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Abstract. The adaptation of Crouzeix - Raviart finite element in the context of mul-
tiscale finite element method (MsFEM) is studied and implemented on diffusion and
advection-diffusion problems in perforated media. It is known that the approximation
of boundary condition on coarse element edges when computing the multiscale basis
functions critically influences the eventual accuracy of any MsFEM approaches. The
weakly enforced continuity of Crouzeix - Raviart function space across element edges
leads to a natural boundary condition for the multiscale basis functions which relaxes
the sensitivity of our method to complex patterns of perforations. Another ingredient
to our method is the application of bubble functions which is shown to be instrumental
in maintaining high accuracy amid dense perforations. Additionally, the application
of penalization method makes it possible to avoid complex unstructured domain and
allows extensive use of simpler Cartesian meshes.
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1 Introduction

Many important problems in modern engineering context have multiple-scale solutions
e.g., transport in truly heterogeneous media like composite materials or in perforated me-
dia, or turbulence in high Reynolds number flows are some of the examples. Complete

∗Corresponding author. Email addresses: bmuljadi@math.univ-toulouse.fr (B. P. Muljadi),
alexei.lozinski@univ-fcomte.fr (A. Lozinski), pierre.degond@math.univ-toulouse.fr (P. Degond),
jacek.narski@math.univ-toulouse.fr (J. Narski)

http://www.global-sci.com/ Global Science Preprint



2

numerical analysis of these problems are difficult simply because they exhaust compu-
tational resources. In recent years, the world sees the advent of computational archi-
tectures such as parallel and GPU programming; both are shown to be advantageous
to tackle resource demanding problems. Nevertheless, the size of the discrete problems
remains big. In some engineering contexts, it is sometimes sufficient to predict macro-
scopic properties of multiscale systems. Hence it is desirable to develop an efficient
computational algorithm to solve multiscale problems without being confined to solv-
ing fine scale solutions. Several methods sprung from this purpose namely, Generalized
finite element methods (Babuška et al., 2003), wavelet-based numerical homogenization
method (Dorobantu and Engquist, 1998), variational multiscale method (Nolen et al.,
2008),various methods derived from homogenization theory (Bourgeat, 1984), equation-
free computations (Kevrekidis et al., 2003), heterogeneous multiscale method (Weinan
and Engquist, 2003) and many others. In the context of diffusion in perforated media,
some studies have been done both theoretically and numerically in (Cioranescu et al.,
2006),(Cioranescu and Murat, 1997),(Henning and Ohlberger, 2009),(Hornung, 1997), and
(Lions, 1980). For the case of advection-diffusion a method derived from heterogeneous
multiscale method addressing oscillatory coefficients is studied in (Deng et al., 2009).

In this paper, we present the development of a dedicated solver for solving multiscale
problems in perforated media most efficiently. We confine ourselves in dealing with only
stationary diffusion and advection-diffusion problems as means to pave the way toward
solving more complicated problems like Stokes. We begin by adapting the concept of
multiscale finite element method (MsFEM) originally reported in (Hou and Wu, 1997).
The MsFEM method relies on the expansion of the solution on special basis functions
which are pre-calculated by means of local simulations on a fine mesh and which model
the microstructure of the problem. By contrast to sub-grid modeling methodologies, the
multiscale basis functions are calculated from the actual geometry of the domain and do
not depend on an (often arbitrary) analytical model of the microstructure. A study on the
application of MsFEM in porous media has been done in (Efendiev and Hou, 2007), and
although it could have bold significance in geo- or biosciences, they can be applied also
in different contexts, e.g., pollutant dispersion in urban area (Carballal Perdiz, 2011) or
on similar problems which are extremely dependent on the geometry of perforations but
their full account leads to very time consuming simulations. Textbook materials on the
basics of MsFEM can be found in (Efendiev and Hou, 2009).

It is understood that when constructing the multiscale basis function, the treatments
of boundary condition on coarse elements greatly influence the accuracy of the method
of interest. For example, in the original work of Hou and Wu, the oversampling method
was introduced to provide the best approximation of the boundary condition of the mul-
tiscale basis functions which is also of high importance when dealing with non-periodic
perforations. Oversampling here means that the local problem in the course element are
solved on a domain larger than the element itself, but only the interior information is
communicated to the coarse scale equation. This reduces the effect of wrong boundary
conditions and bad sampling sizes. The ways in which the sampled domain is extended
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lead to various oversampling methods, see (Efendiev and Hou, 2009), (Chu et al., 2008),
(Henning and Peterseim, 2012), (Efendiev et al., 2013). The non-conforming nature of
Crouzeix-Raviart element, see (Crouzeix and Raviart, 1973), is shown to provide great
’flexibility’ especially when non-periodically perforated media is considered. In the con-
struction of Crouzeix-Raviart multiscale basis functions, the conformity between coarse
elements are not enforced in a strong sense, but rather in a weak sense i.e., the method re-
quires merely the average of the ”jump” of the function to vanish at coarse element edges.
When very dense perforations are introduced, which often makes it virtually impossible
to avoid intersections between coarse element edges and perforations, the benefit of us-
ing Crouzeix-Raviart MsFEM is significant for it allows the multiscale basis functions
to have natural boundary conditions on element edges making it insensitive to complex
patterns of perforations. Moreover, the integrated application of penalization method en-
ables one to carry the simulations onto simple Cartesian meshes. Note that some methods
derived from homogenization theory may provide robust and accurate results provided
that the underlying multiscale structure or subgrid effects satisfies the necessary con-
straints which is not the case for problems with non-periodic perforations. In this paper
several computational results with non-periodic perforations are given to highlight the
feasibility of our method in such circumstances. Another important ingredient to our
method is the multiscale finite element space enrichment with bubble functions. Again,
when very dense perforations are considered, it is both crucial and difficult to capture
correct approximations between perforations for which the application of bubble func-
tions is offered as the remedy. We illustrate these problems in our paper to highlight the
contribution of bubble function in improving the accuracy of our MsFEM. Our work con-
tinues the application of Crouzeix-Raviart MsFEM done on prototypical elliptic problems
(Le Bris et al., 2013a) and on diffusion problems with homogeneous boundary condition
(Le Bris et al., 2013b). Improvements are done to the earlier work by introducing bubble
functions and to the latter by extending the application to advection-diffusion problems
with non-homogeneous boundary conditions.

The paper is organized as the following. In chapter 3 we begun with the formulation
of the problem and the construction of our MsFEM. Here we explain the construction of
Crouzeix-Raviart MsFEM functions space with bubble functions and the multiscale ba-
sis functions. In chapter 4 the application of non-homogeneous boundary conditions is
explained. In chapter 5 we describe the application of penalization method. Demonstra-
tions of our MsFEM in terms of computational simulations and its analysis can be found
in chapter 6 followed by some concluding remarks.

2 Multiscale Methodology

In our paper, we tackle our problems with the non-classical Multiscale Finite Element
Method (MsFEM) developed by Hou and Wu (1997). In this section we revisit the general
framework in which a class of multiscale methods is commonly described. In general,
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one is interested in solving the following problem, namely

Lu= f , u∈X, (2.1)

in which X is a functional space with very high dimension m such that m= Vol(Ω)
εd �1. For

instance, X could be the finite element space on a very fine mesh that captures smallest
characteristic length ε in d spatial dimension.

The maxim of multiscale methods is to reduce the difficulties in dealing with a large
set of unknowns inherent to Eq. 2.1 by transforming it into smaller dimensional prob-
lems. In doing so, one builds a functional space X0 with smaller dimension than X, the
elements of which constitutes an ”optimal” reduced representation of the local solutions
of problem 2.1. The dimension of X0, m0 is ideally very small compared to m. To link
X and X0 one could construct the projection operator P : X→X0, and the reconstruction
operator R : X0 →X satisfying PR= Id, but RP 6= Id. A multiscale method renders the
original problem 2.1 into smaller sized problem

(PLR)u0=P f , u0∈X0 (2.2)

In the context of MsFEM, this method consists of two principal steps namely (i) deter-
mination of a basis that spans space X0, and (ii) the Calculations of 2.2. The reconstruction
operator is used in the end to recover the multiscale approximation of u, that is v=Ru0.
The accuracy of such approximation depends heavily on step (i). Several techniques can
be used to construct the X0 basis, and in terms of MsFEM, the finite element method is
used to compute such ”multiscale” basis function. Then, the same finite element method
is used to compute the coarse scale solutions.

3 Crouzeix-Raviart MsFEM with bubble functions enrichment

3.1 Basic Formulation

We consider an advection-diffusion problem laid in a bounded domain Ω ∈Rd within
which a set Bε of perforations is included. From here on we assume that the ambient
dimension is d = 2. The perforated domain with voids left by perforations is denoted
Ωε=Ω\Bε, where ε denotes the minimum width of perforations. The advection-diffusion
problem is then to find u : Ωε →R which is the solution to

−∇·(A∇u)+~w·∇u= f in Ωε (3.1)
u=0 on ∂Bε∩∂Ωε

u= g on ∂Ω∩∂Ωε

where f : Ω →R is a given function, g is a function fixed on boundary ∂Ω and ~w is a
given velocity field. In this paper, we consider only the Dirichlet boundary condition
on ∂Bε namely u|∂Bε =0 thereby assuming that the perforation is opaque. Other kinds of
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boundary conditions on ∂Bε are subject to a completely new endeavour. Recent works on
Crouzeix-Raviart MsFEM focusing on diffusion problems with homogeneous boundary
condition g = 0 has been done in (Le Bris et al., 2013b). When linear boundary condi-

Figure 1: Perforated domain Ω∈Rd within which a set Bε of perforations is included. The perforated domain
with voids left by perforations is denoted Ωε =Ω\Bε, where ε denotes the minimum width of perforations.

tion for MsFEM basis function is considered, it is difficult to approximate correct coarse
node solutions when one or more perforations coincide with any of the coarse element’s
boundaries. The approximation of the MsFEM basis function will be distorted and the
whole solution will be affected. This problem often and can be relaxed by using over-
sampling methods. However, in practice, this brings an inherent inconvenience since the
size and position of perforations are most of the times unpredictable which requires some
problem dependent parameters to be introduced. Moreover, the computational cost also
increases due to enlarged sampled domain.

The Crouzeix-Raviart basis functions are non-conforming throughout the computa-
tional domain. The continuity of the functions are enforced weakly i.e., it requires no
fixed values across the boundaries but rather vanishing ”jump” averages on each edge.
In order to explain the MsFEM space in the vein of Crouzeix-Raviart’s finite element, we
define a mesh TH in Ω which are discrete polygons with each diameter at most H and
made up by nH coarse elements and ne coarse element edges. Denote εH the set of all
edges e of TH which includes edges on the domain boundary ∂Ω. It is assumed that the
mesh does not include any hanging nodes and each edge is shared by two elements ex-
cept those on ∂Ω which belongs only to one element. TH is assumed a regular mesh. By
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regular mesh, we mean for any mesh element T ∈TH, there exists a smooth one-to-one
mapping M : T̄→T where T̄⊂Rd is the element of reference, and that ‖∇M‖L∞≤DH,
‖∇M−1 ‖L∞≤ DH−1 with D being universal constant independent of T. We introduce
the functional space for Crouzeix-Raviart type MsFEM with bubble function enrichment

VH = {u∈L2(Ω) | u|T ∈H1(T) for all T∈TH,
−∇·(A∇u)+~w·∇u=constant in T∩Ωε for all T∈TH,
u=0 on ∂Bε, n·∇u= constant on e∩Ωε for all e∈εH,∫

e
[[u]]=0 for all e∈εH

†} (3.2)

where [[u]] denotes the jump of u over an edge. The MsFEM approximation to Eq. (3.1)
is the solution of uH ∈VH to

aH(uH,vH)=
∫

Ωε
f vH for all vH ∈VH (3.3)

where

aH(u,v)= ∑
T∈TH

(∫
T∩Ωε

∇u·∇v+
∫

T∩Ωε
(~w·∇u)v

)
. (3.4)

3.2 Calculation of Crouzeix-Raviart and Bubble functions

The basis for VH contains functions associated to edges e and mesh elements T∩(Ω\
Bε)∩Ωε. The former has the notation Φe and the latter ΦB. The edges composing Tk are
denoted Γk

i with i=1,··· ,NΓ whereas k=1,··· ,nH. The Crouzeix-Raviart multiscale basis
functions

{
Φk

e
}

i are then the unique solution in H1(Tk) to

−∇·
[
A∇

{
Φk

e

}
i

]
+~w·∇

{
Φk

e

}
i

=0 in Tk (3.5)∫
Γk

i

{
Φk

e

}
i

=δie for i=1,··· ,NΓ

n·A∇
{

Φk
e

}
i

=λk
i on Γk

i ,i=1,··· ,NΓ.

where λk
i are the Lagrange multipliers. In a weak form, the finite element approximation

of the above problem is to find Φk
e ∈H1(Tk) such that Φk

e =0 on Tk∩Bε and the Lagrange
multipliers λΓ,Γ∈ε(Tk) satisfying∫

Tk∩Ωε
A∇

{
Φk

e

}
·∇v+

∫
Tk∩Ωε

(
~w·∇

{
Φk

e

})
v+ ∑

Γ∈ε(Tk)

λΓ

∫
Γk

v = 0 (3.6)

∑
Γ∈ε(Tk)

{
Φk

e

}∫
Γk

v = δ{Γk}e

†On e∈εH∩∂Ω,
∫

e[[u]]=
∫

e u.
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In this paper, Eq. 3.7 is solved with standard Galerkin approximation of Q1 FEM within
a coarse elements Tk. We choose a finite fine basis function {Ψm}

n f
m=1 where n f is the

number of nodes in a coarse element Tk such that Φe
k =∑

n f
m=1 ΦemΨm. Hence within Tk

Eq. 3.7 can be discretized and written in matrix form as

Amn

{
Φk

e

}
m
+Cpmλp = 0

Cpn

{
Φk

e

}
n

= bp (3.7)

where

Amn =
∫

Tk
A∇Ψm ·∇Ψn+

∫
Tk
(~w·∇Ψm)Ψn (3.8)

Cpm =
∫

Γp

Ψm (3.9)

bp = δ{Γp}e (3.10)

and p=1,2,··· ,NΓ.
The bubble function

{
Φk

B
}

can be obtained by solving for each element Tk

−∇·
(
A∇

{
Φk

B

})
+~w·∇

{
Φk

B

}
=1, in Tk{

Φk
B

}
=0, on ∂Tk (3.11)

In a weak form, the finite element approximation of the above problem is to find ΦB ∈
H1(Tk) such that ΦB =0 on Tk∩Bε and ΦB =0 on ∂Tk satisfying∫

Tk∩Ωε
A∇

{
Φk

B

}
·∇v+

∫
Tk∩Ωε

(
~w·∇

{
Φk

B

})
v =

∫
Tk∩Ωε

1v (3.12)

The bubble functions
{

Φk
B
}

are also computed with standard Galerkin approximation of
Q1 FEM within Tk by choosing fine scale basis function Ψ such that Φk

B =∑
n f
m=1 ΦBmΨm.

Having acquired the Crouzeix-Raviart multiscale basis functions Φk
e and the bubble

functions Φk
B, the coarse calculation Eq. 3.3 can be done with Galerkin approximation

such that the approximated solution uH is described as

uH(x,y)=
nH

∑
i=1

ui{Φe}i (x,y)+
ne

∑
k=1

uk{ΦB}k (x,y). (3.13)

Here, ui are finite element approximation of u corresponding to coarse element edges
i∈ εH whereas uk are finite element approximation of u corresponding to coarse element
Tk∈TH . With this, the reconstruction of the quantity uH on the fine mesh can also be done.
In this paper, although the general formulation is focused on advection-diffusion prob-

lem, various tests on diffusion-only cases are presented for showing the contributions of



8

bubble functions and Crouzeix-Raviart multiscale basis functions. The MsFEM formula-
tion for diffusion cases is largely similar to the advection-diffusion counterpart. Regard-
ing the advection-diffusion problems, one could consider another approach for selecting
the space for the basis functions namely by following the Petrov-Galerkin formulation
which could be useful for problems with very high Péclet numbers, nevertheless this is
not the emphasis of this paper. Rigorous studies on Crouzeix-Raviart MsFEM’s numeri-
cal analysis and error estimates for highly oscillatory elliptic problems and for diffusion
problems in perforated media can be found in (Le Bris et al., 2013a) and (Le Bris et al.,
2013b)

4 Boundary condition

We propose to approximate the non-homogeneous dirichlet boundary condition in Eq.
(3.1) by, ∫

e∩∂Ω
uH =

∫
e∩∂Ω

g, for all e∈εH on ∂Ω (4.1)

Equation (4.1) is therefore equivalent with

ue∩∂Ω =
1
|e|

∫
e∩∂Ω

g. (4.2)

With this, the construction of Crouzeix-Raviart basis functions associated both on edges
at domain boundary or within the domain can be carried out in a similar fashion. This ap-
proach is a modification with respect to the earlier works in (Le Bris et al., 2013a),(Le Bris
et al., 2013b) where the boundary condition were strongly incorporated in the definition
of VH . Our approach therefore gives more flexibility when implementing non zero g. It
will be demonstrated in the later sections how the application of this approach on our
MsFEM gives conveniently converging results toward the correct solution.

5 Application of penalization method

Solving Eq. (3.1) in Ωε as it is often requires complex and ad-hoc grid generation meth-
ods. For highly non-periodic perforations, complicated unstructured mesh is likely what
engineers would resort to. In order to confine our computations in a simple uniform
Cartesian domain, we incorporate the penalization method to solve Eq. (3.1). Hence-
forth, we solve instead the following

−∇·(Aβ∇u)+~w·∇u+σβu= f β in Ω (5.1)
u= g on ∂Ω

in which

Aβ =

{ 1
h in Bε

A in Ωε ,σβ =

{ 1
h3 in Bε

0 in Ωε , f β =

{
0 in Bε

f in Ωε . (5.2)
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Figure 2: (a) 8×8 coarse elements without bubble functions, (b) 8×8 coarse elements with bubble functions
compared with (c) Reference solution with 1024×1024 elements.

Here h is the width of a fine scale element used to capture highly oscillatory basis func-
tions. We introduce the penalization coefficient σβ which forces the solution to vanish
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Figure 3: (a) Standard MsFEM basis function with (b) A bubble function in a coarse element.

rapidly inside the perforations. Other variants of penalization methods are studied in
(Carballal Perdiz, 2011; Angot et al., 1999) in which more details of penalization ap-
proaches and choices of Aβ and σβ are studied.

6 Numerical results

6.1 Application of Bubble Functions

In this paper, we first give numerical examples that would exhibit a case with very dense
presence of perforations throughout the domain, so as to highlight the contribution of
bubble function enrichment to the basis function set. In the first example, we applied
bubble enrichment to a standard linearly boundary-conditioned, nodal based MsFEM
without oversampling. We set aside the application of Crouzeix-Raviart in order to illus-
trate only the contribution of bubble functions on classical MsFEM. Taken as the compu-
tational domain is Ω=[0,1]2, a Cartesian mesh consisting of rectangular coarse elements
such that NΓ =4, with 32×32 rectangular perforations spread uniformly throughout the
domain each with width of ε= 0.021875. Dirichlet boundary conditions u|∂Ω = 0 are ap-
plied in the computational domain and the source term f = sin(2πx)sin(2πy) is taken.
Taken as reference is the solution by standard Q1 FEM on 1024×1024 elements.

In Figs. 2(a) we observe the solution of standard nodal-based MsFEM on 8×8 coarse
elements with linear boundary condition without bubble function enrichment. In Figs.
2 (b), we observe the result of the same method but with bubble function enrichment.
When these two results are compared to the reference solution in Figs. 2 (c), we notice
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Figure 4: Relative error of standard MsFEM with and without bubble functions with respect to reference
solution, ε=0.021875.

that the one without bubble function enrichment fails to exhibit the correct solution at the
interiors of coarse mesh whereas the solution with bubble function enrichment exhibits
more consistency with that of the reference. In Fig. 3, we plot the standard MsFEM
basis function alongside a bubble function used in this test. It clearly illustrates that
with the presence of perforations this dense, the contribution of a standard MsFEM basis
function inside the coarse element is insignificant. The bubble function applied in the
coarse element is shown to contribute greatly to the approximation of the solution.

In Fig. 4, we plot the relative L2 errors with respect to the size of coarse element H
of the standard MsFEM with or without bubble function. We notice that the one with
bubble function enrichment gives a decreasing relative error when H increases away
from ε. This is of course not the behaviour exhibited by the more standard MsFEM.
However, we notice that both methods shows increasing error the moment H is reduced
to be lower that ε. This is due to the fact that at this region, the edges of coarse mesh start
to coincide with the perforations causing incorrect solution at the interior of the MsFEM
basis function. Oversampling methods had been implemented to overcome this problem



12

Figure 5: Coarse mesh-perforations-nonintersecting case solved on 8×8 coarse elements with: (a) Crouzeix-
Raviart MsFEM with bubble functions (b) Standard MsFEM with bubble functions compared with (c) Q1 FEM
solution as reference with 1024×1024 elements.

(Carballal Perdiz, 2011) to some degree. The contributions of Crouzeix-Raviart MsFEM
as an alternative remedy to this kind of problems is reported in the next examples.
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Figure 6: Coarse mesh-perforations-intersecting case on 8×8 coarse elements solved with: (a) Crouzeix-Raviart
MsFEM with bubble functions (b) Standard MsFEM with bubble functions compared with (c) Q1 FEM solution
as reference with 1024×1024 elements.

6.2 Application of Crouzeix-Raviart MsFEM

In this section, we test the Crouzeix-Raviart MsFEM with bubble functions and compare
it with the standard linearly-boundary-conditioned MsFEM also with bubble functions.
The test is designed to analyse the sensitivity of the methods subject to placement of
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Figure 7: (a) Crouzeix-Raviart MsFEM basis function, (b) Nodal based MsFEM basis function without over-
sampling.

perforations. The computational domain remains the same with that of the previous
section. The size of each perforation is now set as ε=0.025.

The methods underwent two tests: In the first test, the arrangement of the perfora-
tions is made such that none of the coarse mesh edges coincides with the them. We call
this test the non-intersecting case. In the second test, the allocation of these perforations
is shifted both in x and y direction until all coarse element edges coincide with perfora-
tions. We call this test the intersecting case. In this example, we tried to illustrate a possi-
ble worst case scenario where each and every element edges coincide with perforations
at three different locations. In both cases, we implemented 8×8 coarse elements each
consists of 128×128 fine elements. Within each of these coarse elements, the Crouzeix-
Raviart multiscale basis function and the bubble function are calculated on the fine mesh
by solving Eqs. 3.6 and 3.11. The reference solution is calculated using standard Q1 FEM
on 1024×1024 elements.

First, in Figs. 5, the results of these two methods for non-intersecting case are com-
pared with the reference solution. The results shows quantitatively good accuracies dis-
played by both methods. The Crouzeix-Raviart MsFEM with bubble functions records
0.11407 L2 relative error whereas the standard MsFEM with bubble function records
0.11738. However, in the second test, where all coarse element edges coincide with per-
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Figure 8: Coarse mesh-perforations-intersecting advection-diffusion case on 8×8 coarse elements solved with:
(a) Crouzeix-Raviart MsFEM with bubble functions (b) Standard MsFEM with bubble functions and (c) Q1
FEM solution as reference with 1024×1024 elements, all with A=0.03.

forations, one can see in Figs. 6 that the standard MsFEM despite being enriched with
bubble functions returns undesirable results. On the other hand, the result of Crouzeix-
Raviart MsFEM with bubble functions is in good agreement with the reference recording
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Figure 9: Non-periodic perforations: (left) Case a, (right) Case b

an L2 error of 0.04269 compared to 0.5018 recorded by the standard MsFEM.

To get a better understanding on why the two methods exhibit such different accu-
racies, we plot the basis functions of the Crouzeix-Raviart and the standard MsFEM in
Figs. 7(a) and (b). Here one can see that the Crouzeix-Raviart basis function cope very
well with perforations on the cell edges and provide natural boundary conditions around
them without violating the applied constraints. By contrast, the basis function of the stan-
dard MsFEM with linear boundary condition fails to give a correct approximation in the
penalized region. Again we note that several methods including oversampling methods
have been introduced as remedies to this kinds of problem on standard MsFEM. Nev-
ertheless, Crouzeix-Raviart MsFEM also has the benefit of not increasing the size of the
sampled domain for constructing the MsFEM basis functions. Moreover, the exhibited
natural boundary condition gives a good deal of flexibility in tackling delicate cases for it
is prohibitively difficult to avoid intersections between perforations and coarse element
boundaries especially when simple Cartesian mesh is implemented. In the later exam-
ples, the applicability of our method on non-periodic pattern of perforations is demon-
strated. For the case of diffusion with homogeneous Dirichlet boundary condition, one
can refer to the previous works in (Le Bris et al., 2013b) where detailed comparison of per-
formances between Crouzeix-Raviart MsFEM and other types of MsFEM including those
with oversampling methods can be found. In this paper, more detailed study on the
convergence behaviour of our method will be emphasized more on advection-diffusion
case.
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Figure 10: Advection-diffusion on non-periodically perforated domain (case a) (a)8×8, (b)16×16, (c)32×32,
(d)64×64, (e)128×128, (f) Reference solution, Q1-Q1 FEM on 1024 × 1024 elements
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Figure 11: Advection-diffusion on non-periodically perforated domain (case b) (a)8×8, (b)16×16, (c)32×32,
(d)64×64, (e)128×128, (f) Reference solution, Q1-Q1 FEM on 1024 × 1024 elements
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Figure 12: Domain with non-periodic perforations

6.3 Advection-diffusion Problems on Perforated Domain

In this section we test our method on advection-diffusion problems on perforated do-
main with homogeneous boundary conditions. We implement Crouzeix-Raviart MsFEM
with bubble function enrichment simply in the context of standard Galerkin approxi-
mation without any stabilizations. We reuse the computational set up done in 6.2 but
with different source terms. The vector field ~w=(2y(1−x2),−2x(1−y2)) set in a domain
Ω = [−1,1]2. ~w determines a recirculating flow with streamlines {(x,y)|(1−x2)(1−y2)
=constant}. The source term f (x,y) is defined as follows

f (x,y)=


1 if {−1≤ x≤1,0.7≤y≤1}
1 if {−1≤ x≤1,−1≤y≤−0.7}
0 elsewhere.

, (6.1)

Homogeneous boundary condition g= 0 and diffusion parameter A= 0.03 are applied.
In Figs. 8 the result of both standard linearly boundary conditioned MsFEM and that
of Crouzeix-Raviart MsFEM, both with bubble functions enrichments on 8×8 coarse ele-
ments, are given alongside the reference solution calculated with Q1 FEM on 1024×1024
elements. Recording a L2 relative error of 0.2287 is the result of Crouzeix-Raviart MsFEM
with bubble functions and 0.624 recorded by the linearly boundary conditioned MsFEM
with bubble functions. Clearly these results are expected given that no oversampling
methods were applied. While the application of such methods is possible and could in
principle improve the accuracies, this paper aims to show the possibility of using a sim-
pler method embodied in Crouzeix-Raviart MsFEM which accommodates complex pat-
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Figure 13: Advection-diffusion with non-periodic perforations and non-homogeneous boundary condition (a)8×
8, (b)16×16, (c)32×32, (d)64×64, (e)128×128, (f) Reference solution, Q1-Q1 FEM on 1024 × 1024 elements
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terns of perforations without having to resort to some perforation-dependent parameters
nor to enlarge the sampled domain.

6.4 Non-periodically perforated domain

In this section, we test the applicability of our method on domain with non-periodic per-
forations. We consider two kinds of patterns of perforation as can be seen in figures
9. The Crouzeix-Raviart MsFEM with bubble function enrichment is implemented on
Ω = [−1,1]2 domain. The first case (case a) includes 400 perforations each with width
of ε=0.025 whereas on the second case (case b) we include 3600 perforations each with
width of ε=0.005. We reuse the vector field ~w=(2y(1−x2),−2x(1−y2)) which determines
streamlines {(x,y)|(1−x2)(1−y2) = constant}. The source term (6.1) is also applied. On
both of these cases, we utilize a diffusion coefficient of A= 0.03. The result of the con-
vergence tests done on these two cases is given on table 1. In figures (10) the contours
of u solved on 8×8,16×16,32×32,64×64, and 128×128 elements are given alongside
the reference solution on 1024×1024 solved using standard Q1-Q1 FEM. Although on
124×124 elements, the method already returns quite an identical result in comparison to
the reference, the result solved on 32×32 elements is often deemed sufficient for many
engineering purposes. This converging characteristic is also exhibited when solving case
b, as evident from figures (11). Here the L2 relative deviations of the two cases are pro-
portional to the values of H/ε as expected.

6.5 Application of non-homogeneous boundary condition

Here we test the applicability of our method on solving advection-diffusion problems
with non-homogeneous boundary condition. Again we set a computational domain on
Ω=[−1,1]2 where the vector field ~w=(2y(1−x2),−2x(1−y2)) is set and no source term
is included. Discontinuities in parts of the boundaries are introduced. At the top edge
the value at the boundary is set as u∂Ω=1 and u∂Ω=0 everywhere else. Randomly placed
100 perforations are considered each with width of ε= 0.04 as shown in figure (12). In
figures (13) the contours of u solved on 8×8,16×16,32×32,64×64, and 128×128 elements
are given alongside the reference solution on 1024×1024 solved using standard Q1-Q1
FEM. In table 2, it is shown that the method returns grid converging results toward the
reference solution as exhibited in previous tests with homogeneous boundary conditions.

7 Concluding remarks

In this paper, the feasibility of Crouzeix-Raviart MsFEM with bubble function enrich-
ments for solving diffusion and advection-diffusion problems in perforated media through
means of penalization methods have been demonstrated without much major constraints.
The resulting method allows us to address multiscale problems with inconvenient pat-
terns of perforations and still obtain accurate solutions between perforations. Although
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H/ε L2
Config. H case a case b case a case b
8×8 0.25 10 50 0.273 0.346
16×16 0.125 5 25 0.265 0.337
32×32 0.0625 2.5 12.5 0.140 0.321
64×64 0.03125 1.25 6.25 0.098 0.284
128×128 0.015625 0.625 3.125 0.031 0.148

Table 1: Deviation from reference solution for case a (ε=0.025) and case b (ε=0.005)

Config. H H/ε L2
8×8 0.25 6.25 0.487
16×16 0.125 3.125 0.206
32×32 0.0625 1.5625 0.073
64×64 0.03125 0.78125 0.027
128×128 0.015625 0.390625 0.013

Table 2: Deviation from reference solution (with non-homogeneous B.C. and ε=0.04)

in the given examples, the diffusion coefficient A are taken as constants, Crouzeix-Raviart
MsFEM has been shown to be able to solve highly oscillatory problems (Le Bris et al.,
2013a). Crouzeix-Raviart MsFEM with bubble function enrichment has shown good per-
formance in comparison with more conventional MsFEMs especially in as far as insensi-
tivity to size and placements of perforations is concerned. We also include the cases for
non-periodic perforations where the robustness of our method is tested in more realistic
circumstances.
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1. Babuška, I., Banerjee, U., Osborn, J.. Survey of meshless and generalized finite element
methods: A unified approach. Acta Numerica 2003;:1–125.

2. Dorobantu, M., Engquist, B.. Wavelet-based numerical homogenization. SIAM J Numer
Anal 1998;(35):540–559.

3. Nolen, J., Papanicolaou, G., Pironneau, O.. A framework for adaptive multiscale
method for elliptic problems. SIAM MMS 2008;7:171–196.

4. Bourgeat, A.. Homogenized behaviour of two-phase flows in naturally fractured reser-
voirs with uniform fractures distribution. Comp Meth Appl Mech Eng 1984;47:205–215.



REFERENCES 23

5. Kevrekidis, I., Gear, C., Hyman, J., Kevrekidis, P., Runborg, O., Theodoropoulos, C..
Equation-free, coarse-grained multiscale computation: enabling microscopic simula-
tors to perform system-level analysis. Commun Math Sci 2003;1(4):715–762.

6. Weinan, E., Engquist, B.. The heterogeneous multi-scale methods. Comm Math Sci
2003;1(1):87–133.

7. Cioranescu, D., Donato, P., Zaki, R.. Periodic unfolding and robin problems in perfo-
rated domains. CR Acad Sci Paris 2006;342:469–474.

8. Cioranescu, D., Murat, F.. A strange term coming from nowhere, in topics in the mathe-
matical modelling of composite materials. In: Progress in Nonlinear Differential Equations
and their applications; vol. 31. Birkhauser; 1997:45–93.

9. Henning, P., Ohlberger, M.. The heterogeneous multiscale finite element method for
elliptic homogenization problems in perforated domains. Numer Math 2009;113(4):601–
629.

10. Hornung, U.. Homogenization and Porous Media, Interdisciplinary Applied Mathemat-
ics; vol. 6. Springer; 1997.

11. Lions, J.L.. Asymptotic expansions in perforated media with a periodic structure. Rocky
Mountain J of Maths 1980;10(1):125–140.

12. Deng, W., Yun, X., Xie, C.. Convergence analysis of the multiscale method for a class
of convectiondiffusion equations with highly oscillating coefficients. Applied Numerical
Mathematics 2009;59(7):1549 – 1567.

13. Hou, T.Y., Wu, X.H.. A multiscale finite element method for elliptic problems in com-
posite materials and porous media. J Comput Phys 1997;134(1):169–189.

14. Efendiev, Y., Hou, T.. Multiscale finite element methods for porous media flows and
their applications. Applied Numerical Mathematics 2007;57(57):577 – 596.

15. Carballal Perdiz, L.. Etude d’une méthodologie multiéchelles appliquée à différents
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