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Abstract

We introduce a duality-based two-level error estimator for linear and nonlinear

time-dependent problems. The error measure can be a space-time norm, energy

norm, final-time error or other error related functional. The general methodology is

developed for an abstract nonlinear parabolic PDE and subsequently applied to linear

heat and nonlinear Cahn–Hilliard equations. The error due to finite element approx-

imations is estimated with a residual weighted approximate-dual solution which is

computed with two primal approximations at nested levels. We prove that the exact

error is estimated by our estimator up to higher-order remainder terms. Numerical

experiments confirm the theory regarding consistency of the dual-based two-level es-

timator. We also present a novel space-time adaptive strategy to control errors based

on the new estimator.
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1 Introduction

Nonlinear time-dependent partial di↵erential equations (PDEs) govern a large class of rele-

vant problems in the sciences. Classical examples in mechanics include nonlinear parabolic

equations such as the Navier–Stokes equations, and nonlinear hyperbolic equations such

as nonlinear elastodynamics. In recent years there has been a growing interest in new non-

linear continuum-mechanics models which can be classified as phase-field models, di↵use-

interface models, or generalized Cahn–Hilliard models [36]. Examples include Navier–

Stokes–Cahn–Hilliard equations (multiphase flow) [25, 1], phase-field fracture [8, 7], and

mechanobiological growth phenomena (e.g., tumor growth) [30, 21]. These novel models

are characterized by having evolving di↵use interfaces, implicitly described by a (phase-)

field variable which quickly, but smoothly, changes across an interface.

Obviously, there is a need for assessing the accuracy of numerical simulations for these

problems through the use of a posteriori error estimates, and to employ these estimates to

drive adaptive mesh refinement and adaptive time-step selection. Adaptivity in space is

particularly useful to capture di↵use interfaces as well as other singularities. In the current

work we focus on a posteriori error estimates for the semi-discrete case involving space

discretizations based on Galerkin approximations, e.g., obtained using the finite element

method.
⇤Correspondance to: G. Simsek (g.simsek@tue.nl) and K. G. van der Zee

(KG.vanderZee@nottingham.ac.uk)
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The subject of a posteriori error estimation for (non)linear time-dependent PDEs is

classical. Its foundations (mostly studied for the parabolic case) were established in the

1990s and have been summarized in Erikkson, Estep, Hansbo, and Johnson [13]. A pos-

teriori error estimates are typically derived in two steps: First, a measure of the error is

bounded by (a dual norm of) the residual. Then, the residual is bounded by a computable

quantity (usually sum of error indicators). The second step depends on the discretization

at hand (see, e.g., [12] for a recent general framework).

To carry out the first step, Ref. [13] (see also [44, 29, 14]) advocate the use of the

backward-in-time (linearized) dual problem. This dual problem acts as an auxiliary prob-

lem to quickly set up an exact error representation. Subsequently, invoking dual (a priori)

stability bounds leads to the desired bound. Alternatively, the first step can be car-

ried out using energy methods [28, 24], which sets up appropriate bounds on the primal

(forward) problem and invokes Gronwall’s inequality. Unfortunately, in both cases, the

accuracy of the resulting a posteriori estimate depends on the invoked bounds (dual-based

or primal-based), which is reflected by a large pre-multiplication constant (the notori-

ous stability constant). Moreover, for nonlinear problems, it can be very hard to obtain

quantitatively-accurate estimates because the invoked bounds typically consider worst-case

scenarios, leading to huge stability constants. In this regard, we agree with Estep, Holst,

and Mikulencak [16]: “[Classical estimation] is generally frustrating, [. . . ] we usually turn

to numerical computation because analysis is too di�cult. In computational error estima-

tion, we use computation to make up for our analytical deficiencies.”. An example of the

use of very intricate analytical techniques in the context of phase field models can be found

in, e.g., [24, 5].

Goal-oriented a posteriori error estimates [6, 31] were developed in the late 1990s as

an o↵spring of the above duality-based estimates for time-dependent problems as well

as L2-based estimates, and their aim is to assess the accuracy of output quantities of

interest given by functionals of the solution. Over the years, they have been devel-

oped for time-independent, time-dependent, linear, nonlinear and coupled problems; see

e.g., [22, 41, 40, 11, 39, 42]. Goal-oriented estimates are explicit dual-based estimates, as

they directly compute an approximation to the dual problem, in contrast to the above

mentioned duality techniques (where they are only used as auxiliary problems for deriving

estimates). Typically, the dual approximations are computed using a richer discrete space

than the primal problem (e.g., by increasing the polynomial order, or globally refining

the mesh). Although goal-oriented error estimates are not necessarily (guaranteed) upper

bounds (exceptions exist in the linear case [33, 34]), they are, in general, very accurate,

irrespective of whether the problem is linear or nonlinear. This has motivated the current

work.
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In this paper, we present a novel methodology to a posteriori error estimates for non-

linear time-dependent PDEs based on duality and two discretization levels. The starting

point for the derivation of the estimate is the exact duality-based error representation,

which is a global space–time residual weighted by the solution of the secant-linearized

(backward-in-time) dual problem. The methodology for the estimate simply consists of di-

rectly evaluating this error representation with an enriched dual approximation. However,

since the dual problem also depends on the exact primal solution, an additional improved

primal approximation is computed. We thus work with two primal discretization levels

and an approximate dual, and therefore call the resulting estimate a duality-based two-level

estimate. We note that it is possible to employ the same enriched discrete space for the

primal as for the dual.

Alternatively, errors can be estimated directly by using the improved primal approxi-

mation as a substitution for the exact solution. However, although it is natural for steady

elliptic PDEs, this is not necessarily true for (non)linear time-dependent PDEs, as the dual

problem contains the sensitivity to errors accumulated at earlier times. This information

is crucial to adaptively control the accuracy of the quantity of interest.

We next wish to comment on some related works in the literature. Two-level estimators

are reminiscent of, but di↵erent to, hierarchical error estimates, such as studied in [4, 43, 2,

23], where two primal discretization levels are used to define their complement (or bubble)

space. In the linear elliptic case, two implicit primal levels (coarse and reconstructed) have

been employed by Ovall [32, Sec. 5.2] in a duality-based estimate for seminorms, which

is similar in spirit as our current work. In a goal-oriented setting, the idea of using an

improved primal approximation to compute dual approximation has been discussed by

Becker and Rannacher [6, Sec. 6.2], and for non-linear elasticity by Larsson, Hansbo and

Runesson [27]. Also in a goal-oriented setting, two primal and dual levels have been recently

employed by Perotto and Veneziani [35] and Braack, Burman and Taschenberger [9] to

estimate modeling errors in hierarchical reductions and time averaging, respectively.

Following this introduction, we develop the methodology for a general (non)linear time-

dependent PDE; see Section 2. We subsequently apply in Section 3 the framework to

the linear heat equation and a nonlinear parabolic problem: the Cahn–Hilliard equation.

Numerical results are presented in Section 4 after which we present our conclusions.

2 Duality-Based Two-Level Error Estimation

In this section, we present the general framework of the duality-based two-level error es-

timation. We first review the duality-based approach to a posteriori error estimates for

time-dependent problems, see e.g. [6, 19, 38]. Then we present our two-level error estimate,
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and prove a general consistency theorem.

2.1 Abstract time-dependent problem

We consider time-dependent semi-linear parabolic partial di↵erential equations, for which

the principal part is linear, posed in domain ⌦ ⇢ Rd, for a time interval (0, T ]. A general

abstract form is as follows:

Find u : ⌦T ! R such that

@tu+Bu+ C(u) = f in ⌦T := ⌦⇥ (0, T ]

u(0) = u0 in ⌦

@⇤
nu = 0 on @⌦T := @⌦⇥ (0, T ],

(1)

where @t(·) = @(·)/@t. We assume B to be a linear operator having a self adjoint ellip-

tic part and C to be at least continuously Gâteaux (or Fréchet) di↵erentiable nonlinear

operator.The term @⇤
n represents the natural boundary condition according to the applica-

tion. Examples include the linear heat equation and the non-linear Cahn–Hilliard equation

which will be considered in Section 3.

In order to construct weak solutions, let us introduce the function spaces V ⇢
L2(⌦) ⇢ V 0. Here, V represents a suitable Sobolev space for the spatial part of the

solution and V 0 is its dual. Hence, a suitable evolution space for u can be defined as

Wu0 := {v 2 V , @tv 2 V 0 : v(0) = u0}, where V := L2(0, T ;V ) and V 0 := L2(0, T ;V 0) [17].

The weak form of (1) is: Find u 2 Wu0 :

Z T

0

⇣
h@tu, vi+ B(u, v) + C (u; v)

⌘
dt =

Z T

0

hf, vi dt 8v 2 V , (2)

where h!, ⌫i is defined to be the duality pairing for any (!, ⌫) 2 V 0 ⇥ V . Furthermore,

B(!, ⌫) := hB!, ⌫i is the bilinear form and C (!; ⌫) := hC(!), ⌫i for all !, ⌫ 2 V . For later

use, we set (!, ⌫) :=
R
⌦ !⌫ d⌦ to be the L2–inner product. Here, we use the convention

that for semi-linear forms, such as C (·; ·), the form is linear with respect to arguments on

the right of the semicolon.

Definition 2.1 The energy norm v based on the weak formulation (2) can be introduced

as

|||v|||2W :=

Z T

0

�
kvtk2V 0 + Bsym(v, v)

�
dt+ kv(T )k2, (3)
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where k · kV 0 := sup{h·, wi : w 2 V, kwkV  1} is the dual norm and Bsym(!, ⌫) =

hBsym!, ⌫i = hBsym⌫,!i for all !, ⌫ 2 V . Here, Bsym is the self-adjoint elliptic part

of B. This is a natural norm for the abstract problem (for suitable C(·)); see e.g. [15,

Section 6.1]. ⇤

In view of the complexity in the computation of the dual norm in (3), in this paper, we

will focus on the following norm:

|||v|||2 :=
Z T

0

Bsym(v, v) dt+ kv(T )k2. (4)

Remark 2.2 For error estimation later on, one may be alternatively interested in other

norms, e.g. |||v|||2 :=
R T

0 kvk2L2
dt or |||v|||2 :=

R T

0 kvk2H1
dt or even output functionals, e.g.

Q(v) =
�
q̄, v(T )

�
for a specific q̄ (see Remark 4.2). Hence error measures of interest may

di↵er from (4). This is possible by suitably modifying the following quantity of interest.⇤

Definition 2.3 (Quantity of Interest) Based on (4), the quantity of interest can be for-

mulated as

Qq,q̄(v) = Qq(v) +Qq̄(v) :=

Z T

0

Bsym(q, v) dt+
�
q̄, v(T )

�
, (5)

where q 2 V , q̄ 2 V , which is essential to define the adjoint problem. Note that,

Qv,v(T )(v) = |||v|||2. ⇤

The adjoint (backward-in-time), or dual problem corresponding to (2) for Qq,q̄(·) in (5) is

defined as:

Find zq,q̄ 2 W q̄ := {v 2 W : v(T ) = q̄}:
Z T

0

⇣
h�@tzq,q̄, wi+ B(w, zq,q̄) + C s(u, û;w, zq,q̄)

⌘
dt = Qq(w), 8w 2 V , (6)

where C s(u, û;w, zq,q̄) :=
R 1

0 C 0 (su+ (1� s) û;w, zq,q̄) ds is the mean-value linearization

of the nonlinear operator, C . Here, C 0(u;w, v) denotes the Gâteaux (or Fréchet) derivative

of C at u in the direction of w [6, 19, 39]:

C 0(u;w, v) = C (u+ w; v)� C (u; v) +O(kwk2V ).

Note that the right hand side of (6) is Qq(w), not Qq,q̄(w) and q̄ appears as the initial

(final-time) condition for the adjoint problem in W q̄.

Here, we introduced û as an arbitrary member in Wû0 to define the linearization of the

nonlinear term. In error analysis û is the approximation of u.
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The strong form of the weak adjoint problem (6) can be inferred as the backward-in-

time problem

�@tz +Bz + Cs(u, û)⇤z = Bsymq in ⌦T

z(T ) = q̄ in ⌦

@⇤
nz = 0 on @⌦T ,

(7)

where we denote zq,q̄ := z for simplicity. In particular, Cs(u, û)⇤ is the adjoint of the mean

value linearization of C(u), such that Cs(u, û) :=
R 1

0 C 0 (su+ (1� s) û) ds and

C s(u, û;w, z) = hCs(u, û)w, zi = hCs(u, û)⇤z, wi.

2.2 Error representation

Let û be any approximation to the solution u, and z be the solution of the adjoint prob-

lem (7). Then we can obtain an exact representation for the error in Qq,q̄(·) in terms

of adjoint-weighted residuals. Moreover, an exact error representation for the norm ||| · |||
follows as a corollary.

Theorem 2.A (Error Representation) Consider an approximate solution û 2 Wû0 . Let

e := u� û and z = zq,q̄ denote the dual solution in accordance with (6) for arbitrary q and

q̄. Then the error in the quantity of interest can be expressed as:

Qq,q̄(u)�Qq,q̄(û) = Qq,q̄(e) =

Z T

0

Rt (û; z) dt+R0 (û; z) , (8)

where the PDE and initial-condition residuals are defined as:
⇢

Rt (û; z) := hf, zi � h@tû, zi � B(û, z)� C (û; z)

R0 (û; z) := (u(0)� û0, z(0)) .
(9)

⇤

Proof The proof is well-known in abstract settings, see, e.g. [6]. For the sake of com-

pleteness we provide a proof for our abstract parabolic PDE. Using the definition of the

error in a quantity of interest and applying integration by parts in time to the weak dual

problem (6), we get

Qq,q̄(e) = Qq(e) +Qq̄(e)

=

Z T

0

⇣
h�@tz, ei+ B(e, z) + C s(u, û; e, z)

⌘
dt+

�
q̄, e(T )

�

=

Z T

0

⇣
h@te, zi+ B(e, z) + C s(u, û; e, z)

⌘
dt+

�
z(0), e(0)

�
(10)
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In particular, the mean value linearization in the direction of the error, e, gives the following

C s(u, û; e, z) =

Z 1

0

C 0 (su+ (1� s) û; e, z) ds = C (u; z)� C (û; z). (11)

Then the representation of (8) can be obtained from (10) by employing (11) and the weak

primal problem (2). ⌅

Corollary 2.4 (Error-in-norm Representation) Let e = u� û and choose q = e, q̄ = e(T )

then

|||e|||2 = Qe,e(T )(e) =

Z T

0

Rt
�
û; ze,e(T )

�
dt+R0

�
û; ze,e(T )

�
(12)

⇤

Proof The identities in (12) follows from a straightforward substitution in (8) using the

definition (4). ⌅

Remark 2.5 The choices q = e and q̄ = e(T ) to get (12) lead to the adjoint problem

(7) with a final-time condition driven by e(T ), and the PDE is driven by Bsyme. In other

words, z = ze,e(T ); it depends on e as well as u and û. ⇤

2.3 Computable Error Estimate

In Section 2.2, Theorem 2.A proves that the error in the quantity of interest can be written

in terms of the residual of the approximate primal solution û and exact dual solution zq,q̄.

However, it is not possible to compute the error representation (8), since the exact solution

of the dual problem (7) is not available. To obtain a computable estimate, we shall employ

an approximation to the dual problem. This strategy holds for (8) for any quantity of

interest.

In this paper, specifically, we work with (12), where q = e and q̄ = e(T ). Similar to (8),

(12) is also not computable because of ze,e(T ), which is the exact solution of (7). There are

three errors involved in approximating ze,e(T ): Linearization, primal solution approximation

and dual discretization.

• Linearization error comes from Cs(u, û) in (7), since it can be computed exactly only

if u is available. We employ an approximation for u to approximate Cs(u, û). If u is

approximated with a finer mesh than û, the linearization error in Cs(u, û) decreases,

than by simply taking u = û, to get Cs(û, û) = C 0(û). Therefore, we choose a finer

approximation for u than û.
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• Primal solution approximation is required on the right-hand-side of (7). Indeed,

since q = e = u � û, q̄ = e(T ) = (u � û)(T ) are not computable, we need a finer

approximation than û for u.

• Finally, dual discretization produces an error due to dual approximation of (7).

To present the approximate dual solution and our estimate for the general framework,

we will use the following notations:

• uh = primal Galerkin approximation for coarse mesh of size h, i.e. solution of weak

form (2) discretized in space replacing V by V h ⇢ V .

• uh/2 = primal Galerkin approximation for fine mesh of size h/2, i.e. solution of weak

form (2) discretized in space replacing V by V h/2 � V h.

• ê := uh/2 � uh is the di↵erence in primal approximations.

We furthermore introduce ẑê,ê(T ) := ẑ 2 W ê(T ) using the following weak form

Z T

0

⇣
h�@tẑ, wi+ B(w, ẑ) + C s(uh/2, uh;w, ẑ)

⌘
dt =

Z T

0

Bsym(ê, w) dt, 8w 2 V , (13)

which enables us to introduce that

• ẑh/2ê,ê(T ) ⌘ ẑh/2 (for notational convenience) is the dual approximation, i.e. solution of

weak form (13) discretized in space replacing V by V h/2 � V h.

• ze,e(T ) = z (for notational convenience) is the dual solution, i.e. analytical solution

of (13).

t = T:

t = 0:

uh(T)

Primal Problem

uh(0)

uh/2(T)

uh/2(0)

ẑh/2(T) 

ẑh/2(0)

Dual Problem

uh uh/2Compute: ẑh/2

Figure 1: Required approximations in duality-based two-level error estimation
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The strategy to compute ẑh/2 is illustrated in Figure 1. That is, the approximations uh

and uh/2 are computed forward in time and subsequently ẑh/2 is obtained with a backward

in time computation.

Then, we define our error estimate, Est, as:

Qe,e(T )(u)�Qe,e(T )(u
h) = |||u� uh|||2 ⇡ Est :=

Z T

0

Rt
�
uh; ẑh/2

�
dt+R0

�
uh; ẑh/2

�
(14)

with the residuals Rt (·; ·) and R0 (·; ·) defined in (9).

Note that, we simply replaced ze,e(T ) in (12) by a computable approximation.

Remark 2.6 We approximate both the primal u and the dual z using a finer mesh than

uh. Thus, our estimate (14) is calculated with approximations on two di↵erent meshes,

which motivates us to refer this procedure as duality-based two-level error estimation. ⇤

The exact error is equal to the sum of the estimate in (14) and the remainder terms

due to linearization, primal approximation and dual discretization errors. We shall prove

that aforementioned remainders are indeed small in the following theorem:

Theorem 2.B Let e = u � uh and eh/2 := u � uh/2 for any given uh and uh/2. Then for

the two-level secant dual solution ẑ defined by (13), the following identity holds:

|||e|||2 =
Z T

0

Rt
�
uh; ẑ

�
dt+R0

�
uh; ẑ

�
+ 2(((eh/2, e)))E � |||eh/2|||2. (15)

Furthermore, for the approximation ẑh/2 of ẑ, we get the following equation:

|||e|||2 = Est+ r1 + r2, (16)

with Est according to (14), and the remainders:

r1 := 2(((eh/2, e)))E � |||eh/2|||2,

r2 :=

Z T

0

Rt
�
uh; ẑ � ẑh/2

�
dt+R0

�
uh; ẑ � ẑh/2

�
,

(17)

where (((·, ·)))E is the inner product associated with ||| · |||2. ⇤

Remark 2.7 The remainders are such that r1 is due to mean value linearization between

uh/2 and uh instead of u and uh and primal problem approximation replacing u by uh/2;

and r2 is due to dual problem approximation. The representations in (15) and (16) appear

to be the first results which combine dual-based error representations for norms with two

primal discretization levels. ⇤
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Remark 2.8 The result in Theorem 2.B is dependent on C(u) being Gâteaux (or Fréchet)

di↵erentiable, so that the secant form in (13). ⇤

Remark 2.9 ẑh/2 is computed backward in time on a finer mesh using (13), than as used

to compute uh. If the dual approximation is computed on the same mesh as uh, i.e. zh, one

would obtain a useless (unreliable) estimate from the residual computation due to Galerkin

orthogonality [3]. ⇤

Remark 2.10 If the cost of computing uh/2 is considered excessive, higher-order recon-

struction can be used to obtain a finer primal approximation; see for instance [6]. ⇤

Proof (Proof of Theorem 2.B) Starting with (12), adding and subtracting Qê,ê(T )(ê), and

then invoking (8), gives

|||e|||2 = Qe,e(T )(e) =

Z T

0

Rt
�
uh; z

�
dt+R0

�
uh; z

�
+Qê,ê(T )(ê)�Qê,ê(T )(ê)

=

Z T

0

Rt
�
uh; z

�
dt+R0

�
uh; z

�

+

Z T

0

Rt
�
uh; ẑ

�
dt+R0

�
uh; ẑ

�
�
Z T

0

Rt
�
uh; ẑ

�
dt�R0

�
uh; ẑ

�

Then due to semi-linear property of Rt(·; ·) and R0(·; ·), we get

|||e|||2 = Qe,e(T )(e) =

Z T

0

Rt
�
uh; ẑ

�
dt+R0

�
uh; ẑ

�
+

Z T

0

Rt
�
uh; z � ẑ

�
dt+R0

�
uh; z � ẑ

�
.

Following from the equation above, we employ (12) again for e and ê:

|||e|||2 =
Z T

0

Rt
�
uh; ẑ

�
dt+R0

�
uh; ẑ

�
+Qe,e(T )(e)�Qê,ê(T )(ê) (18)

The last two terms of (18) can be extended in terms of inner products:

Qe,e(T )(e)�Qê,ê(T )(ê) = |||e|||2 � |||ê|||2 = (((e� ê, e+ ê)))E. (19)

Next, writing e, eh/2 and ê in (19) in terms of u, uh and uh/2, adding and subtracting u in

the inner product and using linearity of inner product gives

Qe,e(T )(e)�Qê,ê(T )(ê) = (((u� uh/2, u� 2uh + uh/2 + u� u)))E

= (((eh/2, 2e� eh/2)))E

= 2(((eh/2, e)))E � |||eh/2|||2,
(20)



12 G. Simsek et al.

which proves (15).

We need the approximate dual ẑh/2 to obtain (16). By adding and subtracting the

terms
R T

0 Rt
�
uh; ẑh/2

�
dt and R0

�
uh; ẑh/2

�
to (15), we get:

|||e|||2 =
Z T

0

Rt
�
uh; ẑh/2

�
dt+R0

�
uh; ẑh/2

�
+ 2(((eh/2, e)))E � |||eh/2|||2

+

Z T

0

Rt
�
uh; ẑ � ẑh/2

�
dt+R0

�
uh; ẑ � ẑh/2

�

= Est+ 2(((eh/2, e)))E � |||eh/2|||2 +
Z T

0

Rt
�
uh; ẑ � ẑh/2

�
dt+R0

�
uh; ẑ � ẑh/2

�
. ⌅

3 Applications

In this section, we will consider heat and Cahn–Hilliard equations representative of a linear

and nonlinear application, respectively.

3.1 Heat Equation

We choose Bu = �4u, where Bsymu = Bu and C(u) = 0 in the general abstract form (1)

and obtain the following heat equation:

@tu�4u = f in ⌦T

u(0) = u0 in ⌦

u = 0 on @⌦T ,

(21)

The weak form of (21) is defined by substituting the self-adjoint linear and nonlinear

terms, Bu and C(u), respectively in (2) and by choosing the function spaces as V = H1(⌦),

V 0 = H�1(⌦), so V := L2 (0, T ;H1(⌦)), V 0 := L2 (0, T ;H�1(⌦)).

Using (4) with Bsym(u, v) =
R
⌦ ru ·rv, we have the energy norm:

|||u|||2E =

Z T

0

kruk2 dt+ ku(T )k2.

The semi-discrete primal problem can be written as: 1

1For conciseness, we present the weak formulations in Section 3 in their equivalent time–dependent
form, without integration in time.
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Find uh(t) 2 V h:

h@tuh, vi+ (ruh,rv) = hf, vi, 8v 2 V h, a.e. t

uh(0) = ⇡V hu0

(22)

Here, V h is a discrete subset of V consisting of e.g. continuous finite element functions on

a predefined mesh and ⇡V h is the L2-projection of u0 onto V h.

Following (6) and (13), the weak dual form gives:

Find z 2 We(T ):

�h@tz, wi+ (rz,rw) = (re,rw) , 8w 2 V, a.e. t

z(T ) = e(T ),
(23)

where e = u� uh with q̄ = e(T ), q = e. In (23), all of the terms on the left hand side are

independent of u, uh, since the heat equation is linear. Thus ze,e(T ) = ẑê,ê(T ) in the case

that u is replaced by uh/2 on the right-hand-side.

Corollary 3.1 For approximations to the heat equation (21), the error satisfies the rep-

resentation (15) in Theorem 2.B, with ẑ, the solution of (23) where u is replaced by uh/2.

Next let the approximation ẑh/2 2 V h/2 be defined by:

h�@tẑ
h/2, wi+ (rẑh/2,rw) =

�
r
�
uh/2 � uh

�
,rw

�
, 8w 2 V h/2, a.e. t (24)

with initial condition ẑh/2(T ) =
�
uh/2 � uh

�
(T ).

Then, the computable estimate reduces to

Est =

Z T

0

Rt
�
uh; ẑh/2

�
dt+R0

�
uh; ẑh/2

�
(25)

with (21):

Rt
�
uh; ẑh/2

�
= hf, ẑh/2i � (ruh,rẑh/2)� h@tuh, ẑh/2i

R0
�
uh; ẑh/2

�
=
⇣
uh/2
0 � uh

0 ; ẑ
h/2(0)

⌘ (26)

for which it holds that

|||e|||2 = Est+ r1 + r2. (27)

In particular, r1 and r2 are given explicitly in Theorem 2.B. ⇤

Proof The error satisfies (15) by the first part of the proof of Theorem 2.B for which we

use the approximation uh and the solution ẑ for the heat equation. (25) is introduced in the

same form as (14) and the identities in (26) are obtained following (9) in Theorem 2.A using

the primal approximation uh in (22) instead of û and the dual approximation ẑh/2 defined

in (24) instead of z. Then (27) is a straightforward result following from Theorem 2.B. ⌅
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3.2 The Convective Cahn–Hilliard Equation

Next we consider the convective Cahn–Hilliard equation, in a convex domain ⌦ by choosing

Bu = r · (vu) + "2

Pe
4(4u), with Bsym = "2

Pe
4(4u) and C(u) = � 1

Pe
4�0(u), where v is

a given smooth velocity field, satisfying div v = 0, Pe is the P éclet number and " is the

interface thickness parameter. �(u) is the nonlinear (bulk) free-energy density function,

which is a C2-continuous, double well potential function. A common choice which we adopt

is:

�(u) :=
1

4

�
u2 � 1

�2
.

The equation then becomes

@tu+r · (vu) + 1

Pe
4
�
"24u� �0(u)

�
= 0 in ⌦T

u(0) = u0 in ⌦

@nu = 0 on @⌦T

@n
�
"24u� �0(u)

�
= 0 on @⌦T

(28)

The choices Bu and C(u) lead to a fourth-order nonlinear parabolic equation, for which

we define the function spaces as V := L2(0, T ;H2(⌦)) and V 0 := L2(0, T ;H2(⌦)0), with

V = H2(⌦) and V 0 = H2(⌦)0.

The corresponding energy norm from (4) with Bsym(u, v) =
R
⌦

"2

Pe
4u ·4v:

|||u|||2E :=

Z T

0

"2

Pe
k4uk2 dt+ ku(T )k2

The semi-discrete problem can be defined as:

Find uh(t) 2 V h:

h@tuh, vi+ (vruh, v) +
1

Pe

⇣
"2
�
4uh,4v

�
+ (r�0(uh),rv)

⌘
= 0, 8v 2 V h, a.e.t

uh(0) = ⇡V hu0,
(29)

where ⇡V hu0 an L2-projection of u0 onto discrete space V h. Here, V = H2(⌦) and V h is a

subset of V consisting of, e.g. two times di↵erentiable shape functions.

Then employing (6) with C s(u, uh;w, z) =
R
⌦

1
Pe
4�0s(u, uh)wz d⌦ gives the weak dual

of (28) as:

Find z 2 We(T ):

h�@tz, wi�(vrz, w)+
1

Pe

⇣ �
"24z,4w

�
+
�
r�0s(u, uh)z,rw

� ⌘
=

✓
� "2

Pe
4e,4w

◆
, (30)
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for all w 2 V almost every t with ”initial’” condition z(T ) = e(T ), where Weu(T ) =�
v 2 V , @tv 2 V 0 := L2(0, T ;H�1(⌦)) : v(T ) = u(T )� uh(T )

 
.

�0s(u, uh) is the mean-value linearization of �0(u) such that:

�0s(u, uh) =

Z 1

0

�00 �su+ (1� s) uh
�
ds = u2 + (uh)2 + uuh � 1.

The right hand side of (30) shows that the dual problem is driven by e = u�uh, while the

left hand side shows the dependence on u, uh due to the nonlinear term.

Corollary 3.2 The error in the energy-norm for the convective Cahn–Hilliard equation

satisfies (15) in Theorem 2.B with uh, solution of (29) and ẑ, solution of (30) for u is

replaced by uh/2. Let also the approximation ẑh/2(t) 2 V h/2 be defined by:

h�@tẑ
h/2, wi �

�
vrẑh/2, w

�
+

1

Pe

⇣ �
"24ẑh/2,4w

�
+
�
r�0s(uh/2, uh)ẑh/2,rw

� ⌘

=

✓
� "2

Pe
4(uh/2 � uh),4w

◆
,

(31)

8w 2 V h/2 almost every t, with ”initial” condition ẑh/2(T ) =
�
uh/2 � uh

�
(T ).

The computable estimate then becomes

Est =

Z T

0

Rt
�
uh; ẑh/2

�
dt+R0

�
uh; ẑh/2

�
(32)

where

Rt
�
uh; ẑh/2

�
= �h@tuh, ẑh/2i � (vruh, ẑh/2)� 1

Pe

⇣
"2(4uh,4ẑh/2)� (r�0(uh),rẑh/2)

⌘

R0
�
uh; ẑh/2

�
=
⇣
uh/2
0 � uh

0(0), ẑ
h/2(0)

⌘
,

(33)

for which it holds that:

|||e|||2 = Est+ r1 + r2 (34)

with r1 and r2 introduced in Theorem 2.B. ⇤

Proof The error satisfies (15) by employing the first part of the proof in Theorem 2.B

with uh and ẑ of Cahn–Hilliard equation. The computable estimate (32) is in the same

form as (14), for which the residuals in (33) are computed using approximation uh in (29)

and approximation ẑh/2 in (31). Then (34) is straightforward result of Theorem 2.B. ⌅
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Computing the approximate solutions uh, uh/2 and zh/2 need higher-order discrete spaces

with C1-continuity. These have been pursued in [20] and [37]. In order to avoid the direct

spatial discretization of a fourth-order operator in numerical computations, we continue in

the next section with the Cahn–Hilliard equation in a mixed formulation as two second-

order equations.

3.2.1 Mixed Formulation of the Convective Cahn–Hilliard Equation

In the mixed formulation, a new variable µ, called chemical potential is introduced. The

the set of equations becomes

@tu+r · (vu)� 1

Pe
4µ = 0 in ⌦T

µ� �0(u) + "24u = 0 in ⌦T

u(0) = u0 in ⌦

@nu = @nµ = 0 on @⌦T .

(35)

System (35) does not immediately fit the general form in (2). Nevertheless, the general

setting can be straightforwardly extended to account for systems.

We will set the corresponding energy norm as:

|||(u, µ)|||2E :=

Z T

0

✓
"2kruk2 + 1

Pe
krµk2

◆
dt+ ku(T )k2. (36)

The weak form of (35) becomes:

Find (u, µ) 2 Wu0 ⇥ V

hut, vi+ (vru, v) +
1

Pe
(rµ,rv) = 0, 8v 2 V

(µ,w)� (�0(u), w)� "2 (ru,rw) = 0, 8w 2 V,
(37)

where V = L2(0, T ;H1(⌦)) and Wu0 = {v 2 V , @tv 2 V 0 := L2(0, T ;H�1(⌦)) : v(0) = u0}
The semi-discrete weak form of (35) is:

Find uh(t), µh(t) 2 V h

h@tuh, vi+
�
vruh, v

�
+

1

Pe

�
rµh,rv

�
= 0, 8v 2 V h

�
µh, w

�
�
�
�0(uh), w

�
� "2

�
ruh,rw

�
= 0, 8w 2 V h

uh(0) = ⇡V hu0,

(38)

for almost every t and V h ⇢ V = H1(⌦).
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The weak dual system of mixed formulation is (see [39]):

Find (z,�) 2 Weu(T ) ⇥ V :

h�@tz, ⌫i � (vrz, ⌫)� "2 (r�,r⌫)�
�
�0s(u, uh)�, ⌫

�
= "2 (reu,r⌫)

(�, ⌘) +
1

Pe
(rz,r⌘) =

1

Pe
(reµ,r⌘)

z(T ) = eu(T )

(39)

for almost every t and for all ⌫, ⌘ 2 V , where (z,�) is the dual pair of (u, µ) and �0s(u, uh)

is the mean-value linearization of �0(u) as in Section 3.2.

The right hand side of (39) shows that the dual problem is driven by the ap-

proximation error in u and µ, which are eu := u � uh and eµ := µ � µh,

while the term �0s(u, uh) on the left hand side is dependent on u and uh due

to linearization. Furthermore, the dual space for z can be defined as Weu(T ) =�
v 2 V , @tv 2 V 0 := L2(0, T ;H�1(⌦)) : v(T ) = eu(T ) = u(T )� uh(T )

 

Proposition 3.3 Let (ẑ, �̂) be the solution pair of (39) for u and µ are replaced by uh/2

and µh/2, respectively. Then the error measure for mixed formulation of Cahn–Hilliard

equation satisfies:

||| (eu, eµ) |||2 =
Z T

0

⇣
Rt

1

�
uh; ẑ

�
+Rt

2

�
µh; �̂

� ⌘
dt+R0

�
uh; ẑ

�

+ 2((( (eu
h/2

, eµ
h/2

), (eu, eµ) )))E � |||(euh/2
, eµ

h/2
)|||2,

(40)

where eu = u � uh, eµ = µ � µh and eu
h/2

= u � uh/2, eµ
h/2

= µ � µh/2 for any given

uh, uh/2, µh and µh/2.

Furthermore, for
�
ẑh/2, �̂h/2

�
of (ẑ, �̂), we get:

||| (eu, eµ) |||2 = Est+ r1 + r2, (41)

where

Est =

Z T

0

⇣
Rt

1

�
uh; ẑh/2

�
+Rt

2

�
µh; �̂h/2

� ⌘
dt+R0

�
uh; ẑh/2

�
(42)

with residuals

Rt
1

�
uh; ẑh/2

�
= �h@tuh, ẑh/2i � (vruh, ẑh/2)� 1

Pe
(rµh,rẑh/2)

Rt
2

�
µh; �̂h/2

�
= �(µh, �̂h/2) + (�0(uh), �̂h/2) + "2(ruh,r�̂h/2)

R0
�
uh; ẑh/2

�
=
⇣
uh/2
0 � uh

0 , ẑ
h/2(0)

⌘
.

(43)
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and the remainders

r1 := 2((( (eu
h/2

, eµ
h/2

), (eu, eµ) )))E � |||(euh/2
, eµ

h/2
)|||2,

r2 :=

Z T

0

⇣
Rt

1

�
uh; ẑ � ẑh/2

�
+Rt

2

�
µh; �̂� �̂h/2

� ⌘
dt+R0

�
uh; ẑ � ẑh/2

�
.

(44)

⇤

Proof We can not apply Theorem 2.B, but we closely follow its proof. Using (36), the

error writes:

||| (eu, eµ) |||2 = Qeu,eµ,eu(T ) (e
u, eµ) =

Z T

0

✓
"2

Pe
kreuk2 + 1

Pe
kreµk2

◆
dt+ ku(T )k2

=

Z T

0

⇣
Rt

1

�
uh; z

�
+Rt

2

�
µh;�

� ⌘
dt+R0

�
uh; z

�

Then by adding and subtracting Qêu,êµ,êu(T ) (êu, êµ) with êu := uh/2�uh and êµ := µh/2�µh

and due to semi-linearity of R, the error representation becomes:

||| (eu, eµ) |||2 =

Z T

0

⇣
Rt

1

�
uh; z

�
+Rt

2

�
µh;�

� ⌘
dt+R0

�
uh; z

�
+Qêu,êµ,êu(T ) (ê

u, êµ)

� Qêu,êµ,êu(T ) (ê
u, êµ)

=

Z T

0

⇣
Rt

1

�
uh; ẑ

�
+Rt

2

�
µh; �̂

� ⌘
dt+R0

�
uh; ẑ

�

+

Z T

0

⇣
Rt

1

�
uh; z � ẑ

�
+Rt

2

�
µh;�� �̂

� ⌘
dt+R0

�
uh; z � ẑ

�

=

Z T

0

⇣
Rt

1

�
uh; ẑ

�
+Rt

2

�
µh; �̂

� ⌘
dt+R0

�
uh; ẑ

�
+Qeu,eµ,eu(T ) (e

u, eµ)

� Qêu,êµ,êu(T ) (ê
u, êµ) (45)

We can extend the last two terms in (45) in terms of inner products and write the errors

in terms of u, uh, uh/2 and µ, µh, µh/2.

Qeu,eµ,eu(T ) (e
u, eµ)�Qêu,êµ,êu(T ) (ê

u, êµ) = ||| (eu, eµ) |||2 � ||| (êu, êµ) |||2

Then using linearity of the inner product after adding and subtracting u and µ to the

second part of the product gives

||| (eu, eµ) |||2 � |||
�
eû, eµ̂

�
|||2 = ((( (eu, eµ)� (êu, êµ), (eu, eµ) + (êu, êµ) )))E

= (((u� uh/2 + µ� µh/2, u� 2uh + µ� 2µh + uh/2 + µh/2

+ u� u+ µ� µ)))E

= ((( (eu
h/2

, eµ
h/2

), 2(eu, eµ)� (eu
h/2

, eµ
h/2

) )))E

= 2((( (eu
h/2

, eµ
h/2

), (eu, eµ) )))E � |||(euh/2
, eµ

h/2
)|||2
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which proves (40).

Next, if we add and subtract the terms
R T

0

⇣
Rt

1

�
uh; ẑh/2

�
+ Rt

2

�
µh; �̂h/2

� ⌘
dt +

R0
�
uh; ẑh/2

�
from (40), we obtain (41) such that

||| (eu, eµ) |||2 =
Z T

0

⇣
Rt

1

�
uh; ẑh/2

�
+Rt

2

�
µh; �̂h/2

� ⌘
dt+R0

�
uh; ẑh/2

�

+ 2((( (eu
h/2

, eµ
h/2

), (eu, eµ) )))E � |||(euh/2
, eµ

h/2
)|||2

+

Z T

0

⇣
Rt

1

�
uh; ẑ � ẑh/2

�
+Rt

2

�
µh; �̂� �̂h/2

� ⌘
dt+R0

�
uh; ẑ � ẑh/2

�
,

which gives the computable estimate (42). In particular, one can obtain the residuals (43)

following the proof of Theorem 2.A. ⌅

4 Numerics

In this section, the performance of the duality-based two-level estimator is illustrated for

linear heat and nonlinear convective Cahn–Hilliard equations. We focus on errors due to

spatial discretization.

For discretization in space, we use piecewise linear finite element approximations for

the heat equation and the mixed formulation of the Cahn–Hilliard equation. For time

discretization, we use the backward Euler method for the heat equation and a first-order

semi-implicit splitting scheme from [18] for Cahn–Hilliard equation. Recent second-order

time schemes for Cahn–Hilliard models can be found in [46, 47]. In the numerical experi-

ments, the time step is chosen su�ciently small for both of the equations, in order to avoid

time errors due to time discretization.

The results will be investigated in two parts: The first part, Section 4.1, is about

the convergence of the estimate (14) under uniform space refinements. The second part,

Section 4.2, is devoted to adaptivity. In this section we consider adaptive mesh-refinement

employing the duality-based two-level error estimates.

Remark 4.1 The general estimate Est introduced in (14) is localized in this section both

in space and in time. In particular, the results presented in Section 4.1, computes Est

by localizing only in time, but global in space. However, in Section 4.2, the indicator is

obtained by localizing Est both in time and space. ⇤
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4.1 Convergence and E↵ectivity

We test the convergence against true errors and present e↵ectivity indices for 1D and 2D

test cases. E↵ectivity is the ratio of the estimator to the true error:

E↵ectivity =
Est

Qe,e(T )(e)
=

Est

|||e|||2
.

E↵ectivity values in the range 0.1 ⇠ 10 are generally considered acceptable, however,

ideally it is close to 1.

4.1.1 Heat Equation

We first consider the linear heat equation with zero Dirichlet boundary conditions. We

computed heat equation for single and 100 time steps in ⌦ = [0, 1]d with d 2 {1, 2}. Here,
heat equation is considered in the case of absence of source, that is, f = 0.

To evaluate the estimate Est, space-time approximations are required. The backward

Euler scheme yields approximations uh
k, at discrete time instances. We define all approxi-

mations uh, uh/2 and ẑh/2 using a piecewise-constant reconstruction for all t 2 [0, T ] such

that

uh(t) = uh
k+1, t 2

�
tk, tk+1

⇤

ẑh/2(t) = ẑh/2k+1, t 2
⇥
tk, tk+1

�

for k = 0, . . . , N � 1, then (25) becomes2

Est =
N�1X

k=0

⇢
�t
⇣
hfk+1, ẑ

h/2
k i � (ruh

k+1,rẑh/2k )
⌘
� (uh

k+1 � uh
k, ẑ

h/2
k )

�
. (46)

We can compute part of the estimate at each time step and sum up to the final time, T .

1D Simulation We take the initial data as:

u(x, 0) = sin(⇡x), x 2 [0, 1]

2One can not immediately substitute piecewise-constant reconstruction in the representation formula
(25) because of ut. To obtain the result (46), one can use a limiting procedure on a continuous piecewise
linear function. For example, use the following reconstruction

uh(t) =

(
uk+1�uk

tk+✏�tk
(t� tk+✏) + uk+1 for tk < t  tk+✏;

uk+1 for tk+✏ < t  tk+1.

which is defined for t 2 (tk, tk+1] to compute the stepwise time integration and take the limit of ✏ ! 0.
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and compute uh 2 V h with 23, 24, . . . , 29 elements, i.e. h = 2�3, 2�4, . . . , 2�9. We use time

step size �t = 0.0005. The overkill solution for the exact error is computed using 213

elements. To compute the dual, we use a uniformly refined space V h/2 with 24, . . . , 210

elements. We also investigate the use of a better, but two times more expensive space V h/4

instead of V h/2 with 25, . . . , 211 elements.

Figure 2: Convergence of error and estimate Est with respect to uniform refinement for single

time step with two levels V h and V h/2 (left),and V h and V h/4 (right) for heat equation in 1D.

We choose q = u � uh and q̄ = u(T ) � uh(T ) as in (23) and to compute the dual

approximation, u is replaced with the approximations in V h/2 and V h/4. In Figure 2, we

see that the estimate asymptotically bounds the error up to a constant which confirms the

e↵ectivity of the two-level estimate.

Nb of Elems E↵ (uh; ẑh/2) E↵ (uh; ẑh/4)

16 0.77210875 0.94439973

32 0.75602279 0.93939171

64 0.75158218 0.93803695

128 0.75056921 0.93784922

256 0.75082958 0.93844620

Table 1: E↵ectivity of single time step estimate for heat equation in 1D.

In Table 1, the e↵ectivity indices are displayed for the dual approximations computed

in the two di↵erent discrete spaces (i.e. V h/2 and V h/4). The accuracy of the estimate

increases when ẑh/4 is used instead of ẑh/2 to compute Est.

We also tested the e↵ectivity of (46) for T = 0.05 with 100 time steps in Figure 3. The

estimate asymptotically follows the error up to a constant which gives the e↵ectivity index.

Accordingly, Table 2 presents the error, estimates and the e↵ectivity for dual approximation
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Figure 3: Convergence of error and estimate Est with respect to uniform refinement for 100 time

steps with two levels V h and V h/2 (left),and V h and V h/4 (right) for heat equation in 1D.

(uh; ẑh/2) (uh; ẑh/4)

Nb of Elems Est E↵ Est E↵ Qe,e(T )(e)

16 3.6257e-04 0.7206 4.5308e-04 0.9005 5.0311e-04

32 9.0464e-05 0.7205 1.1307e-04 0.9006 1.2554e-04

64 2.2605e-05 0.7205 2.8255e-05 0.9007 3.1369e-05

128 5.6505e-06 0.7207 7.0631e-06 0.9009 7.8400e-06

256 1.4125e-06 0.7212 1.7657e-06 0.9015 1.9585e-06

Table 2: Estimate, error and e↵ectivity for 100 time steps for heat equation in 1D.

ẑ computed in spaces V h/2 and V h/4 with respect to uniform refinement. The e↵ectivity

index is ⇠ 0.7 when we use ẑh/2 to compute estimate, whereas it increases to ⇠ 0.9 with

ẑh/4.

We observe that the additional cost of the computation is significant using the more

expensive space V h/4, however, the e↵ectivity constants are still acceptable for the space

V h/2. Therefore, for the rest of the paper V h and V h/2 spaces will be used for the sake of

computational cost.

2D Simulation Next, we ran the simulation in 2D with time step size of �t = 0.0005

using the following initial condition

u(x, y, 0) = sin(⇡x) sin(⇡y).

In 2D, we compute the overkill solution using 28⇥28 elements and we use 22⇥22, . . . , 26⇥26

elements to compute uh 2 V h. For the computation of the dual, we use the space V h/2

with 23 ⇥ 23, . . . , 27 ⇥ 27 elements.



Duality–Based Two–Level Error Estimation 23

Figure 4: Convergence of error and estimate

Est with respect to uniform refinement for

single time step with two levels V h and V h/2

for heat equation in 2D.

(uh; ẑh/2)

Nb of Elems Est Qe,e(T )(e) E↵

42 3.8028e-04 4.2845e-04 0.8875

82 3.9390e-05 4.8174e-05 0.8176

162 6.806e-06 8.7837e-06 0.7748

322 1.5180e-06 1.9775e-06 0.7676

642 3.6813e-07 4.5946e-07 0.8012

Table 3: Estimate, error and e↵ectivity for single

time step for heat equation in 2D.

Figure 5: Convergence of error and estimate

Est with respect to uniform refinement for

100 time steps with two levels V h and V h/2

for heat equation in 2D.

(uh; ẑh/2)

Nb of Elems Est Qe,e(T )(e) E↵

42 3.6420e-03 5.7110e-03 0.6377

82 8.8885e-04 1.3861e-03 0.6412

162 2.2091e-04 3.4304e-04 0.6439

322 5.5148e-05 8.4601e-05 0.6518

642 1.3782e-05 2.0134e-05 0.6845

Table 4: Estimate, error and e↵ectivity for 100

time steps with two levels V h and V h/2 for heat

equation in 2D.

In Figure 4 and 3, we present the convergence of estimate and the error with e↵ectivity

indices for one time step in 2D. The plot (left) shows that the estimate bounds the error

asymptotically up to a constant which is presented in the table (right). Th e↵ectivity index

in ⇠ 0.8, which shows the estimate is e↵ective.

We also consider the 2D test case, for 100 time steps, see Figure 5 and 4. We compute

the estimate with uh 2 V h and ẑh/2 2 V h/2. One can see from the plot (left) that the

estimate bounds the error up to a constant and the table (right) confirms that the constant
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is ⇠ 0.6.

4.1.2 The Convective Cahn–Hilliard Equation

Next, the convective Cahn–Hilliard Equation is considered in mixed formulation, see Sec-

tion 3.2.1. Since the Cahn–Hilliard equation is a nonlinear phase-field model, the estimation

of errors can be illustrated with two test cases: Moving interface and merging two bubbles

close to each other.

Similar to the heat equation approximation in Section 4.1.1, we define space-time pri-

mal and dual approximations with piecewise-constant reconstruction for the semi-implicit

scheme applied to Galerkin finite element discretization of the mixed formulation. The

reconstructions are:

uh(t) = uh
k+1 andµh(t) = µh

k+1, t 2
�
tk, tk+1

⇤

ẑh/2(t) = ẑh/2k+1 and �̂h/2(t) = �̂h/2
k+1, t 2

⇥
tk, tk+1

�

for k = 0, . . . , N � 1. Then we can write estimate (42) as 3

Est =
N�1X

k=0

⇢
�t
⇣
� (vruh

k+1, ẑ
h/2
k )� 1

Pe
(rµh

k+1,rẑh/2k )� (µh
k+1, �̂

h/2
k )

+ (�0(uh
k+1), �̂

h/2
k ) + "2(ruh

k+1,r�̂h/2
k )
⌘
� (uh

k+1 � uh
k, ẑ

h/2
k )

�
.

(47)

The discrete estimate (47) can be computed at each time step and summed up for the final

time, T .

For the simulation of the Cahn–Hilliard equation, we choose q1 = "2eu, q2 = eµ and

q̄ = e(T ) as in (39) and we take " = 0.0625 and Pe = 1.

Moving Interface We simulate the moving interface test case for 1D and 2D and we

set the domain ⌦ = [0, 1]d, for d2 {1, 2}. In 1D, we impose an initial condition for u0 as:

u(x, 0) = tanh

✓
x� 0.25p

2"

◆
, x 2 [0, 1] (48)

and we take v = 0.05 for which the solution propagates as a front to the right.

3as in the heat equation case the piecewise-constant reconstruction can not be substituted immediately.
The limiting procedure introduced in footnote 2 (page 20) also holds for the Cahn–Hilliard equation.
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We compute Est with uh, µh 2 V h and ẑh/2, �̂h/2 2 V h/2, for which we use 23, . . . , 29

and 24, . . . , 210 elements, respectively. For the overkill solution, we use 213 elements. In

order to obtain higher e↵ectivity, we also choose two times refined space than V h, which

is V h/4 with 25, . . . , 211 elements.

Figure 6: Convergence of error and estimate Est with respect to uniform refinement for 100 time

steps with two levels V h and V h/2 (left), and V h and V h/4 (right) for Cahn–Hilliard equation,

moving interface test case in 1D.

(uh, µh; ẑh/2, �̂h/2) (uh, µh; ẑh/4, �̂h/4)

Nb of Elems Est E↵ Est E↵ Qeu,eµ,eu(T )(e)

16 1.2205e-04 0.4559 1.5419e-04 0.5760 2.6772e-04

32 2.1533e-05 0.6002 2.7088e-05 0.7550 3.5876e-05

64 4.8082e-06 0.6987 6.0224e-06 0.8751 6.8813e-06

128 1.1656e-06 0.7350 1.4578e-06 0.9193 1.5857e-06

256 2.8913e-07 0.7457 3.6146e-07 0.9323 3.8771e-07

Table 5: E↵ectivity of 100 time steps estimate for Cahn–Hilliard equation, moving interface test

case in 1D.

We present the convergence plots in Figure 6 for 100 time steps in 1D with �t = 0.0005.

One can observe that the estimate bounds the error asymptotically up to a constant for

both plots. The estimate gets closer to the error when (ẑh/4, �̂h/4) is used instead of

(ẑh/2, �̂h/2).

Similarly, Table 5 enables a fair comparison of error, estimate and e↵ectivity. E↵ectivity

index increases, if the computation is done using the pair (ẑh/4, �̂h/4) instead of (ẑh/2, �̂h/2).

We also ran the simulation in 2D and use the initial condition

u(x, y, 0) = tanh

✓
x� 0.25p

2"

◆
, (x, y) 2 [0, 1]⇥ [0, 1] (49)
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with v = (0.05, 0). uh, µh 2 V h are computed with 22 ⇥ 22, . . . , 26 ⇥ 26 elements and for

the dual pair ẑh/2, �̂h/2 2 V h/2 we use 23 ⇥ 23, . . . , 27 ⇥ 27 elements. The overkill solution

is computed with 28 ⇥ 28 elements.

Figure 7: Convergence of errror and estimate Est with respect to uniform refinement for 1 (left)

and 100 (right) time steps with two levels V h and V h/2 for Cahn–Hilliard equation, moving

interface test case in 2D.

T = 0.0005 T = 0.05

Nb of Elems Est Qeu,eµ,eu(T )(e) E↵ Est Qeu,eµ,eu(T )(e) E↵

42 1.9926e-02 2.5232e-02 0.7897 9.9011e-03 3.6916e-02 0.2682

82 1.4882e-03 2.1692e-03 0.6860 1.2766e-03 4.0469e-03 0.3154

162 5.0831e-05 7.4457e-05 0.6827 1.2204e-04 2.6622e-04 0.4584

322 3.0019e-06 4.3608e-06 0.6883 2.1531e-05 3.5200e-05 0.6116

642 2.2099e-07 3.0101e-07 0.7342 4.8088e-06 6.4280e-06 0.7481

Table 6: E↵ectivity of 1 and 100 time steps estimate for Cahn–Hilliard equation, moving interface

test case in 2D.

In Figure 7 and Table 6, 1 and 100 time steps results are considered. In both of the

plots of Figure 7 we observe the convergence behavior such that the error is bounded below

asymptotically. In the pre-asymptotics, we can see from left plot of Figure 7 that the error

and the estimate are converging with the same order for 1 time step. For 100 time step,

they start with a low convergence rate, then estimate gets closer to the error as the number

of dofs increase. This is also confirmed by the e↵ectivity indices in Table 6.

Remark 4.2 We also test the two-level estimator based on a linear quantity of interest:

Q(u) :=

Z

⌦

sin(⇡x)u(T ) d⌦, (50)

⇤
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which is obtained by choosing q = 0 and q̄ = sin(⇡x) in (5), for which the estimate is again

of the same form as in (47).

The results presented in Figure 8 and Table 7 are obtained for the moving interface test

case of 1D Cahn–Hilliard equation for 100 time steps with �t = 0.00001 under uniform re-

finement, and confirm the expected consistency of the estimator. The convergence behavior

slightly deviates because of errors due to time discretization (not taken into account).

Figure 8: Convergence of error and estimate

Est with respect to uniform refinement for

100 time steps with two levels V h and V h/2

for Cahn–Hilliard equation, moving inter-

face test case in 1D and for Q(·) in (50).

(uh, µh; ẑh/2, �̂h/2)

Nb of Elems Est Qe,1(e) E↵

16 2.5443e-05 2.7887e-05 0.9123

32 4.8486e-06 6.1084e-06 0.7937

64 1.1236e-06 1.4727e-06 0.7629

128 2.8921e-07 3.6475e-07 0.7929

256 8.4079e-08 9.0913e-08 0.9248

Table 7: Estimate error and e↵ectivity for 100

time steps with two levels V h and V h/2 for Cahn–

Hilliard equation, moving interface test case in

1D and for Q(·) in (50).

Merging Bubble in 2D The final numerical experiment is the case of two bubbles

merging. We consider the error measure of (36) by aiming to estimate the error particularly

for the physics of a topological change. We take the Cahn–Hilliard equation without

convection, i.e., v = 0 and take the following initial condition corresponding to kissing

bubbles of the same radius, 0.2 in ⌦ = [0, 1]⇥ [0, 1] :

u(x, 0) = 1 + tanh

 
0.2�

p
(x� 0.25)2 + y2p

2"

!
+ tanh

 
0.2�

p
(x+ 0.25)2 + y2p

2"

!
.

We present 2D results with time step size, �t = 0.0005 for 200 time steps. In Figure 9,

the solution of the merging case can be seen.

In this test case, the e↵ectivity is low for small number of elements, see Figure 10 and

11. However, the e↵ectivity increases up to 0.4145, once the mesh captures the interface.

For this last case, the e↵ectivity would increase if we increase the number of refinements.
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t = 0.0005 t = 0.0075 t = 0.015 t = 0.035 t = 0.075 t = 0.1

Figure 9: Two merging bubbles in 2D: primal, u (top), dual � (bottom)

Figure 10: Convergence of error and esti-

mate Est with respect to uniform refine-

ment for 200 time steps with two levels V h

and V h/2 for Cahn–Hilliard equation, merg-

ing bubble test case in 2D.

(uh, µh; ẑh/2, �̂h/2)

Nb of Elems Est Qe,e(T )(e) E↵

42 1.5969e-02 1.6640e-01 0.0959

82 1.0217e-02 4.9134e-02 0.2079

162 2.4790e-03 1.0568e-03 0.2345

322 5.3838e-04 1.7559e-03 0.3066

642 1.2160e-04 2.9331e-4 0.4145

Figure 11: Estimate, error and e↵ectivity for 200

time steps with two levels V h and V h/2 for Cahn–

Hilliard equation, merging bubble test case in

2D.

Remark 4.3 (Direct error estimation) For a merging bubble test case in 1D,

Figure 12 shows a comparison of time-contributions to the two-level estima-

tor (blue curve) and the direct space-time error estimator ||uh/2 � uh||2 :=R T

0

�
"2kr

�
uh/2 � uh

�
k2 + 1

Pe
kr
�
µh/2 � µh

�
k2
�
dt (red curve). As explained in the in-

troduction, the two-level estimator contributions indicate the sensitivity of the quantity of

interest to errors accumulated at earlier times. In Figure 12, the blue curve indicates that

this is mostly for the time interval that merging happens, that is, for t between 0.10 and

0.15. On the other hand, the direct-estimator contributions do not necessarily point to

sensitivity of the quantity of interest. Indeed, the red curve has significant contributions

throughout the time interval, and in particular at the beginning.
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Figure 12: Comparison of time-contributions to Est and kuh/2 � uhk2.

4.2 Adaptivity

We now consider adaptivity based on the indicators, which contain not only the information

for the current time step but also the whole evolution history implicitly via the dual. The

proposed global-time space-adaptive algorithm for our error measure (8) is presented in

Algorithm 1.

The numerical test cases we provide later are preliminary adaptive tests aimed at

demonstrating how the new estimator can be employed in the adaptive strategy. And for

the sake of simplification, we only consider adaptivity in space.

We note that adaptivity for time-dependent problems has additional overhead in its

numerical implementation, such as projection / interpolation between meshes, and multiple

space-time solves. However, the advantage of adaptivity is clear: one obtains optimized

meshes at each time instance for the solution at hand.

The computable estimator (14) is a global space-time residual weighted with the dual

approximation. Assuming piecewise-constant reconstruction of the primal solution and the

dual solution, the estimator splits up as,

Est =
N�1X

k=0

⇣
�t Rt(uh

k+1; ẑ
h/2
k ) + (uh

k � uh
k+1, ẑ

h/2
k )

⌘


N�1X

k=0

Estk (51)

where

Estk :=
����t Rt(uh

k+1; ẑ
h/2
k ) + (uh

k � uh
k+1, ẑ

h/2
k )

���. (52)

We may thus localize the estimator to indicate the space error contributions at each time

step k. To further localize the estimator in space, we use the decomposition into shape
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Algorithm 1 The global-time space-adaptive algorithm
Choose an initial coarse mesh K and a small enough time step size �t

Initialize a list of mesh {K1, ...,KN}, one individual mesh for one time step

while the maximal error estimate MAX > tolerance do

for every time step k (t := 0 ! T ) do

Compute the primal solution uh
k using the current mesh Kk

Compute the primal solution uh/2
k using the finer mesh Kh/2

k (i.e. Kh/2
k is the uniform

refinement of Kk)

end for

for every time step k (t := T ! 0) do

Compute the dual solution ẑh/2k using the finer mesh Kh/2
k

Estimate the current mesh error contribution Estk
end for

Compute the maximal error contribution for the whole time period MAX =

max{Est1, ..., EstN}
while |Estk| > ✓ |MAX| do

Estimate the local error contribution ⌘ik for the mesh Kk

Refine the mesh Kk by using hierarchical refinement strategy and maximum strategy

with parameter �

end while

end while
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functions 'i 2 V h/2, i = 1, ...,M . The dual solution can be written as the linear combina-

tion,

ẑh/2k =
MX

i=1

z̃ik'
i. (53)

Inserting the ansatz (53) into (52), we get

Est =
N�1X

k=0

MX

i=1

⇣
�t z̃ik Rt(uh

k+1;'
i) + z̃ik (u

h
k � uh

k+1,'
i)
⌘
. (54)

Thus, the error estimator is localized to the basis. This is similar to the localization

approach in [10]. The indicator for each basis function 'i in V h/2 at each time step k is

thus:

⌘ik = �t z̃ik Rt(uh
k+1;'

i) + z̃ik
�
uh
k � uh

k+1,'
i
�
. (55)

The same as localizing the indicator, the error control is also built on a two-step ap-

proach. First, we apply the maximum marking strategy with fraction ✓ 2 [0, 1] on Estk, to

select which time steps contain the big error contributions throughout the time period. To

reduce the error, the corresponding space meshes at the selected time steps are targeted

to be refined. Then, the maximum marking strategy is applied second time for selecting

basis function in V h/2. The indicator of the selected basis is at least a fraction � 2 [0, 1]

bigger than the maximal indicator (i.e. |⌘i| � �max(|⌘i|)).
The mesh refinement is based on the hierarchical refinement strategy in [45, 26]. Since

V h/2 is the uniform refined space of V h, the parents of the basis functions in V h/2 are the

basis functions in V h. Thus, for the selected basis in V h/2, the mesh in V h can be refined

according to the parent of the basis in V h/2.

Remark 4.4 (Hierarchical Indicator) In general, the standard indicator for the dual

weighted residual (DWR) method is obtained by applying integration by parts after lo-

calizing the indicator elementwise as in [6]. In particular, for the DWR indicators, the

interpolant of the dual solution, Iẑh/2k , is subtracted from ẑh/2k to get a sharper indicator.

However, for hierarchical indicators, like (55), instead of using integration by parts, the

indicator is localized through patches of elements corresponding to the support of basis

functions. Hence, the indicator in (55) is expected to be sharp. Let us show that (55) is

equivalent to the indicator obtained by localizing the residual weighted by ẑh/2k � Iẑh/2k .

Consider

⌘k = �t Rt
⇣
uh
k+1; (ẑ

h/2
k � Iẑh/2k )

⌘
+
⇣
uh
k � uh

k+1, (ẑ
h/2
k � Iẑh/2k )

⌘
, (56)
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where, by Galerkin orthogonality,

�t Rt
⇣
uh
k+1; Iẑ

h/2
k

⌘
+
⇣
uh
k � uh

k+1, Iẑ
h/2
k

⌘
= 0.

The interpolant Iẑh/2k , similar to (53), can be written as a linear combination of shape

functions:

Iẑh/2k =
MX

i=1

z̄ik'
i =

MX

i=1

z̃ikI'
i,

then (56) can be rewritten as

⌘k =
MX

i=1

⇣
�t Rt(uh

k+1; z̃
i
k'

i � z̄ik'
i) + (uh

k � uh
k+1, z̃

i
k'

i � z̄ik'
i)
⌘

=
MX

i=1

⇣
�t Rt(uh

k+1; z̃
i
k'

i � z̃ik I'
i) + (uh

k � uh
k+1, z̃

i
k'

i � z̃ik I'
i)
⌘
.

=
MX

i=1

⇣
�t z̃ik Rt

�
uh
k+1;

�
'i � I'i

��
+ z̃ik

�
uh
k � uh

k+1,
�
'i � I'i

�� ⌘
.

Hence, Galerkin orthogonality

�t Rt
�
uh
k+1; I'

i
�
+
�
uh
k � uh

k+1, I'
i
�
= 0

implies

⌘ik = �t z̃ik Rt(uh
k+1;'

i) + z̃ik
�
uh
k � uh

k+1,'
i
�

= �t z̃ik Rt(uh
k+1;

�
'i � I'i

�
) + z̃ik

�
uh
k � uh

k+1,
�
'i � I'i

��

which coincides with the localized indicator (55). ⇤

4.2.1 Heat Equation

We begin with verifying numerically our global-time space-adaptive algorithm with the

linear heat equation (21). The dynamics of this test case is one bubble smoothed out in

the middle of the domain. The initial condition is assumed to be:

u(x, 0) = tanh
⇣
50
�
0.2�

p
x2 + y2

�⌘
+ 1 (57)

We take the time step size �t = 0.0005, the final time T = 0.025, the initial coarse mesh

with 82 elements in the domain ⌦ = [�1, 1]2, and the adaptive setting ✓ = 0.8, � = 0.7.
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Figure 13 shows the change of the estimator Estk after di↵erent refinements. In the first

plot, we can see that the largest error contribution is from the first time step. Thus, the

algorithm selects the mesh of the first time step. The second plot shows that the peak

error at the first time step has indeed decreased. And the peak has now shifted to another

time step. In the end, all the error contribution at every time step is under our tolerance.

The comparison between the final refinement result and the exact solution is presented

in Figure 14. Let us mention that, for better visualization, in the plots the colors represent

di↵erent values for each plot in time. In the first column of plots t = 0.0005, the color

scale of the exact solution and the adaptive solution are both from 0.0 to 2.0. Then,

both solutions are smoothed out by the nature of heat equation. In the last column of

plots t = 0.025, the color scale of both solutions are from 0.0 to 0.64. The first row of

the figure shows snapshots of the solution at a fine uniform mesh which is composed of

256⇥ 256 elements. We treat this solution as the exact solution. The second row show the

time-history of the numerical solution using the adaptive algorithm.

4.2.2 The Cahn-Hiliard Equation

In this test case, we consider the dynamics of two bubbles merging. The initial condition

of the Cahn-Hilliard Equation without convective term is

u(x, 0) = tanh

 
0.2�

p
(x� 0.3)2 + y2p

2"

!
+ tanh

 
0.2�

p
(x+ 0.3)2 + y2p

2"

!
+ 1 (58)

where ✏ = 0.0625, Pe = 1, ⌦ = [�1, 1]2. The fractions in the maximum strategies are

✓ = 0.8 and � = 0.8. The time step size �t = 0.0005, and the final time T = 0.015. The

initial coarse mesh and the adaptive setting is the same as heat equation. Figure 15 shows

the change of the estimator in time after di↵erent refinements. The result of two bubbles

merging is shown in Figure 16. The exact solution is computed by using the uniform mesh

composed of 256⇥256 elements. In the plots the colors represent the same values from �1

to 1. According to Figure 15 and Figure 16, the estimator has high value at the beginning

and the end. Thus, the corresponding mesh is driven by the estimator, to have finer mesh

at first time step and in the end.

5 Conclusion

In this paper, we introduced a duality-based two-level a posteriori error estimate in a

general framework for nonlinear time-dependent PDEs. We employed linearization and



34 G. Simsek et al.

computed the estimate with primal and dual problems approximated in two di↵erent dis-

crete spaces. We also presented a consistency theorem which shows that the error is equal

to sum of the estimate and remainders with all possible sources of errors: linearization,

primal approximation and dual discretization. We tested our estimate for heat and Cahn–

Hilliard equations for one and multiple time steps and for various mesh sizes. Numerical

experiments verified the e↵ectivity of the estimate and gave more accurate results when

we use a better second level discrete space. Furthermore, we presented space adaptivity

results for both of the equations using a global space-time adaptive algorithm. Adaptivity

addressed the meshes where critical changes happen according to our error measure in

space-time norm.

In the future, we intend to carry out a comprehensive study of various adaptive strate-

gies based on the developed duality-based two-level estimate for more complicated cases

such as topological changes and compare it to other adaptive strategies.
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Figure 13: Global space estimator Estk versus time
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Figure 14: One bubble smoothing in 2D
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Figure 15: Global space estimator Estk versus time
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Figure 16: Two bubble merging in 2D


