil 247:3–24. doi: 10.1023/a:1021194511492 812 



17 

 

 813 

Cakmak I (2004) Identification and correction of widespread zinc deficiency in Turkey – a success 814 

story (a NATO-Science for Stability Project). Proceedings of the International Fertiliser Society 552. 815 

International Fertiliser Society, York 816 

 817 

Cakmak I (2008) Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant 818 

Soil 302:1–17. doi:10.1007/s11104-007-9466-3 819 

 820 

Cakmak I (2009) Enrichment of fertilizers with zinc: An excellent investment for humanity and crop 821 

production in India. J Trace Elem Med Bio 23:281–289. doi: 10.1016/j.jtemb.2009.05.002 822 

 823 

Cakmak I, Kalayci M, Ekiz H, Braun HJ, Kilinç Y, Yilmaz A (1999) Zinc deficiency as a practical 824 

problem in plant and human nutrition in Turkey: A NATO-science for stability project. Field Crop 825 

Res 60:175–188. doi: 10.1016/S0378-4290(98)00139-7 826 

 827 

Cakmak I, Kalayci M, Kaya Y, Torun AA, Aydin N, Wang Y, Arisoy Z, Erdem H, Yazici A, Gokmen 828 

O, Ozturk L, Horst WJ (2010) Biofortification and localization of zinc in wheat grain. J Agric Food 829 

Chem 58:9092–9102. doi: 10.1021/jf101197h 830 

 831 

Central Statistics Agency (CSA 2011) Agriculture in figures: Key findings of the 2008/09-2010/11 832 

agricultural sample surveys for all sectors and seasons. Country summary. Comprehensive Africa 833 

Agriculture Development Program (CAADP) Ethiopia Study, Final Report, Volume 1, 2009. Cited in 834 

IFDC (2012a). 835 

 836 

Chilimba ADC, Young SD, Black CR, Meacham MC, Lammel J, Broadley MR (2012) Agronomic 837 

biofortification of maize with selenium (Se) in Malawi. Field Crop Res 125:118–128. doi: 838 

10.1016/j.fcr.2011.08.014 839 

 840 

Chilimba ADC, Young SD, Black CR, Rogerson KB, Ander EL, Watts MJ, Lammel J, Boradley MR 841 

(2011) Maize grain and soil surveys reveal suboptimal dietary selenium intake is widespread in 842 

Malawi. Sci Rep 1. doi: 10.1038/srep00072 843 

 844 

de Haen H, Klasen S, Qaim M (2011) What do we really know? Metrics for food insecurity and 845 

undernutrition. Food Policy 36:760-769. doi: 10.1016/j.foodpol.2011.08.003 846 

 847 

Dickersin K, Min YI, Meinert CL (1992) Factors influencing publication of research results: Follow-848 

up of applications submitted to two institutional review boards. J Amer Med Assoc 267:374–378. 849 

doi:10.1001/jama.267.3.374 850 

 851 

Duggan C, MacLeod WB, Krebs NF, Westcott JL, Fawzi WW, Premji ZG, Mwanakasale V, Simon 852 

JL, Yeboah-Antwi K, Hamer DH (2005) Plasma zinc concentrations are depressed during acute phase 853 

response in children with falciparum malaria. J Nutr 135:802–807 854 

 855 

Ekiz H, Bagci SA, Kiral AS, Eker S, Gültekin I, Alkan A, Cakmak I (1998) Effects of zinc 856 

fertilization and irrigation on grain yield and zinc concentration of various cereals grown in zinc-857 

deficient calcareous soils. J Plant Nutr 21:2245–2256. doi: 10.1080/01904169809365558 858 

 859 

Erdal I, Yilmaz A, Taban S, Eker S, Cakmak I (2002) Phytic acid and phosphorus concentrations in 860 

seeds of wheat cultivars grown with and without zinc fertilization. J Plant Nutr 25:113–127. doi: 861 

10.1081/PLN-100108784 862 

 863 

Erenoglu EB, Kutman UB, Ceylan Y, Yildiz B, Cakmak I (2011) Improved nitrogen nutrition 864 

enhances root uptake, root-to-shoot translocation and remobilization of zinc (
65

Zn) in wheat. New 865 

Phytol 189:438–448. doi:10.1111/j.1469-8137.2010.03488.x 866 

 867 



18 

 

Erenoglu B, Nikolic M, Romheld V, Cakmak I (2002) Uptake and transport of foliar applied zinc 868 

(
65

Zn) in bread and durum wheat cultivars differing in zinc efficiency. Plant Soil 241:251–257. doi: 869 

10.1023/A:1016148925918 870 

 871 

Esrey SA, Habicht J-P, Latham MC, Sisler DG, Casella G (1988) Drinking water source, diarrheal 872 

morbidity, and child growth in villages with both traditional and improved water supplies in rural 873 

Lesotho, southern Africa. Am J Public Health 78:1451–1455. doi: 10.2105/AJPH.78.11.1451 874 

 875 

Fernández V, Eichert T (2009) Uptake of hydrophilic solutes through plant leaves: current state of 876 

knowledge and perspectives of foliar fertilization. CRC Cr Rev Plant Sci 28:36–68. doi: 877 

10.1080/07352680902743069 878 

 879 

Field AP, Gillett R (2010) How to do a meta-analysis. Brit J Math Stat Psy 63:665–694. doi: 880 

10.1348/000711010X502733 881 

 882 

Fielder JL, Smitz MF, Dupriez O, Friedman J (2008) Household income and expenditure surveys: A 883 

tool for accelerating the development of evidence-based fortification programs. Food Nutr Bull 884 

29:306–319 885 

 886 

Fielder JL, Lividini K, Kabaghe G, Zulu R, Tehinse J, Bermudez OI, Jallier V, Guyondet C (2013) 887 

Assessing Zambia’s industrial fortification options: Getting beyond changes in prevalence and cost-888 

effectiveness. Food Nutr Bull 34:501–519. doi: 00000034/00000004/art00013 889 

 890 

Fink G, Günther I, Hill K (2011) The effect of water and sanitation on child health: evidence from the 891 

demographic and health surveys 1986–2007. Int J Epidemiol 40:1196–1204. doi: 10.1093/ije/dyr102 892 

 893 

Food and Agriculture Organization of the United Nations (FAO 1984) Better Farming Series. 894 

Chapters 22 and 24. Available online: http://www.fao.org/docrep/006/t0309e/t0309e00.HTM 895 

[accessed September 2014] 896 

 897 

Food and Agriculture Organization of the United Nations (FAO 2001) Food balance sheets: a 898 

handbook. FAO, Rome, Italy 899 

 900 

Food and Agriculture Organization of the United Nations (FAO 2014a) Food Balance Sheets. 901 

Available online: http://faostat3.fao.org/faostat-gateway/go/to/download/FB/*/E [accessed July 2014] 902 

 903 

Food and Agriculture Organization of the United Nations (FAO 2014b) Crop production data. 904 

Available online: http://faostat3.fao.org/faostat-gateway/go/to/download/Q/*/E [accessed July 2014] 905 

 906 

Food and Agriculture Organization of the United Nations (FAO 2014c) Crop production definitions. 907 

Available online: http://faostat.fao.org/site/384/default.aspx [accessed July 2014] 908 

 909 

Gegios A, Amthor R, Maziya-Dixon B, Egesi C, Mallowa S, Nungo R, Gichuki S, Mbanaso A, 910 

Manary MJ (2010) Children consuming cassava as a staple food are at risk for inadequate zinc, iron, 911 

and vitamin A intake. Plant Foods Hum Nutr 65:64–70 912 

 913 

Genc Y, Humphries JM, Lyons GH, Graham RD (2005) Exploiting genotypic variation in plant 914 

nutrient accumulation to alleviate micronutrient deficiency in populations. J Trace Elem Med Bio 915 

18:319–324. doi: 10.1016/j.jtemb.2005.02.005 916 

 917 

Ghasemi S, Khoshgoftarmanesh AH, Afyuni M, Hadadzadeh H (2013) The effectiveness of foliar 918 

applications of synthesized zinc-amino acid chelates in comparison with zinc sulfate to increase yield 919 

and grain nutritional quality of wheat. Europ J Agronomy 45:68–74. doi: 10.1016/j.eja.2012.10.012 920 

 921 

http://www.fao.org/docrep/006/t0309e/t0309e00.HTM
http://faostat3.fao.org/faostat-gateway/go/to/download/FB/*/E
http://faostat3.fao.org/faostat-gateway/go/to/download/Q/*/E
http://faostat.fao.org/site/384/default.aspx


19 

 

Gibson RS (2012) Zinc deficiency and human health: etiology, health consequences, and future 922 

solutions. Plant Soil 361:291–299. doi: 10.1007/s11104-012-1209-4 923 

 924 

Gibson RS, Hess SY, Hotz C, Brown KH (2008) Indicators of zinc status at the population level: a 925 

review of the evidence. Brit J Nutr 99:S14–S23. doi: 10.1017/S0007114508006818 926 

 927 

Gibson RS, Hotz C, Temple L, Yeudall F, Mtitimuni B, Ferguson E (2000) Dietary strategies to 928 

combat deficiencies of iron, zinc, and vitamin A in developing countries: development, 929 

implementation, monitoring, and evaluation. Food Nutr Bull 21:219–231 930 

 931 

Graham RD, Ascher JS, Hynes SC (1992) Selecting zinc-efficient cereal genotypes for soils of low 932 

zinc status. Plant Soil 146:241–250. doi: 10.1007/BF00012018 933 

 934 

Grice WJ (1990) Tea Planter’s Handbook. Tea Research Foundation of Central Africa, Malawi. 935 

 936 

Harris D, Rashid A, Miraj G, Arif M, Shah H (2007) ‘On-farm’ seed priming with zinc sulphate 937 

solution - A cost-effective way to increase the maize yields of resource-poor farmers. Field Crop Res 938 

102:119–127. doi: 10.1016/j.fcr.2007.03.005 939 

 940 

Harris D, Rashid A, Miraj G, Arif M, Yunas M (2008) ‘On-farm’ seed priming with zinc in chickpea 941 

and wheat in Pakistan. Plant Soil 306:3–10. doi: 10.1007/s11104-007-9465-4 942 

 943 

Hoagland DR (1948) Lectures on the inorganic nutrition of plants, Second edition. Chronica Botanica 944 

Company, Waltham, MA, U.S.A. 945 

 946 

Hoffland E, Wei C, Wissuwa M (2006) Organic anion exudation by lowland rice (Oryza sativa L.) at 947 

zinc and phosphorus deficiency. Plant Soil 283:155–162. doi: 10.1007/s11104-005-3937-1 948 

 949 

Hurst R, Siyame EWP, Young SD, Chilimba ADC, Joy EJM, Black CR, Ander EL, Watts MJ, 950 

Chilima B, Gondwe J, Kang’ombe D, Stein AJ, Fairweather-Tait SJ, Gibson RS, Kalimbira AA, 951 

Broadley MR (2013) Soil-type influences human selenium status and underlies widespread selenium 952 

deficiency risks in Malawi. Sci Rep 3:1–6. doi:10.1038/srep01425 953 

 954 

Institute of Health Metrics and Evaluation (IHME 2014) Global Health Data Exchange, country-level 955 

Global Burden of Disease data. Available online: http://ghdx.healthdata.org/ [accessed July 2014] 956 

 957 

International Fertilizer Development Center (2011) Improving fertilizer markets in West Africa: The 958 

fertilizer supply chain in Mali. IFDC, Alabama, U.S.A.. Available online: www.ifdc.org/R-959 

D/Research/Mali_tech_Final111913/ [accessed June 2014] 960 

 961 

International Fertilizer Development Center (2012a) Ethiopia fertilizer assessment. IFDC, Alabama, 962 

U.S.A.. Available online: www.ifdc.org/R-D/Research/Ethiopia-Fertilizer-Assessment/ [accessed 963 

June 2014] 964 

 965 

International Fertilizer Development Center (2012b) Ghana fertilizer assessment. IFDC, Alabama, 966 

U.S.A.. Available online: www.ifdc.org/R-D/Research/Ghana-Fertilizer-Assessment/ [accessed June 967 

2014] 968 

 969 

International Fertilizer Development Center (2012c) Kenya fertilizer assessment. IFDC, Alabama, 970 

U.S.A.. Available online: www.ifdc.org/R-D/Research/Kenya-Fertilizer-Assessment/ [accessed June 971 

2014] 972 

 973 

International Fertilizer Development Center (2012d) Improving fertilizer markets in West Africa: The 974 

fertilizer supply chain in Nigeria. IFDC, Alabama, U.S.A.. Available online: www.ifdc.org/R-975 

D/Research/Nigeria_tech_Final111913/ [accessed June 2014] 976 

http://ghdx.healthdata.org/
http://www.ifdc.org/R-D/Research/Mali_tech_Final111913/
http://www.ifdc.org/R-D/Research/Mali_tech_Final111913/
http://www.ifdc.org/R-D/Research/Ethiopia-Fertilizer-Assessment/
http://www.ifdc.org/R-D/Research/Ghana-Fertilizer-Assessment/
http://www.ifdc.org/R-D/Research/Kenya-Fertilizer-Assessment/
http://www.ifdc.org/R-D/Research/Nigeria_tech_Final111913/
http://www.ifdc.org/R-D/Research/Nigeria_tech_Final111913/


20 

 

 977 

International Fertilizer Development Center (2012e) Improving fertilizer markets in West Africa: The 978 

fertilizer supply chain in Senegal. IFDC, Alabama, U.S.A.. Available online: www.ifdc.org/R-979 

D/Research/Senegal_tech_rev111913.pdf/ [accessed June 2014] 980 

 981 

International Fertilizer Development Center (2012f) Tanzania fertilizer assessment. IFDC, Alabama, 982 

U.S.A.. Available online: www.ifdc.org/R-D/Research/Tanzania-Fertilizer-Assessment/ [accessed 983 

June 2014] 984 

 985 

International Fertilizer Development Center (2013a) NEPAD Policy Study: Practices and policy 986 

options for the improved design and implementation of fertilizer subsidy programs in sub-Saharan 987 

Africa. IFDC, Alabama, U.S.A.. Available online: http://www.ifdc.org/Documents/NEPAD-fertilizer-988 

study-EN-web/ [accessed June 2014] 989 

 990 

International Fertilizer Development Center (2013b) Malawi fertilizer assessment. IFDC, Alabama, 991 

U.S.A.. Available online: www.ifdc.org/R-D/Research/Malawi-Fertilizer-Assessment/ [accessed June 992 

2014] 993 

 994 

International Fertilizer Development Center (2013c) Zambia fertilizer assessment. IFDC, Alabama, 995 

U.S.A.. Available online: www.ifdc.org/R-D/Research/Zambia-Fertilizer-Assessment/ [accessed June 996 

2014] 997 

 998 

Jayne TS, Rashid S (2013) Input subsidy programs in sub-Saharan Africa: a synthesis of recent 999 

evidence. Agr Econ 44:1–16. doi: 10.1111/agec.12073 1000 

 1001 

Johnson SE, Lauren JG, Welch RM, Duxbury JM (2005) A comparison of the effects of micronutrient 1002 

seed priming and soil fertilization on the mineral nutrition of chickpea (Cicer arietinum), lentil (Lens 1003 

culinaris), rice (Oryza sativa) and wheat (Triticum aestivum) in Nepal. Exp Agr 41:427-448. 1004 

doi:10.1017/S0014479705002851 1005 

 1006 

Joy EJM, Ander EL, Young SD, Black CR, Watts MJ, Chilimba ADC, Chilima B, Siyame EWP, 1007 

Kalimbira AA, Hurst R, Fairweather-Tait SJ, Stein AJ, Gibson RS, White PJ, Broadley MR (2014) 1008 

Dietary mineral supplies in Africa. Physiol Plantarum 151:208–229. doi: 10.1111/ppl.12144 1009 

 1010 

Joy EJM, Broadley MR Young SD, Black CR, Chilimba ADC, Ander EL, Barlow TS, Watts MJ 1011 

(2015) Soil type influences crop mineral composition in Malawi. Sci Total Environ 505:587–595. doi: 1012 

10.1016/j.scitotenv.2014.10.038 1013 

 1014 

Kanwal S, Rahmatullah A, Ranjha AM, Ahmed R (2010) Zinc partitioning in maize grain after soil 1015 

fertilization with zinc sulphate. Int J Agric Biol 12:299–302. doi: 10.13140/2.1.1484.3845 1016 

 1017 

Kassu A, Yabutani T, Mulu A, Tessema B, Ota F (2008) Serum zinc, copper, selenium, calcium, and 1018 

magnesium levels in pregnant and non-pregnant women in Gondar, northwest Ethiopia. Biol Trace 1019 

Elem Res 122:97–106. doi: 10.1007/s12011-007-8067-6 1020 

 1021 

Kelly VA (2006) Factors affecting demand for fertilizer in sub-Saharan Africa. Agriculture and Rural 1022 

Development Discussion Paper 23. The World Bank, Washington DC, U.S.A. 1023 

 1024 

Khoshgoftarmanesh AH, Sharifi HR, Afiuni D, Schulin R (2012) Classification of wheat genotypes 1025 

by yield and densities of grain zinc and iron using cluster analysis. J Geochem Explor 121:49–54. doi: 1026 

10.1016/j.gexplo.2012.06.002 1027 

 1028 

Kochian LV (1993) Zinc absorption from hydroponic solution by plant roots. Chap 4 in Robson AD 1029 

(ed.) Zinc in Soils and Plants, Kluwer Academic Publishers, Dordrecht. pp 45-58 1030 

 1031 

http://www.ifdc.org/R-D/Research/Senegal_tech_rev111913.pdf/
http://www.ifdc.org/R-D/Research/Senegal_tech_rev111913.pdf/
http://www.ifdc.org/R-D/Research/Tanzania-Fertilizer-Assessment/
http://www.ifdc.org/Documents/NEPAD-fertilizer-study-EN-web/
http://www.ifdc.org/Documents/NEPAD-fertilizer-study-EN-web/
http://www.ifdc.org/R-D/Research/Malawi-Fertilizer-Assessment/
http://www.ifdc.org/R-D/Research/Zambia-Fertilizer-Assessment/


21 

 

Kutman UB, Yildiz B, Cakmak I (2011) Improved nitrogen status enhances zinc and iron 1032 

concentrations both in the whole grain and the endosperm fraction of wheat. J Cereal Sci 53:118–125. 1033 

doi: 10.1016/j.jcs.2010.10.006 1034 

 1035 

Kutman UB, Yildiz B, Ozturk L, Cakmak I (2010) Biofortification of durum wheat with zinc through 1036 

soil and foliar applications of nitrogen. Cereal Chem 87:1–9. doi: 10.1094/CCHEM-87-1-0001 1037 

 1038 

Liang J, Li Z, Tsuji K, Nakano K, Robert Nout MJ, Hamer RJ (2008) Milling characteristics and 1039 

distribution of phytic acid and zinc in long-, medium- and short-grain rice. J Cereal Sci 48:83–91. doi: 1040 

10.1016/j.jcs.2007.08.003 1041 

 1042 

Lim SS, Vos T, Flaxman AD et al. (2012) A comparative risk assessment of burden of disease and 1043 

injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic 1044 

analysis for the Global Burden of Disease Study 2010. Lancet 380:2224–2260. doi: 10.1016/S0140-1045 

6736(12)61766-8 1046 

 1047 

Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese, and 1048 

copper. Soil Sci Soc Am J 42:421–428. doi: 10.2136/sssaj1978.03615995004200030009x 1049 

 1050 

Loneragan JF, Grunes DL, Welch RM, Aduayi EA, Tengah A, Lazar VA, Cary EE (1982) 1051 

Phosphorus accumulation and toxicity in leaves in relation to zinc supply. Soil Sci Soc Amer J 1052 

46:345–352. doi: 10.2136/sssaj1982.03615995004600020027x 1053 

 1054 

Lu XC, Cui J, Tian XH, Ogunniyi JE, Gale WJ, Zhao AQ (2012) Effects of zinc fertilization on zinc 1055 

dynamics in potentially zinc-deficient calcareous soil. Agron J 104:963–969. doi: 1056 

10.2134/agronj2011.0417 1057 

 1058 

Lu XC, Tian XH, Cui J, Zhao AQ, Yang XW, Mai W (2011) Effects of combined phosphorus-zinc 1059 

fertilization on grain zinc nutritional quality of wheat grown on potentially zinc-deficient calcareous 1060 

soil. Soil Sci 176:684–690. doi: 10.1097/SS.0b013e3182331635 1061 

 1062 

Mabesa RL, Impa SM, Grewal D, Johnson-Beebout SE (2013) Contrasting grain-Zn response of 1063 

biofortification rice (Oryza sativa L.) breeding lines to foliar Zn application. Field Crop Res 149:223–1064 

233. doi: 10.1016/j.fcr.2013.05.012 1065 

 1066 

Makono RCJ, Chanika CM (2008) Density and fertiliser requirement of Catimor coffee in smallholder 1067 

coffe farmers’ fields in Malawi. Horticulture Commodity Group Annual Report. Malawi Government 1068 

Ministry of Agriculture and Food Security. Available online: 1069 

www.cabi.org/gara/FullTextPDF/2008/20083323841.pdf [accessed September 2014] 1070 

 1071 

Mamiro PS, Kolsteren P, Roberfroid D, Tatala S, Opsomer AS, Van Camp JH (2005) Feeding 1072 

practices and factors contributing to wasting, stunting, and Iron-deficiency anaemia among 3-23 1073 

month old children in Kilosa District, rural Tanzania. J Health Popul Nutr 23:222–230 1074 

 1075 

Manzeke GM, Mapfumo P, Mtambanengwe F, Chikowo R, Tendayi T, Cakmak I (2012) Soil fertility 1076 

management effects on maize productivity and grain zinc content in smallholder farming systems of 1077 

Zimbabwe. Plant Soil 361:57–69. doi: 10.1007/s11104-012-1332-2 1078 

 1079 

Manzeke GM, Mtambanengwe F, Nezomba H, Mapfumo P (2014) Zinc fertilization influence on 1080 

maize productivity and grain nutritional quality under integrated soil fertility management in 1081 

Zimbabwe. Field Crop Res 166:128–136. doi: 10.1016/j.fcr.2014.05.019 1082 

 1083 

Marschner H (1993) Zinc uptake from soils, Chapter 5 in Robson AD (ed.) Zinc in soils and plants, 1084 

Kluwer Academic Publishers, Dordrecht 1085 

 1086 

http://www.cabi.org/gara/FullTextPDF/2008/20083323841.pdf


22 

 

Eichert T, Fernández V (2012) Uptake and release of elements by leaves and other aerial plant parts, 1087 

Chapter 4 in Marschner P (ed.) Marschner’s Mineral Nutrition of Higher Plants, Third Edition. 1088 

Academic Press, London. doi:10.1016/B978-0-12-384905-2.00004-2 1089 

 1090 

Martín-Ortiz D, Hernández-Apaolaza L, Gárate A (2009) Efficiency of a NPK fertilizer with adhered 1091 

zinc lignosulfonate as a zinc source for maize (Zea mays L.). J Agric Food Chem 57:9071–9078. doi: 1092 

10.1021/jf9017965 1093 

Miller LV, Krebs NF, Hambidge KM (2007) A mathematical model of zinc absorption in humans as a 1094 

function of dietary zinc and phytate. J Nutr 137:135–141. doi: 10.1017/S000711451200195X 1095 

 1096 

Ministry of Agriculture and Food Security, date unknown. National Fertiliser Strategy. Ministry of 1097 

Agriculture and Food Security, Lilongwe, Malawi. Available online: 1098 

http://fsg.afre.msu.edu/mgt/caadp/format_for_national_fertilizer_strategy9.pdf [accessed September 1099 

2014] 1100 

 1101 

Molteldo A, Troubat N, Lokshin M, Sajaia Z (2014) Analyzing food security using household survey 1102 

data: streamlined analysis with ADePT software. World Bank, Washington, DC, U.S.A. 1103 

 1104 

Müller O, Garenne M, Reitmaier P, van Zweeden AB, Kouyate B, Becher H (2003) Effect of zinc 1105 

supplementation on growth in West African children: a randomized double-blind placebo-controlled 1106 

trial in rural Burkina Faso. Int J Epidemiol 32:1098–1102 doi: 10.1093/ije/dyg190 1107 

 1108 

Murray CJ (1994) Quantifying the burden of disease: the technical basis for disability-adjusted life 1109 

years. Bull World Health Organ 72:429–445 1110 

 1111 

Ortiz-Monasterio JI, Palacios-Rojas N, Meng E, Pixley K, Trethowan R, Peña RJ (2007) Enhancing 1112 

the mineral and vitamin content of wheat and maize through plant breeding. J Cereal Sci 46:293–307. 1113 

doi: 10.1016/j.jcs.2007.06.005 1114 

 1115 

Ozturk L, Yazici MA, Yucel C, Torun A, Cekic C, Bagci A, Ozkan H, Braun H-J, Sayers Z, Cakmak 1116 

I (2006) Concentration and localization of zinc during seed development and germination in wheat. 1117 

Physiol Plant 128:144–152. doi: 10.1111/j.1399-3054.2006.00737.x 1118 

 1119 

Phattarakul N, Rerkasem B, Li LJ, Wu LH, Zou CQ, Ram H, Sohu VS, Kang BS, Surek H, Kalayci 1120 

M, Yazici A, Zhang FS, Cakmak I (2012) Biofortification of rice grain with zinc through zinc 1121 

fertilization in different countries. Plant Soil 361:131–141. doi: 10.1007/s11104-012-1211-x 1122 

 1123 

Rengel Z, Batten GD, Crowley DE (1999) Agronomic approaches for improving the micronutrient 1124 

density in edible portions of field crops. Field Crop Res 60:27–40. doi: 10.1016/S0378-1125 

4290(98)00131-2 1126 

 1127 

Salgueiro MJ, Zubillaga MB, Lysionek AE, Caro RA, Weill R, Boccio JR (2002) The role of zinc in 1128 

the growth and development of children. Nutrition 18:510–519 1129 

 1130 

Sandstead HH (2000) Causes of iron and zinc deficiencies and their effects on brain. J Nutr 1131 

130:S347–S349 1132 

 1133 

Shivay YS, Kumar D, Prasad R, Ahlawat IPS (2008) Relative yield and zinc uptake by rice from zinc 1134 

sulphate and zinc oxide coatings onto urea. Nutr Cycl Agroecosyst 80:181–188. doi: 10.1007/s10705-1135 

007-9131-5 1136 

 1137 

Shrimpton R, Gross R, Darnton-Hill I, Young M (2005) Zinc deficiency: what are the most 1138 

appropriate interventions? BMJ 330:347–349. doi: 10.1136/bmj.330.7487.347 1139 

 1140 

http://fsg.afre.msu.edu/mgt/caadp/format_for_national_fertilizer_strategy9.pdf


23 

 

Siekmann, JH, Allen LH, Bwibo NO, Demment MW, Murphy SP, Neumann CG (2003) Kenyan 1141 

school children have multiple micronutrient deficiencies, but increased plasma vitamin B-12 is the 1142 

only detectable micronutrient response to meat or milk supplementation. J Nutr 133:S3972–S3980 1143 

 1144 

Siyame EWP, Hurst R, Wawer AA, Young SD, Broadley MR, Chilimba ADC, Ander EL, Watts MJ, 1145 

Chilima B, Gondwe J, Kang'ombe D, Kalimbira A, Fairweather-Tait SJ, Bailey KB, Gibson RS 1146 

(2013) A high prevalence of zinc- but not iron-deficiency among women in rural Malawi: a cross-1147 

sectional study. Int J Vitam Nutr Res 83:176–187. doi: 10.1024/0300-9831/a000158 1148 

 1149 

Slaton NA, Wilson CE, Ntamatungiro S, Norman RJ, Boothe DL (2001) Evaluation of zinc seed 1150 

treatments for rice. Agron J 93:152-157. doi:10.2134/agronj2001.931152x 1151 

 1152 

Spears D, Ghosh A, Cumming O (2013) Open defecation and childhood stunting in India: An 1153 

ecological analysis of new data from 112 districts. PLoS ONE 8:e73784. doi: 1154 

10.1371/journal.pone.0073784 1155 

 1156 

Srivastava PC, Singh AP, Kumar S, Ramachandran V, Shrivastava M, D’souza SF (2009) 1157 

Comparative study of a Zn-enriched post-methanation bio-sludge and Zn sulfate as Zn sources for a 1158 

rice–wheat crop rotation. Nutr Cycl Agroecosyst 85:195–202. doi: 10.1007/s10705-009-9258-7 1159 

 1160 

Stein AD, Barnhart HX, Hickey M, Ramakrishnan U, Schroeder DG, Martorell R (2003) Prospective 1161 

study of protein-energy supplementation early in life and of growth in the subsequent generation in 1162 

Guatemala. Am J Clin Nutr 78:162–167. doi: 10.1016/S0140-6736(08)60205-6 1163 

 1164 

Stein AJ (2010) Global impacts of human mineral malnutrition. Plant Soil 335:133–154. doi: 1165 

10.1007/s11104-009-0228-2 1166 

 1167 

Stein AJ (2014) Rethinking the measurement of undernutrition in a broader health context: Should we 1168 

look at possible causes or actual effects? Global Food Secur 3:193–199. 1169 

doi:10.1016/j.gfs.2014.09.003 1170 

 1171 

Stein AJ, Meenakshi JV, Qaim M, Nestel P, Sachdev HPS, Bhutta ZA (2005) Analyzing the health 1172 

benefits of biofortified staple crops by means of the Disability-Adjusted Life Years approach: a 1173 

handbook focusing on iron, zinc and vitamin A. HarvestPlus Technical Monograph 4, International 1174 

Food Policy Research Institute, Washington and International Center for Tropical Agriculture, Cali. 1175 

Available online: http://www.harvestplus.org/content/analyzing-health-benefits-biofortified-staple-1176 

crops-means-disability-adjusted-life-years-app [accessed July 2014] 1177 

 1178 

Stein AJ, Nestel P, Meenakshi JV, Qaim M, Sachdev HPS, Bhutta ZA (2006) Plant breeding to 1179 

control zinc deficiency in India: how cost-effective is biofortification? Pub Health Nutr 10:492–501. 1180 

doi:10.1017/S1368980007223857 1181 

 1182 

Stoecker BJ, Abebe Y, Hubbs-Tait L, Kennedy TS, Gibson RS, Arbide I, Teshome A, Westcott J, 1183 

Krebs NF, Hambidge KM (2009) Zinc status and cognitive function of pregnant women in Southern 1184 

Ethiopia. Eur J Clin Nutr 63:916-918. doi: 10.1038/ejcn.2008.77 1185 

 1186 

Suzuki M, Takahashi M, Tsukamoto T, Watanabe S, Matsuhashi S, Yazaki J, Kishimoto N, Kikuchi 1187 

S, Nakanishi H, Mori S, Nishizawa NK (2006) Biosynthesis and secretion of mugineic acid family 1188 

phytosiderophores in zinc-deficient barley. Plant J 48:85–97. doi: 10.1111/j.1365-313X.2006.02853.x 1189 

 1190 

Suzuki M, Tsukamoto T, Inoue H, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, 1191 

Nishizawa N (2008) Deoxymugineic acid increases Zn translocation in Zn-deficient rice plants. Plant 1192 

Mol Biol 66:609–617. doi: 10.1007/s11103-008-9292-x 1193 

 1194 

http://www.harvestplus.org/content/analyzing-health-benefits-biofortified-staple-crops-means-disability-adjusted-life-years-app
http://www.harvestplus.org/content/analyzing-health-benefits-biofortified-staple-crops-means-disability-adjusted-life-years-app


24 

 

Trierweiler JF, Lindsay WL (1969) EDTA-ammonium carbonate soil test for zinc. Soil Sci Soc Am J 1195 

33:49–54. doi: 10.2136/sssaj1969.03615995003300010017x 1196 

 1197 

Tye AM, Young SD, Crout NMJ, Zhang H, Preston S, Barbosa-Jefferson VL, Davison W, McGrath 1198 

SP, Paton GI, Kilham K, Resende L (2003) Predicting the activity of Cd
2+

 and Zn
2+

 in soil pore water 1199 

from the radio-labile metal fraction. Geochim Cosmochim Ac 67:375–385. doi: 10.1016/S0016-1200 

7037(02)01138-9 1201 

 1202 

United Nations Department of Social and Economic Affairs, Population Division (UNDSEA 2013) 1203 

World population prospects: the 2012 revision. United Nations, New York, U.S.A. 1204 

 1205 

Van Asten PJA, Barro SE, Wopereis MCS, Defoer T (2004) Using farmer knowledge to combat low 1206 

productive spots in rice fields of a Sahelian irrigation scheme. Land Degrad Develop 15:383–396. doi: 1207 

10.1002/ldr.619 1208 

 1209 

Veenemans J, Milligan P, Prentice AM, Schouten LRA, Inja N, van der Heijden AC, de Boer LCC, 1210 

Jansen EJS, Koopmans AE, Enthoven WTM, Kraaijenhagen RJ, Demir AY, Uges DRA, Mbugi EV, 1211 

Savelkoul HFJ, Verhoef H (2011) Effect of supplementation with zinc and other micronutrients on 1212 

malaria in Tanzanian children: A randomised trial. PLoS Med 8:e1001125. doi: 1213 

10.1371/journal.pmed.1001125 1214 

 1215 

Velu G, Ortiz-Monasterio I, Cakmak I, Hao Y, Singh RP (2014) Biofortification strategies to increase 1216 

grain zinc and iron concentrations in wheat. J Cereal Sci 59:365–372. doi: 10.1016/j.jcs.2013.09.001 1217 

 1218 

Wang JW, Mao H, Zhao HB, Huang DL, Wang ZH (2012) Different increases in maize and wheat 1219 

grain zinc concentrations caused by soil and foliar applications of zinc in Loess Plateau, China. Field 1220 

Crop Res 135:89–96. doi: 10.1016/j.fcr.2012.07.010 1221 

 1222 

Wanzala-Mlobela M, Fuentes P, Mkumbwa S (2013) Practices and policy options for the improved 1223 

design and implementation of fertilizer subsidy programs in sub-Saharan Africa. NEPAD policy 1224 

document. IFDC, Alabama, U.S.A. 1225 

 1226 

Wei Y, Shohag MJI, Yang X (2012) Biofortification and bioavailability of rice grain zinc as affected 1227 

by different forms of foliar zinc fertilization. PLoS ONE 7: e45428. doi: 1228 

10.1371/journal.pone.0045428 1229 

 1230 

Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human 1231 

nutrition perspective. J Exp Bot 55:353–364. doi: 10.1093/jxb/erh064 1232 

 1233 

Wessells KR, Brown KH (2012) Estimating the global prevalence of zinc deficiency: Results based 1234 

on zinc availability in national food supplies and the prevalence of stunting. PLoS ONE 7: e50568. 1235 

doi: 10.1371/journal.pone.0050568 1236 

 1237 

Wessells KR, Singh GM, Brown KH (2012) Estimating the global prevalence of inadequate zinc 1238 

intake from national Food Balance Sheets: Effects of methodological assumptions. PLoS ONE 7: 1239 

e50565. doi: 10.1371/journal.pone.0050565 1240 

 1241 

White JG, Zasoski RJ (1999) Mapping soil micronutrients. Field Crop Res 60:11–26. doi: 1242 

10.1016/S0378-4290(98)00130-0 1243 

 1244 

White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in 1245 

human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84. 1246 

doi: 10.1111/j.1469-8137.2008.02738.x 1247 

 1248 



25 

 

White PJ, Broadley MR (2011) Physiological limits to zinc biofortification of edible crops. Front 1249 

Plant Sci 2:1–11. doi: 10.3389/fpls.2011.00080 1250 

 1251 

White PJ, Broadley MR, Hammond JP, Ramsay G, Subramanian NK, Thompson J, Wright G (2012) 1252 

Bio-fortification of potato tubers using foliar zinc-fertiliser. J Hortic Sci Biotech 87:123–129 1253 

 1254 

Widodo, Broadley MR, Rose T, Frei M, Pariaska-Tanaka J, Yoshihashi T, Thomson M, Hammond 1255 

JP, Aprile A, Close TJ, Ismail AM, Wissuwa M (2010) Response to zinc deficiency of two rice lines 1256 

with contrasting tolerance is determined by root growth maintenance and organic acid exudation rates, 1257 

and not by zinc-transporter activity. New Phytol 186:400-414. doi: 10.1111/j.1469-1258 

8137.2009.03177.x 1259 

 1260 

Wissuwa M, Ismail AM, Graham RD (2008) Rice grain zinc concentrations as affected by genotype, 1261 

native soil-zinc availability, and zinc fertilization. Plant Soil 306:37–48. doi: 10.1007/s11104-007-1262 

9368-4 1263 

 1264 

World Bank (1993) World Development Report. World Bank, Washington D.C. 1265 

 1266 

World Bank (2014) National Gross Domestic Product per capita. Available online: 1267 

http://data.worldbank.org/indicator/NY.GDP.PCAP.CD [accessed October 2014] 1268 

 1269 

World Health Organization of the United Nations (WHO 1995) Expert Committee Report: Physical 1270 

status: the use and interpretation of anthropometry. Technical Report Series 854. WHO, Geneva 1271 

 1272 

World Health Organization of the United Nations (WHO 2001) Macroeconomics and Health: 1273 

Investing in Health for Economic Development. Report of the Commission on Macroeconomics and 1274 

Health. WHO, Geneva 1275 

 1276 

World Health Organization of the United Nations (WHO 2009) Global Health Risks: Mortality and 1277 

burden of disease attributable to selected major risks. WHO, Geneva 1278 

 1279 

World Health Organization and Food and Agriculture Organization of the United Nations (WHO and 1280 

FAO 2004) Vitamin and mineral requirements in human nutrition. Second Edition. WHO, Geneva 1281 

and FAO, Rome 1282 

 1283 

Wu J, Schat H, Sun R, Koornneef M, Wang XW, Aarts MGM (2007) Characterization of natural 1284 

variation for zinc, iron and manganese accumulation and zinc exposure response in Brassica rapa L. 1285 

Plant Soil 291:167–180. doi: 10.1007/s11104-006-9184-2 1286 

 1287 

Wu J, Yuan YX, Zhang XW, Zhao J, Song X, Li Y, Li X, Sun R, Koornneef M, Aarts MGM, Wang 1288 

XW (2008) Mapping QTLs for mineral accumulation and shoot dry biomass under different Zn 1289 

nutritional conditions in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Plant Soil 310:25–40. 1290 

doi: 10.1007/s11104-008-9625-1 1291 

 1292 

Xue YF, Yue SC, ZhangYQ, Cui ZL, ChenXP, Yang FC, Cakmak I, McGrath SP, Zhang FS, Zou CQ 1293 

(2012) Grain and shoot zinc accumulation in winter wheat affected by nitrogen management. Plant 1294 

Soil 361:153–163. doi: 10.1007/s11104-012-1510-2 1295 

 1296 

Yang XW, Tian XH, Gale WJ, Cao YX, Lu XC, Zhao AQ (2011a) Effect of soil and foliar zinc 1297 

application on zinc concentration and bioavailability in wheat grain grown on potentially zinc-1298 

deficient soil. Cereal Res Commun 39:535–543 1299 

 1300 

Yang XW, Tian XH, Lu XC, Gale WJ, Cao YX (2011b) Foliar zinc fertilization improves the zinc 1301 

nutritional value of wheat (Triticum aestivum L.) grain. Afr J Biotechnol 10:14778–14785. doi: 1302 

10.5897/AJB11.780 1303 

http://data.worldbank.org/indicator/NY.GDP.PCAP.CD


26 

 

 1304 

Yilmaz A, Ekiz H, Torun B, Gültekin I, Karanlik S, Bagci SA, Cakmak I (1997) Effect of different 1305 

zinc application methods on grain yield and zinc concentration in wheat cultivars grown on zinc-1306 

deficient calcareous soils. J Plant Nutr 20:461–471. doi: 10.1080/01904169709365267 1307 

 1308 

Zhang YQ, Sun YX, Ye YL, Karim MR, Xue YF, Yan P, Meng QF, Cui ZL, Cakmak I, Zhang FS, 1309 

Zou CQ (2012) Zinc biofortification of wheat through fertilizer applications in different locations of 1310 

China. Field Crop Res 125:1–7. doi: 10.1016/j.fcr.2011.08.003 1311 

 1312 

Zhao AQ, Tian XH, Cao YX, Lu XC, Liu T (2014) Comparison of soil and foliar zinc application for 1313 

enhancing grain zinc content of wheat when grown on potentially zinc-deficient calcareous soils. J Sci 1314 

Food Agric, 94:2016–2022. doi: 10.1002/jsfa.6518 1315 

 1316 

Zhao AQ, Xinchun L, Chen Z, Tian X, Yang X (2011) Zinc fertilization methods on zinc absorption  1317 

and translocation in wheat. J Agr Sci 3:28–35. doi: 10.5539/jas.v3n1p28 1318 

 1319 

Zou CQ, Zhang YQ, Rashid A, Ram H, Savasli E, Arisoy RZ, Ortiz-Monasterio I, Simunji S, Wang 1320 

ZH, Sohu V, Hassan M, Kaya Y, Onder O, Lungu O, Yaqub Mujahid M, Joshi AK, Zelenskiy Y, 1321 

Zhang FS, Cakmak I (2012) Biofortification of wheat with zinc through zinc fertilization in seven 1322 

countries. Plant Soil 361:119–130. doi: 10.1007/s11104-012-1369-2 1323 



Table 1 Summary of studies included in the meta-analysis. Application methods of zinc (Zn) are soil (S) or foliar (F). ‘n’ is the number of data points 

contributing to the meta-analysis in which individual studies were stratified by crop, cultivar, location and Zn application rate and pooled by application 

method 

 

 Crop Varieties Application 

via (n) 

Country Reference 

Wheat  S (4) Pakistan Abid et al. 2013 

Wheat Bread and durum S (1), F (3) Turkey Cakmak et al. 2010 

Wheat  S (12) Turkey Ekiz et al. 1998 

Wheat 20 cultivars S (20) Turkey Erdal et al. 2002 

Wheat 2 Zn-deficiency tolerant cultivars F (2) Iran Ghasemi et al. 2013 

Maize  S (2) Pakistan Harris et al. 2007  

Maize 2 cultivars S (6) Pakistan Kanwal et al. 2010 

Wheat 30 cultivars S (60) Iran Khoshgoftarmanesh et al. 2012 

Wheat  S (1) China Lu et al. 2011 

Wheat 2 winter wheat cultivars S (8) China Lu et al. 2012 

Rice 10 biofortification breeding line 

genotypes 

F (19) Philippines Mabesa et al. 2013 

Maize  S (1) Zambia Manzeke et al. 2014 

Maize  S (2) Spain Martín-Ortiz et al. 2009 

Rice Cultivars commonly used S (10), F (10) China, India, Lao PDR, Thailand, 

Turkey 

Phattarakul et al. 2012 

Rice  S (4) India Shivay et al. 2008 

Rice  S (1) India Srivastava et al. 2009 

Maize, wheat  S (1,1), F (1,1) China Wang et al. 2012 

Rice 3 cultivars F (3) China Wei et al. 2012 

Rice 5 ‘high-’;5 ‘low-’ Zn genotypes S (15) Philippines Wissuwa et al. 2008 

Wheat 10 cultivars S (15), F (6) China Yang et al. 2011a 

Wheat  F (1) China Yang et al. 2011b 

Wheat 3 bread, 1 durum S (4), F (4) Turkey Yilmaz et al. 1997 

Wheat Common cultivars S (1), F (7) China Zhang et al. 2012 

Wheat  S (4) China Zhao et al. 2011 

Wheat 5 cultivars. (Results not presented 

by cultivar) 

S (1), F (1) China Zhao et al. 2014 

Wheat 11 cultivars S (14), F (13) China, India, Kazakhstan, Mexico, 

Pakistan, Turkey, Zambia 

Zou et al. 2012 
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Table 2 Baseline national-level estimates of zinc (Zn) deficiency and associated disease burden in 1 

comparison to published studies for the 10 focus countries of this review  2 

 3 

Country Estimated risk of inadequate Zn 

supply 

Stunting DALYs lost due to 

Zn deficiency 

 % total population % children 

0-59 

months 

100 k population
-1

 

 Rank of country for each study in (brackets) 

 Present 

study 

Wessells & 

Brown 

(2012) 

Joy et al. 

(2014) 

UNICEF 

(2013) 

IHME (2014) 

Reference 

year 

2009 2003-7 2009 2007-11 2012 

Burkina Faso 49.6 (3) 39.4 (3) 5.5 (9) 35 (7) 1,219 (1) 

Ethiopia 31.6 (6) 11.0 (10) 81.5 (1) 44 (3) 344 (7) 

Ghana 27.1 (7) 21.6 (8) 36.4 (5) 28 (9) 161 (10) 

Kenya 27.0 (8) 25.3 (5) 60.6 (4) 35 (7) 281 (9) 

Malawi 54.8 (2) 40.6 (2) 32.8 (6) 47 (1) 769 (2) 

Mali 25.5 (9) 22.3 (7) 5.2 (10) 38 (6) 448 (5) 

Nigeria 24.1 (10) 20.6 (9) 8.7 (8) 41 (5) 408 (6) 

Senegal 36.0 (5) 24.6 (6) 11.7 (7) 27 (10) 489 (4) 

Tanzania 41.1 (4) 34.1 (4) 64.4 (3) 42 (4) 341 (8) 

Zambia 65.7 (1) 44.9 (1) 72.4 (2) 45 (2) 665 (3) 
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Table 3 Summary of baseline soil properties and zinc (Zn) application rates in maize, rice and wheat crops . ‘n’ is the number of data points contributing to 

the meta-analysis in which individual studies were stratified by crop, cultivar, location and Zn application rate and pooled by application method. Q1 and Q3 

are first and third quartiles, respectively 

 

Crop Method Baseline soil properties  Zn application rate 

  DTPA-extractable Zn  pH (H2O)    

  n Mean SD Q1 Median Q3  n Mean SD Q1 Median Q3  n Mean SD Q1 Median Q3 

   mg kg
-1

      kg ha
-1

 

Maize
†
 Soil 11 0.69 0.12 0.68 0.72 0.72  11 8.05 0.11 7.98 7.98 8.20  12 15.72 18.75 3.44 8.50 18.00 

Rice  29 1.75 1.52 0.79 0.97 2.70  30 6.89 1.13 5.70 6.85 7.80  30 11.77 4.18 11.00 13.00 15.00 

Wheat  158 0.82 0.79 0.10 0.67 1.00  137 7.73 0.32 7.55 7.80 7.98  158 25.36 13.55 11.00 23.00 50.00 

Maize Foliar 1 0.56 * * 0.56 *  1 8.24 * * 8.24 *  1 0.91 * * 0.91 * 

Rice  33 1.30 1.74 0.28 0.36 2.10  34 6.59 0.76 6.35 6.40 6.95  34 3.18 1.51 1.25 4.00 4.00 

Wheat  38 0.80 1.13 0.32 0.52 0.71  37 7.69 0.50 7.53 7.80 7.98  38 1.62 0.73 1.29 1.59 1.63 
 

†
 Manzeke et al. (2014) measured pH in CaCl2 and extractable Zn using EDTA so these data were excluded 
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Table 4 Summary of the effects of zinc (Zn)-enriched fertiliser on Zn and PA concentration in the 1 

grain of maize, rice and wheat. ‘n’ is the number of data points contributing to the meta-analysis in 2 

which individual studies were stratified by crop, cultivar, location and Zn application rate and pooled 3 

by application method. Q1 and Q3 = first and third quartiles, respectively 4 

 5 

Crop Application 

via 

n Mean SD Min Q1 Median Q3 Max 

    Zn concentration in the grain, % of control 

Maize Soil 12 128 18 106 114 123 139 173 

Rice 30 111 15 84 102 107 119 157 

Wheat 158 143 57 51 105 119 174 373 

Maize Foliar 1 130 * 130 - 130 - 130 

Rice 34 127 19 107 114 125 140 172 

Wheat 38 178 55 112 143 163 203 333 

    PA concentration in the grain, % of control 

Maize Soil 3 96 7 7 92 93 104 104 

Wheat 26 91 15 65 83 89 98 121 

Rice Foliar 3 86 1 85 85 87 87 87 

Wheat 15 97 10 82 89 99 102 121 

   Yield, % of control 

Maize Soil 12 110 10 95 100 111 120 125 

Rice 15 111 8 102 103 111 117 129 

Wheat 47 188 246 90 99 110 129 1,607 

Maize Foliar 1 98 * 98 * 98 * 98 

Rice 15 100 7 84 98 102 104 109 

Wheat 32 142 173 77 99 102 111 1,071 
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Table 5 Effect of different zinc (Zn) fertilisation scenarios on dietary Zn and phytate supplies and estimated risk of Zn deficiency in 10 example countries in 

sub-Saharan Africa. Scenario ‘0’ is baseline; 1 and 2 model enrichment of granular fertilisers, either subsidised or subsidised and non-subsidised; 3 and 4 

model application of foliar Zn sprays to 50 and 75 % of target crops. Scenarios that are cost-effective in comparison to WHO (*) or World Bank and WHO 

(**) benchmarks are highlighted 

 
Country Scenario Dietary Zn supply  Dietary phytate 

supply 

Zn deficiency risk DALYs lost due to Zn 

deficiency 

Programme 

cost 

Cost per 

DALY saved 

  mg capita
-1

 d
-1

 % 100 k population
-1

 US$ ‘000s yr
-1

 US$ yr
-1

 

Burkina Faso 0 11.2 3,617 49.6 1288   

 1 11.2 3,615 49.4 1282 584 624* 

 2 - - - - - - 

 3 11.7 3,606 43.3 1123 1,267 49** 

 4 12.0 3,601 40.4 1048 1,900 51** 

Ethiopia 0 8.2 1,830 31.6 329   

 1 8.4 1,818 28.9 300 31,983 1,302* 

 2 - - - - - - 

 3 9.5 1,821 18.7 195 11,392 98** 

 4 10.2 1,816 14.6 152 17,089 111** 

Ghana 0 8.0 1,371 27.1 162   

 1 8.0 1,370 26.7 160 2,791 5,747 

 2 8.1 1,366 25.8 155 10,640 5,893 

 3 8.4 1,358 22.7 136 2,088 332* 

 4 8.6 1,351 20.9 125 3,133 347* 

Kenya 0 8.9 1,858 27.0 280   

 1 8.9 1,851 26.2 272 6,021 1,830* 

 2 9.2 1,822 23.4 242 29,583 1,932* 

 3 9.5 1,851 21.4 222 3,811 162** 

 4 9.8 1,847 19.2 199 5,716 172** 

Malawi 0 8.9 2,700 54.8 768   

 1 9.2 2,663 49.6 695 15,675 1,431 

 2 9.3 2,641 46.6 653 25,115 1,456 

 3 9.7 2,696 43.5 610 3,132 132** 

 4 10.1 2,694 38.7 542 4,698 138** 

Mali 0 11.9 2,795 25.5 495   

 1 - - - - - - 

 2 12.0 2,787 24.8 482 6,324 3,428 

 3 12.4 2,769 21.5 419 2,072 194** 

 4 12.7 2,756 19.8 385 3,108 203** 
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Nigeria 0 8.6 1,751 24.1 406   

 1 8.7 1,749 23.6 397 20,791 1,593 

 2 8.7 1,745 23.0 388 45,002 1,613 

 3 9.1 1,737 20.0 337 9,790 89** 

 4 9.3 1,729 18.2 307 14,685 94** 

Senegal 0 8.4 1,820 36.0 471   

 1 8.4 1,816 35.2 461 1,261 964* 

 2 8.5 1,810 34.2 447 3,027 977* 

 3 9.0 1,786 27.6 362 656 46** 

 4 9.3 1,769 24.2 317 984 49** 

Tanzania 0 8.0 2,037 41.1 341   

 1 8.4 2,033 40.4 335 9,630 3,547 

 2 8.5 2,028 39.6 328 19,813 3,573 

 3 9.0 2,026 33.8 280 7,323 267* 

 4 8.8 2,021 30.6 253 10,985 279* 

Zambia 0 7.1 2,100 65.7 664   

 1 7.3 2,076 61.3 620 7,222 1,237* 

 2 7.4 2,059 58.2 589 12,358 1,244* 

 3 7.8 2,097 53.1 537 1,817 108** 

 4 8.1 2,095 47.4 480 2,726 112** 
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Fig 1 Concentration of zinc (Zn) in the grains of maize (circles), rice (triangles) and wheat (squares) 1 
following Zn application via soil (open) or foliage (filled). Y-axis represents the concentration as a 2 
percentage of control. Vertical lines mark Harvest Plus breeding targets for maize and wheat (dashed) 3 
and rice (dash-dot) 4 

Figure captions
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Fig 2 Impact and cost-effectiveness of four zinc (Zn) fertilisation scenarios in 10 countries in sub-5 
Saharan Africa: Burkina Faso (BF), Ethiopia (ET), Ghana (GH), Kenya (KE), Malawi (MW), Mali 6 
(ML), Nigeria (NG), Senegal (SN), Tanzania (TZ) and Zambia (ZM). Impact is defined as the 7 
reduction in disease burden attributable to Zn deficiency and is quantified in disability-adjusted life-8 
years (DALYs; Supplementary Table 10). Cost-effectiveness is quantified in US$ per DALY saved 9 
(Supplementary Table 11). Scenario 1 models enrichment of subsidised granular fertilisers; Scenario 2 10 
models enrichment of subsidised and non-subsidised granular fertilisers; Scenarios 3 and 4 model 11 
foliar application of Zn to 50 and 75 % of cereals, respectively. Not all countries are represented in 12 
Scenarios 1 and 2 due to lack of data. The text size represents the absolute number of DALYs saved 13 
annually (highly dependent on the country’s population size): from smallest to largest, <25,000, 25-14 
50,000, 50-75,000 and 75,000+ 15 
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