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Abstract 

Committee voting has mostly been investigated from the perspective of the standard 

Baron-Ferejohn model of bargaining over the division of a pie, in which bargaining ends as 

soon as the committee reaches an agreement. In standing committees, however, existing 

agreements can be amended. This paper studies an extension of the Baron-Ferejohn 

framework to a model with an evolving default that reflects this important feature of 

policymaking in standing committees: In each of an infinite number of periods, the ongoing 

default can be amended to a new policy (which is, in turn, the default for the next period). 

The model provides a number of quite different predictions. (i) From a positive perspective, 

the key distinction turns on whether the quota is less than unanimity. In that case, patient 

enough players waste substantial shares of the pie each period and the size principle fails in 

some pure strategy Markov perfect equilibria. By contrast, the unique Markov perfect 

equilibrium payoffs in a unanimity committee coincide with those in the corresponding 

Baron-Ferejohn framework. (ii) If players have heterogeneous discount factors then a large 

class of subgame perfect equilibria (including all Markov perfect equilibria) are inefficient. 
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1 Introduction 

Committee voting has mostly been investigated from the perspective of the standard 

Baron-Ferejohn model of bargaining in an ad hoc committee over the division of a single 

pie: players earn an exogenously fixed default payoff until the committee reaches an 

agreement, when negotiations end. However, many committees (such as legislatures) are 

dynamic in two senses: (i) their members reach a sequence of policy agreements (so the 

committee is standing), and (ii) a new pie is divided according to the same proportions as 

the last pie unless the last agreement is amended (so the default is endogenous). In this 

paper, we follow a literature initiated by Baron (1996) and Kalandrakis (2004) by studying 

a model which captures these dynamic aspects of policy making.' Each period begins with a 

default policy (i.e. a division of the pie among players) inherited from the previous period; 

and a player is randomly drawn to make a proposal which is then voted up or down by the 

committee; if voted up, the proposal is implemented and becomes the new default; if voted 

down, the ongoing default is implemented and remains in place until the next period. That 

is, the default payoff is endogenous, rather than exogenously fixed. A pie is available for 

division each period; and this process continues ad infinitum. This model naturally 

represents Congressional legislation on social policy and entitlements: the previously 

agreed law remains in place until Congress decides to amend it.
2

 

In further contrast to Baron and Ferejohn (1989), we allow players to have different 

discount factors, and any concave utility functions; we consider any quota (including 

majority and unanimity rules); and we allow players to be selected to propose with 

different probabilities.
3
 Analysis of this model of a standing committee raises various 

interesting (related) questions, such as: (1) When do stationary Markov perfect equilibria 

(SMPEs) exist and, when they do, are equilibrium payoffs unique? (2) Must each pie be 

divided between a minimal winning majority as predicted by the size principle in every 

SMPE? (3) Must each pie be fully divided (that is, is the division of the pie statically 

efficient) in every SMPE? (4) Are equilibria Pareto efficient? (5) How does the endogeneity 

of the evolving default affect SMPE outcomes? And (6) How do the answers to these 

questions depend on the quota? 

The literature on standing committees (with an endogenous default) has only posed 

'We survey this literature in the next section. 
2Similarly, majority Supreme Court opinions remain in force unless revisited. 

3Similar extensions are allowed in Banks and Duggan (2000), Eraslan (2002) and Eraslan and McLennan 

(2013): all bargaining models with a fixed default. 
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the first two questions. Our contribution is to bypass technical issues which have 

stymied progress, and thereby to say much more about each of the six questions. We 

provide the following answers: 

(1) Equilibrium existence and multiplicity of equilibria. We construct pure strategy 

SMPEs for any game with a non-unanimity quota and patient enough players, and also 

prove (again using constructive arguments) that unanimity games possess pure strategy 

SMPEs, irrespective of patience. However, we have radically different results on 

multiplicity for games with and without a unanimity quota. We start with the latter 

case. Take any point in the policy space at which at least a minimal winning majority 

have a positive share of the pie. If players are sufficiently patient then we can construct 

a pure strategy SMPE in which that policy is implemented in the first period and never 

amended (a property which we call no-delay). By contrast, any game with a unanimity 

quota has unique SMPE payoffs. 

The previous literature (cf. Section 2) has focused on existence of SMPEs in bargaining 

games with an evolving default. Our results demonstrate that if players are patient 

enough or if there is a unanimity quota, then existence is not a problem. The multiplicity 

of equilibria limits the predictive power of the model. Nevertheless, it is interesting that 

play in some equilibria of standing committees with an endogenous default is consistent 

with some important stylized facts: 

(2) The size principle. The size principle predicts that only minimal winning coalitions 

should receive a positive share of the pie. It has been central to the study of legislatures 

since Riker (1962), even though majorities in legislatures are typically supraminimal. The 

class of solutions which we construct for non-unanimity games contains SMPEs in 

which the pie is shared amongst more than a minimal winning coalition. 

(3) Waste. Our results on the division of the pie again differ, depending on the quota. We 

show that SMPE agreements in games without a unanimity quota may waste some of the 

pie when all players are patient enough. Specifically, for every S > 0, we can construct an 

SMPE in which a policy which wastes a proportion 1 − s of the pie is agreed to in the first 

period and never amended. By contrast, none of the pie is wasted in an SMPE, 

irrespective of players' patience, in games with a unanimity quota. 

More strongly, players can waste any proportion of the pie in SMPEs of nonunanimity 
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games which also fail the size principle. Our model is therefore consistent with 

features which are common in pork barrel politics (cf. Evans (2004)). 

(4) Pareto inefficiency. If all players share the same discount factor then Pareto ef-

ficiency only turns on whether the entire pie is distributed in every period and (with risk-

averse players) on whether the policy sequence is deterministic. With heterogeneous 

discount factors, however, temporal patterns also matter. For instance, our no-delay SM-

PEs (including those without waste) support policy sequences which can be Pareto im-

proved by operating transfers across periods. More generally, our analysis reveals that 

Pareto inefficiency is not limited to those SMPEs. If preferences are linear in share of the 

current pie (as in Baron and Ferejohn (1989)) then, in the generic case where all players 

have different discount factors, a subgame perfect equilibrium (SPE) can be efficient only 

if it relies on more complex, player-specific punishments. Dynamic equilibria i.e. those 

SPEs in which behavior depends (at most) on the policies implemented in all previous 

periods are all Pareto inefficient. Indeed, our characterization of Pareto efficient policy 

sequences reveals that some player must eventually earn the entire pie in any efficient pol-

icy sequence; and no such policy sequence can be played in any dynamic equilibrium of a 

nonunanimity committee. On the other hand, even if utilities are nonlinear, all dynamic 

equilibria of a unanimity committee are Pareto inefficient if two or more players have dif-

ferent discount factors. While Pareto efficient policy sequences that allocate the entire pie to 

the same player in every period can be supported by an SPE, irrespective of players' 

patience, dynamic equilibria even fail the weaker criterion of ex post Pareto efficiency (e.g. 

Merlo and Wilson (1995)) which only requires one of the realizations of the equilibrium 

policy sequence to be Pareto efficient. 

(5) The effects of an endogenous default. These results stand in sharp contrast to the 

properties of the Baron-Ferejohn model of an ad hoc committee, in which a single pie is 

divided. Eraslan (2002) shows that, in a Baron-Ferejohn model with linear utilities, 

heterogeneous discount factors and any quota, stationary equilibrium payoffs are unique, 

only minimal winning coalitions form, and none of the pie is wasted.
4
 These properties 

clearly carry over to a couple of dynamic variants with exogenous defaults: in one variant, 

an ad hoc committee agrees once to the divisions of a sequence of pies; in another variant, 

4Ex post efficiency and the size principle hold when players have strictly concave preferences, but 

uniqueness and ex ante efficiency might fail (because of random proposers). 

a standing committee negotiates division of a new pie once it has agreed on division of 4 5 



the existing pie, earning nothing each period till a winning coalition forms. Using those 

variants as benchmarks, our results imply that default endogeneity has profound 

implications for standing committees with a nonunanimity quota: Default endogeneity may 

cause static inefficiency (waste), allow supraminimal coalitions to form, and create a large 

multiplicity of equilibrium payoffs. None of these properties can hold with a unanimity 

quota. More strikingly, we show that there is a unique SMPE payoff vector, which coincides 

with the unique stationary SPE payoff vector in the equivalent Baron-Ferejohn static model 

(and in its standing committee variant sketched above). 

As for Pareto inefficiency, the same conclusion as in our model may also apply to the 

standing committee model with an exogenous default sketched above. For instance, when 

utility functions are linear, each player's expected utility is constant across periods in a 

stationary equilibrium (for the same reasons as in Baron and Ferejohn's (1989) static 

model); so the equilibrium policy sequence must be inefficient when players have 

heterogeneous discount factors. By contrast, an ad hoc committee which negotiates over 

the sequence of pie divisions must reach a Pareto efficient agreement in any equilibrium 

(because any proposer is a residual claimant). The main difference from our model is that 

such an ad hoc committee effectively commits not to renegotiate an agreement. This 

suggests that efficiency may fail in our model because the committee cannot commit not 

to renegotiate agreements. 

(6) Effect of the quota. Our positive results above reveal that default endogeneity only 

matters if the quota is less than unanimity: With a unanimity quota, there is a unique 

SMPE payoff and the statically efficient policy reached by an ad hoc committee is 

implemented immediately and never amended; with a lower quota and patient enough 

players, there is a multiplicity of pure strategy no-delay SMPEs, some of which are 

statically inefficient. As for normative results, however, default endogeneity matters even 

with a unanimity quota: if discount factors are heterogeneous then all dynamic equilibria 

are Pareto inefficient. 

We relate our model and results to the literature in the next section. We present our 

model in Section 3, and provide results on committees with a nonunanimity and a 

unanimity quota respectively in Sections 4 and 5. We consider the implications of an 

endogenous default in Section 6. Section 7 concludes. Most of the proofs appear in the 

Appendix. 

6 



2 Related Literature 

Baron and Ferejohn (1989) has spawned an enormous literature; we refer readers to 

Eraslan and McLennan (2013) for a recent list of contributions, including existence and 

uniqueness results for any quota. The literature on bargaining in standing committees with 

an endogenous default was initiated by Baron (1996), who established a dynamic median 

voter theorem in an environment where the policy space is one-dimensional and utilities are 

single-peaked. Kalandrakis (2004) was then the first to apply the endogenous-default ap-

proach to pie-division problems.
6
 Despite its relevance, this literature has remained small, 

most likely for technical reasons: in equilibrium, the proposals which would be accepted 

may vary discontinuously with the default policy because of expectations about future play. 

The ensuing discontinuous transition probabilities preclude the use of conventional fixed 

point arguments to establish existence of even mixed strategy equilibria. 

Most of this literature has focused on majority rule games, for obvious reasons; but 

unanimity rule games are also empirically important because they represent long-run 

contractual relationships. Our model allows for any quota; and our positive results 

reveal important differences between unanimity and nonunanimity committees. 

Kalandrakis (2004) and Baron and Bowen (2013) study majority rule games with three 

equally patient, risk neutral players, equiprobable proposers, and a statically efficient initial 

default; Kalandrakis (2010) extends the model to games with five or more players whose 

preferences are concave. Kalandrakis (2004) and (2010) show that, for any common 

discount factor, these games have an SMPE in which the default immediately reaches an 

ergodic distribution where each proposer takes the entire pie, but players mix over extra-

equilibrium proposals;
7
 Baron and Bowen construct a no-delay SMPE in which the proposer 

mixes over her (single) coalition partner.
8
 In the SMPEs which we construct, the 

5Papers which we do not survey include Gomes and Jehiel (2005, Section III.A), Bernheim et al (2006), 

Anesi (2010), Diermeier and Fong (2011, 2012), Zápal (2011a,b), Battaglini et al (2012), Bowen and Zahran 

(2012), Diermeier et al (2013), Nunnari (2014), Anesi and Seidmann (2014), and Bowen et al (forthcoming). 
6Banks and Duggan (2006) consider an intermediate model, with an arbitrary (possibly statically effi- 

cient) status quo. 
7In contrast, our existence results for nonunanimity committees only apply when players are sufficiently 

patient. 
8In Kalandrakis (2004) [resp. Baron and Bowen (2013)1, indifferent voters always accept [resp. re- 



default reaches a single policy (immediately), and no player mixes, on or off the path. 

Duggan and Kalandrakis (2012) use a fixed point argument to establish existence 

of pure strategy SMPEs for games with any quota in which preferences and the default 

are subject to stochastic shocks.
9
 By contrast, we prove existence in unperturbed 

games (by and large) using constructive arguments. 

Kalandrakis' (2004, 2010) equilibria violate the size principle, in the sense that a sub-

minimal winning coalition shares the pie. Field evidence (e.g. on appropriations bills in 

Congress) and lab evidence both suggest that the size principle is more likely to be violated 

by agreements which share the pie amongst a supraminimal winning coalition.'
0 These 

agreements might, in principle, be explained by social preferences; but Battaglini and Pal-

frey (like Kalandrakis (2010)) suggest that concavity might be a better explanation. A 

supramajority of players earn a positive share in (some of) our constructed equilibria, and 

also in the equilibria constructed by Bowen and Zahran (2012) and Richter (2014): 

Bowen and Zahran require preferences to be strictly concave and the initial default to 

be statically efficient, and show that the size principle is violated when discount factors 

take intermediate values and the initial default is not too inequitable. We also allow for 

(but do not require) strictly concave preferences; but the size principle fails in our 

construction whenever all players are patient enough. Unlike Kalandrakis (2004, 2010) 

and Bowen and Zahran (2012), we allow the committee to choose statically inefficient 

policies. However, all our results about existence of SMPEs and the size principle would 

carry over to the case where the policy set coincides with the unit simplex. In particular, 

our construction of SMPEs in nonunanimity games relies on the existence of a simple 

solution (see Definition 1 in Subsection 4.1 below). It is readily checked that there exist 

simple solutions inside the unit simplex, which violate the size principle. In addition, our 

constructions do not depend on the initial default (which could also be in the simplex). 

Richter (2014) constructs a no-delay SMPE in which the first proposer offers the egal-

itarian division in a model where offers may waste some of the pie.
11

 These offers are only 

jecti. Indifferent voters respond differently to amendments of policies on and off the equilibrium paths we 

construct. 
9Their results apply to a class of stage games which includes pie division. Dziuda and Loeper (2010) 

also consider a model with preference shocks to study efficiency of SMPEs under unanimity rule. Focusing 

on preference polarization in environments with a finite policy space, their model does not accommodate 

pie-division settings. 
'°In Battaglini and Palfrey (2012), 45% of agreed policies were close to the centroid of the simplex. 
11Baron and Ferejohn (1989) also allow for waste in their model of an ad hoc committee. 
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made in order to punish deviations from equilibrium play, and are therefore never 

observed on the path. We also allow for statically inefficient offers; but these offers are 

made on the equilibrium path in (some of) our constructions. 

Baron (1991) argues that Congress often both wastes resources and splits the remainder 

among a supraminimal majority during distributive bargaining. He shows that closed and 

open rule models based on Baron and Ferejohn (1989) can explain statically inefficient 

policies (aka pork), but can only explain these violations of the size principle by appealing to 

a norm of universalism.'
2 By contrast, equilibria in our model exhibit both features. 

Seidmann and Winter (1998) and Okada (2000), inter alia, study bargaining with an 

endogenous default in superadditive characteristic function games.'
3 Hyndman and Ray 

(2007) prove that all (including history-dependent) subgame perfect equilibria of games with 

binding agreements and no externalities are absorbing, and that these equilibria are 

asymptotically statically efficient if there is a finite number of feasible policies. They also 

show by example that these results do not carry over to games with externalities. Hynd-man 

and Ray's results are only applicable in our framework when the quota is unanimity. We 

exploit their first result when proving that every dynamic equilibrium of a unanimity game 

is no-delay; their second result also holds in our model (without requiring finiteness). 

Furthermore, as in Hyndman and Ray's model with externalities, statically inefficient equi-

libria exist in our model with a non-unanimity quota. However, Hyndman and Ray focus on 

asymptotic static efficiency, and assume a common discount factor; we consider Pareto 

efficiency and, crucially for associated results, allow discount factors to differ. 

We turn finally to the no-delay property. Policy outcomes of our no-delay SMPEs can 

be interpreted as a special case of Acemoglu et al's (2012) "dynamically stable states," 

which are defined as political states reached in a finite number of periods (and never 

changed) in pure strategy SMPEs of bargaining games with an endogenous default and 

patient players. Hence, our results characterize and prove existence of a class of 

dynamically stable states in voting situations where, in contrast to those studied in 

Acemoglu et al (2012), the set of policies is infinite and policy preferences are not acyclic. 

Baron and Bowen's (2013) notion of a coalition Markov perfect equilibrium exhibits a 

similar no-delay property; the equilibria they construct are in mixed strategies. 

'2The size principle holds in open rule games if there are enough players. 

'3Seidmann and Winter focus on equilibria in which the grand coalition forms after a number of steps. 

While we cannot exclude delay with a non-unanimity quota, our constructions all involve no-delay equi-

libria. 
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By definition, the default changes just once in a no-delay equilibrium: policy is per-

sistent. A related literature explains why statically inefficient policies may be persistent 

(so the policy sequence is inefficient). However, the mechanisms in this literature rely on 

privately incurred adjustment costs (Coate and Morris (1999)), incomplete information 

(e.g. Mitchell and Moro (2006)) or the growing power of incumbent factions (Persico et al 

(2011)). By contrast, no-delay equilibria are inefficient in our model because relative ly 

impatient players cannot commit to decreasing shares of the pie.  

3 Notation and Definit ions  

3 . 1  T h e  S t a n d i n g  C o m m i t t e e  G a m e  

In each of an infinite number of discrete periods, indexed t = 1, 2,..., up to a unit of a 

divisible resource — the "pie" — can be allocated among the members of a committee N = 

{1, . . . , n}, n > 3. Thus, the set of feasible policies each period is  
X = (x1, ... , xn) E [0,1]n : xi < 1 . 

{ } 

∑ 
i=1 
n 

We denote the policy implemented in period t, and therefore the default at the beginning of 
period t+ 1, by x

t = (xt
 1,. . . ,xt ). At the start of each period t, player i is 

selected n 

with probability pi E (0, 1) to propose a policy in X. We say that a player who proposes 

the existing default passes. If the selected proposer passes then the default is implemented; 

otherwise all players simultaneously vote to accept or to reject the chosen proposal. The 

voting rule used in every period t is a quota q which satisfies n/2 < q < n. Specifically, if 

at least q players accept proposal y E X then it is implemented as the committee decision in 

period t and becomes the default next period (i.e. x
t = y); and if y secures less than q votes 

then the previous default, x
t
−1, is implemented again and becomes the default in period t + 

1 (i.e. x
t = xt

−1). The default in period 1 is x
0 = (0,...,0). We will refer to {xt}°°t=1 such 

that every x
t
 is feasible as a policy sequence. 

Once policy x
t
 has been implemented, every player i receives an instantaneous payoff 

of ), where ui is a strictly increasing, continuously differentiable concave utility (1 
− i) ui (xt i 

function with ui(0) = 0, and i E [0, 1) is i's discount factor. Thus, player i's payoff from 

a policy sequence {xt}°°t=1 is (1 − i) E°°t=1 t−1 ). We say that discount factors are 
i ui (xt i  

heterogeneous if i ≠ j for some pair of players i and j; and that discount factors are strictly 

heterogeneous if i ≠ j for every pair of players i and j. 
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The assumptions above define a dynamic game, which we will refer to as a standing 

committee game. Our main purpose is to analyze the equilibria of this game. 

3.2 Equilibrium and Absorbing Points  

Equilibrium concept. We follow the standard approach of concentrating throughout on 

stage-undominated subgame perfect equilibria (SPEs); i.e., SPEs in which, at any voting 

stage, no player uses a weakly dominated strategy. This excludes strategy combinations in 

which players with different preferences all vote one way, and are indifferent when q < n 

because they are nonpivotal put differently, players never vote against their (dynamic) 

preferences. Henceforth, we leave it as understood that any reference to "equilibria" is 

to equilibria that satisfy this property. 

For our positive analysis, we will concentrate (like the previous literature) on the 

stricter criterion of stationary Markov perfect equilibria (SMPEs), i.e., SPEs in which all 

players use strategies which only depend on the current payoff-relevant state: in proposal 

stages, players' choices (of probability distributions over X) only depend on the ongoing 

default; in voting stages, players' choices (of probability distributions over {accept , reject}) 

only depend on the current default and the proposal just made. We will be particularly in-

terested in pure strategy SMPEs, where every player's choice is deterministic after every 

history. 

Our normative results exploit a refinement of SPE ("dynamic equilibrium") which is 

weaker than SMPEs. We follow Bernheim and Slavov (2009), Vartiainen (2011, 2014), and 

Anesi and Seidmann (2014, Section 5.2), who consider dynamic voting frameworks in 

which behavior in every period only depends on the list of policies implemented in all 

previous periods. More specifically, a dynamic equilibrium (or DE) is an SPE in which 

behavior in any period t only depends on (x1
, . . . , xt−1), plus the current proposal in the 

voting stage. We adopt this weaker criterion because our aim is to establish equilibrium 

inefficiency ~ which is too easy to prove of SMPEs because Markov perfection restricts the 

set of policy sequences which can be supported. For instance, it precludes those 

sequences in which the same policy is implemented in a finite number of consecutive 

periods and then switches to a different policy. By contrast, we do not impose any 

restriction on the set of policy sequences which can be supported by allowing behavior to 

depend on previous periods' policies. 
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Absorbing points and no-delay strategies. A complete history of length t describes all that 

has transpired in each period r E {1, 2, ... , t}: the selection of a proposer, her proposal, the 

associated pattern of votes (if applicable), and the implementation of period-r policy xr
.
14

 

Of particular interest are "implementation histories" (to use the language of Hyndman and 

Ray (2007)), i.e. those which end just before the implementation of a policy. More 

precisely, an implementation history of length t is a complete history of length t − 1 (or the 

null history if t = 1) together with the selection of the proposer, her proposal, and (if 

applicable) the associated pattern of votes (but not the implementation of the policy)  in 

period t. Hence, at such a history, players know the policy that will be implemented in 

period t, but they have not yet received their payoffs from that policy. An implementation 

history is an implementation history of finite length. For each x E X, the set of 

implementation histories at which x is the policy about to be implemented is denoted by Hx; 

that is, h E Hx if there exists t E N such that h is an implementation history of length t 

and xt = x. Let H LjxcX Hx be the set of all possible implementation histories. 

Every strategy profile a (in conjunction with recognition probabilities) generates a tran -

sition function Pa
 on implementation histories, where Pa (h, H

′
) is the probability (given a) 

that the next period's implementation history is in H
′
, given that the implementation history 

for the current period is h. Thus, for all i E N, all x E X and all h E Hx, player i's 

continuation value at h — i.e. the payoff that player i receives from h on — is given by 

Vi
a(h) = (1 − Si) ui (xi) + Si fVa (h′) Pa (h, dh

′
) . 

We say that x E X is an absorbing point of a if and only if Pa (h, Hx) = 1 for all h E Hx, and 

denote by 

A(a) x E X : Pa (h, Hx) = 1 for all h E Hx} 

the set of absorbing points of a. 

We say that a is no-delay if and only if: (i) A(a) ≠ 0; and (ii) for all h E H, there is x E 

A(a) such that h E Hx. In words, a strategy profile is no-delay if the committee implements 

an absorbing point at every implementation history (including those off the equilibrium 

path). It is worth noting that this notion of no-delay differs from that conventionally used in 

models of bargaining with fixed defaults, where it is often associated with efficiency (e.g.  

1 4The implementation stage can be inferred from previous stages and, therefore, may appear redundant. 

For expositional clarity, however, it is convenient to include it in the definition of a complete history.  
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Austen-Smith and Banks (2005), p. 211). In contrast, no-delay equilibria can be 

statically inefficient in this model. 

In the case of stationary Markov strategies, we will indulge in a slight abuse of notation 

and replace implementation histories by policies in the definitions above. For instance, 

P (x, Y ) will denote the probability (given stationary Markov strategy a) that the committee 

chooses a policy in Y in the next period given that policy x is implemented in the 

current period so that A(a) {x E X : P (x, {x}) = 1}. 

3.3 (In)efficiency 

Previous papers in the related literature have only explored the equilibrium correspondence. 

Given this focus, the assumption that players share a common discount factor simplifies 

exposition. By contrast, we will also be interested in the welfare evaluation of equilibria; and 

here the supposition of equal patience is problematic. 

It is useful to distinguish between potential inefficiencies which arise in models with an 

exogenous default, and those which are peculiar to models with an endogenous default. 

First, the pie might not be entirely distributed in some periods: A policy x E X is statically 

inefficient if iEN xi < 1 (and is statically efficient otherwise). We will refer to 1_∑ iEN xi as 

waste. (Recall that ui is strictly increasing in xi.) The uncertainty created by recognition 

probabilities and (possibly) mixed strategies could also result in welfare losses if utility 

functions are not linear. The dynamic structure of our model engenders another source of 

inefficiency: If players have different discount factors then inter-temporal transfers may 

facilitate Pareto improvements. 

Our efficiency criterion captures all of these features. Formally, a (possibly stochastic) 

policy sequence {˜
xt} is Pareto efficient if there is no other (possibly stochastic) policy 

sequence {˜
yt} such that 

[ ∑00 ] [ ∑00 ] 

) 
E t−1 

i ui (˜yt ) i ui (˜
xt 

~ E t−1 
i i 

t=1 t=1 

for all i E N, with at least one strict inequality for some i E N. We will say that a 

strategy profile is Pareto inefficient if, from the initial default (0,. . . , 0), it generates a 

policy sequence that is not Pareto efficient. 

Assuming linear utilities, we can establish the following result: 

12 



Lemma 1. Suppose that ui (xi) = xi for all i E N. In every Pareto efficient policy sequence, 

the following is true for every i, j E N such that j < i: If player i's expected 



share of the pie in some period t is positive then player j's expected shares in all periods T > 

t are zero. 

Thus, if an efficient policy sequence allocates a positive share of the pie to any player i 

with a positive probability in some period t, then all players who are less patient than i 

must receive a zero share (with probability 1) in all subsequent periods. This result will be 

very useful when we come to establish Pareto inefficiency of all dynamic equilibria in 

nonunanimity games. To prove it (see the Appendix), we show that the linearity of the ui's 

would otherwise permit mutually advantageous utility transfers across periods and, 

therefore, contradict Pareto efficiency. Observe that Lemma 1 implies that if the players all 

have distinct discount factors then, from some period on, some player must receive the 

entire pie with probability one in any Pareto efficient policy sequence. Indeed, if the most 

patient player receives a positive (expected) share of the pie in some period t, then all other 

players receive a zero share from period t+1 on. If the most patient player receives a 

positive share with probability zero, then we can apply the same argument to the next 

most patient player and continue until the most patient player among those who ever 

receive a positive share of the pie with positive probability. As the pie cannot be wasted in 

an efficient sequence, such a player exists and we obtain this implication of the lemma. 

Lemma 1 relies on the supposition that all utility functions are linear. Despite its 

relevance, characterization of the set of Pareto efficient policy sequences remains, to the 

best of our knowledge, an open and very delicate question.'5 Indeed, when players have 

heterogeneous discount factors, the set of payoff profiles that can be obtained through time 

averaging does not coincide with the set of feasible policies, even if utilities are linear. 

Pareto efficiency is an ex ante concept in the sense that it compares the payoffs of the 

different policy sequences prior to their realizations. We will also consider the weaker 

notion of ex post Pareto efficiency (e.g. Merlo and Wilson (1995)), in which the payoffs of 

different policy sequences are compared after the realizations of those sequences. More 

precisely, we will say that a (possibly stochastic) policy sequence {
˜
xt} is ex post Pareto 

efficient if at least one of the realizations {xt} in its range is Pareto efficient. We will say 

that a strategy profile is ex post Pareto inefficient if it generates a policy sequence that is ex 

post Pareto inefficient: that is, each of its possible realizations can be Pareto improved. 

Though this definition of ex post Pareto efficiency is very weak, we prove in Section 5 that 

15It is readily checked that, whenever all marginal utilities satisfy u′ i E [b, B] for some 0 < b < B < 

00, some players must receive zero shares infinitely often. The proof is provided in the Supplementary 

Appendix. 
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all dynamic equilibria fail this criterion in the unanimity ca se. 

4 Nonunanimity Committees 

Let W be the collection of winning coalitions: . Throughout 

this section, we assume that q < n: agreement requires less than unanimous consent.  

4 . 1  S i m p l e  S o l u t i o n s  

We will construct a class of pure strategy no-delay SMPEs, in which each player is 

only offered two different shares of the pie — a "high" offer xj > 0 and a "low" offer yj < 

xj — after any history. In every period and for any ongoing default, each proposer i 

(conditional on being recognized to make an offer) implicitly selects a winning coalition 

Ci ∋ i by making high offers to the members of Ci and low offers to the members of N 

\Ci. If each player receives a low offer from at least one proposer, then we refer to the set 

of such proposals (one for each player) as a simple solution . Formally:  

Definition 1. Let i} iEN be a class of coalitions such that, for each , 

i  and j  for some \ {i} . Let x = (x i,...,xn) and y = (y i,...,yn) be 

two vectors in [0, 1]
n 

satisfying x i  > yi  and 

 
∑ 

jcCi 

∑ 
xj + 

j / Ci 

yj , 

for all . The simple solution induced by (C, x, y) is the set of policies 

{xCi}iEN,  

where 

{  x j  i f  i  ,  

xCi 

j   for all . 
y j i f  i  , 

Before we turn our attention to the construction of  equilibria themselves, a few remarks  

are in order about simple solutions:  

1. A simple solution exists if and only if q < n: if q < n then the main simple solution, in 

which the pie is divided equally among every minimal winning coalition, is a notable  

example of a simple solution (cf. Wilson (1971)); if q = n then each player must be  

included in the unique winning coalition N and, therefore, there is no simple solution.  

A set of policies S  

above) such that S is a simple solution induced by (C, x, y). 



1 4  



2. If q < n then any policy which assigns a positive share to at least q players is part of 

some simple solution. To see this, take an arbitrary policy z E X such that |{i : zi > 

0}| > q. For expositional convenience, we order the players in N in such a way that 

zi > zi±i for each i = 1,... ,n − 1 (thus ensuring that zi > 0 for all i < q). Consider 

the simple solution induced by (C, x, y), where 

{ { 

zi if i < q zi − E if i < q 
xi = , yi = , E > 0 arbitrarily small, 

z i  +   
 n−q if i > q zi if i > q 

and Ci is the coalition that includes i and the next q − 1 players following the order 1, 2, . . 

. , n − 1, n,1, 2, . . . , q − 1. It is readily checked that (C, x, y) satisfies all the 

conditions of Definition 1 (in particular yi > 0 for all i E N), and that x
C

i = z. 

3. Policies which assign a positive share to fewer than a minimal winning coalition 

cannot be included in a simple solution. Such policies include the initial default and 

the vertices of the simplex. 

4. The definition of the class C of coalitions does not require all of them to be distinct; but it is 

easy to confirm that C must contain at least n/(n − q) distinct coalitions. 

5. The policies in a simple solution may all assign a positive share to a supraminimal coalition, 

and might all involve waste. 

4 . 2  P r e l i m i n a r y  I n t u i t i o n s  

If all players are myopic then there is a unique SPE outcome in which each proposer 

successfully claims the entire pie. More generally, it is easy to show that there is no 

absorbing SPE when players' discount factors are small. Indeed, owing to the emptiness of 

the core, there is always a winning coalition which can make all its (short-sighted) members 

strictly better off by amending any potential absorbing point to another policy in X. For 

future reference, we record this observation as:
16 

Observation 1. Let q < n. If Si = 0 for each i E N then each period's proposer receives the entire 

pie in every SPE. Furthermore, there exists S E (0,1) such that there is no absorbing SPE whenever 

maxiEN Si < ˆ . 
16The 

proof of this observation is provided in the supplementary appendix.  
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Nevertheless, we will show that it is possible to construct  a no-delay (and therefore ab-

sorbing) SMPE when players' discount factors are sufficiently large. The following example 

illustrates Definition 1, and provides an intuitive presentation of some key mechanisms be -

hind our equilibrium construction. 

Example 1. Let n = 3, q = 2, pi = 1/3, Si = S and ui (xi) = xi for all i E N.
17 

Take, for 

example, the simple solution 5 = {(1/3, 1/3, 1/6), (1/6, 1/3, 1/3), (1/3, 1/6, 1/3)} ~ 

that is, C1 = {1, 2}, C2 = {2, 3}, C3 = {1, 3} and xj = 1/3, yj = 1/6 for every player j = 

1, 2, 3. If S > 12/13 then the following strategy profile forms a pure strategy, no-delay 

SMPE whose set of absorbing points is 5: 

 Player i always offers 1/3 to the players in Ci and 1/6 to the player outside Ci if the ongoing 

default does not belong to 5, and passes otherwise; 

 Player i accepts proposal z when the ongoing default is w if and only if one of the 

following conditions holds: (i) w E 5 and wi = 1/6; (ii) w E/ 5, z E 5, and zi > 

(1 − S)wi + (5S/18); or (iii) w,z E/ 5 and zi > wi. 

A formal proof of this statement is obtained as a special case of Theorem 1. The intuition is 

as follows. It is readily checked that this (pure) strategy profile is no -delay and that 5 is the 

set of absorbing points: each policy x
Ci 

in 5 is proposed by player i with probability 1/3, 

accepted by the two members of majority coalition Ci, and never amended. 

To see why this is an SMPE, observe first that each (patient) player i = 1, 2, 3 can only 

end up in two possible states in the long-run: a "good state" in which she receives 1/3 in all 

periods, and a "bad state" in which she receives 1/6 in all periods. Indeed, any ongoing 

default w is either an absorbing point itself or will lead immediately to some absorbing  point 

x
C

i E 5, with xi
Ci 

E {1/6,1/3}. In the former case, player i's expected payoff is wi = 1/3 if i 

E Cj, and wi = 1/6 otherwise. In the latter case (i.e. if the current period's proposer fails to 

amend w), i receives wi in the current period and 2/3x1/3+1/3x1/6 = 5/18 in the next 

period (i E Cj with probability 2/3). Her expected payoff is therefore (1 − S)wi + (5S/18), 

which is less than 1/3 for all wi E [0,1] (recall that S > 12/13). 

In every voting stage, players know that the next period's proposer i will successfully offer 

absorbing point x
Ci 

in 5 if the default is not already in 5, and will pass otherwise. 

' 7These are precisely the assumptions made by Kalandrakis (2004). In contrast to that paper, however, 

we require the initial default to be (0, . . . , 0) , and allow for policies which do not exhaust the pie. In 

addition, our equilibrium construct ion does not allow for small discount factors.  

16 



As xC 

j E {1/3, 1/6} for all i,j E N, every player j anticipates that her shares of the pie in all 

future periods will either be equal to 1/3 or to 1/6. Hence, each player j's continuation 

value is bounded from above by uj (1/3) = 1/3. This implies that it is optimal for farsighted 

player j to reject [resp. accept] any proposal to amend default x
C 

whenever j E Ci [resp. j E/ 

Cil: changing x
C 

to another policy can only decrease [resp. increase] her long-run 

payoffs as is sufficiently close to 1, only long-run payoffs matter to her. As the Ci's 

are winning coalitions, this ensures that it is impossible to amend the x
C 

's once they have 

been implemented. If the current default is not in S then, by the same logic, it is optimal 

for each member of Ci to accept x
C 

and for any other player to reject it. These voting 

strategies in turn imply that there is no profitable deviation from proposal strategies. If the 

current default is outside S then it is optimal for proposer i to offer x
C 

: this proposal will 

be accepted by all members of winning coalition Ci and guarantees her the highest 

possible long-term payoff of 1/3. If the default is outside S then any attempt to amend it is 

unsuccessful; so that passing is optimal. Thus, we obtain an SMPE. 

 

This example illustrates why our results are radically different from those obtained in 

the standard Baron-Ferejohn model of an ad hoc committee. In particular, it explains why 

shares of the pie can be perpetually wasted and/or shared amongst more than a minimal 

winning coalition in equilibrium: Players can be locked into equilibria where any deviation 

to proposing a Pareto-superior policy would be rejected. Interestingly, what prevents any 

(minimal) winning coalition C from agreeing on a non-wasteful policy in such an equilib-

rium is its members' inability to commit not to revert to one of the statically inefficient 

absorbing points x
C 

with Ci ≠ C, where some members of C lose out. The nonunanimity 

quota (q < n) ensures that such coalitions Ci always exist. In the example above, far-

sighted player 1 rejects (off the equilibrium path) any proposal such as (1/2, 1/2, 0) E X 

when the default is absorbing point x
C1 = (1/3, 1/3, 1/6). Indeed, she anticipates that if 

such a proposal were successful in the current period then, with probability p2 > 0, player 

2 would successfully propose x
C2 = (1/6, 1/3, 1/3) in the next period which would never be 

amended. As is close to one, player 1 prefers to earn 1/3 with certainty in all future 

periods. Evidently, this commitment problem would not arise in the Baron-Ferejohn 

model where, once implemented, policies can never be amended. 
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4.3 Positive Results  

Our first result generalizes the argument above to any nonunanimity quota, any concave 

utility functions, and any simple solution. We describe a pure strategy no-delay SMPE in 

which each policy in a simple solution is proposed by some player, and no other policy is 

proposed after any history as a simple equilibrium. 

Theorem 1. Suppose that q < n, and let S be a simple solution. There exists (0, 1) 

such that the following is true whenever minjEN j ¯ : There exists a pure-strategy no-

delay SMPE whose set of absorbing points is S. 

The proof of this theorem, like those of all other theorems in the paper, is provided 

in the Appendix. Theorem 1 has several interesting implications: 

Multiplicity of SMPE payoffs. We noted above that any policy (say, z) which assigns 

a positive share to q or more players is part of a simple solution. Theorem 1 therefore 

implies that z is an absorbing point of an SMPE of any game with q < n and patient 

enough players. In that SMPE, player 1 proposes z which is accepted by all members 

of coalition C1 = {1,. . . , q} E W, and never amended. 

This argument does not apply to policies which assign a positive share to fewer than q 

players (including the initial default), and can therefore not be part of a simple solution. 

Policies which assign a zero share to some winning coalition cannot be absorbing points of 

an SMPE because every member of such a coalition could profitably deviate as a proposer.'
8 

Minimal winning coalitions. The Baron-Ferejohn model predicts that only minimal 

winning coalitions share the pie in any stationary SPE. Theorem 1 immediately implies 

that this property, often referred to as the size principle, may fail in our model with an 

evolving default: As mentioned earlier, policies in a simple solution may all assign a 

positive share to a supraminimal coalition. 

Waste. Another important implication of Theorem 1 is that endogeneity of the default 

may create substantial (static) inefficiencies in equilibrium. For any (0, 1), let XE 

be the set of policies such that the committee "wastes" more than 1 − : XE {x E X : 

∑ jEN xj }. It is easy to find simple solutions that are subsets of XE. For instance, 

take the simple solution induced by (C, x, y) where, for each i E N, xj = 2q, 

'8As Kalandrakis (2004, 2010) demonstrates, such policies could nevertheless be part of an ergodic set. 
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yj = 0, and Cj is the coalition that includes i and the next q − 1 players following the order 

1, 2, . . . , n − 1, n, 1, 2, . . . , q − 1. Theorem 1 implies that any nonunanimity game with 

patient enough players has a pure-strategy no-delay SMPE whose absorbing points all 

belong to XE: the committee wastes at least 1 − S in every period along the equilibrium 

path. This again stands in sharp contrast to the stationary SPEs of the Baron-Ferejohn 

model, in which waste never occurs. 

Agreements may in fact be even worse relative to the initial default than our presen-

tation has hitherto suggested. Specifically, the proof of Theorem 1 does not rely on our 

supposition that x° 
= (0,. . . , 0); so we can construct simple equilibria in which every ab-

sorbing policy is strictly Pareto-dominated by the initial default (by appropriately selecting 

x°
).

19 

Theorem 1 also implies that there are SMPEs in which statically inefficient policies 

are retained indefinitely. This property is empirically interesting: for example, Brainard 

and Verdier (1997) describe persistent protection as "one of the central stylized facts 

in trade" (p222). Theorem 1 therefore contributes to the literature on policy 

persistence, without requiring (as in Coate and Morris (1999) and Acemoglu and 

Robinson (2008)) that players can unilaterally invest in sustaining policies. 

Pork barrel politics. We have noted that SMPE agreements may waste some of the pie 

and that the size principle may fail. Theorem 1 says that both properties can hold in the 

same equilibrium. According to Schattschneider (1935), this combination of properties 

characterized US trade policy before 1934. Indeed, Baron (1991) claims that legislation 

on distributive issues often exhibits this combination.
20 

He also argues that models of ad 

hoc committees can explain pork, but not violations of the size principle. By contrast, 

Theorem 1 implies that equilibrium agreements in a standing committee may satisfy 

both properties without appealing to a norm of universalism. 

We record the observations above as 

Corollary 1. Suppose that q < n. For each of the following statements, there exists ¯ 

E (0, 1) such that this statement is true whenever minjEN j ¯ : 

'9This property is stronger than a related result in Bernheim et al's (2006) and Anesi and Seidmann's 

(2014) models of bargaining with an evolving default: that the equilibrium agreement is worse than x0 for 

some winning coalition. 
20Evans (2004) documents the failure of the size principle, and argues that Congress may often pass 

inefficient public good projects. 
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(i) There exist multiple pure-strategy no-delay SMPEs; 

(ii) Any policy which assigns a positive share to q or more players is an absorbing point 

in some pure-strategy no-delay SMPE; 

(iii) There are SMPEs which fail the size principle; 

(iv) For every s E (0,1), there is a pure-strategy SMPE a such that PU (x,XE) = 1 for all x 

E X; 

(v) There are no-delay SMPEs in which the agreement wastes some of the pie and fails 

the size principle. 

4.4 Pareto Efficiency  

Corollary 1(ii) implies that some simple equilibria are statically efficient. If players have a 

common discount factor and are risk neutral then these equilibria are also Pareto efficient; but 

wasting some of the pie is not the only possible kind of inefficiency in dynamic models when 

discount factors are heterogeneous. 

It is possible to construct Pareto efficient SPEs. Indeed, we can construct SPEs in 

which some player earns the entire pie every period (irrespective of the identity of the 

proposer) if players are patient enough. However, these SPEs which are trivially Pareto  

efficient rely on player-specific punishments: any player who proposes another policy is 

"punished" with an indefinite zero allocation. Other players reject such proposals because 

they then always share the pie. These punishments are excluded in a DE (cf. Section 3.2). 

Our main result in this subsection also states that if all players have linear preferences (ui 

(xi) = xi) and discount factors are strictly heterogeneous then all DEs are Pareto inefficient. 

(Players have linear preferences in Baron and Ferejohn (1989), and much of the ensuing 

literature.) 

Theorem 2. Let q < n. 

(i) If ui (xi) = xi for all i E N and i = ̸ j for all i, j E N then all DEs are Pareto 

inefficient. 

(ii) There exists ˜ E (0, 1) such that the following is true whenever miniEN i > ˜ : Any 

(Pareto efficient) policy sequence that allocates the entire pie to the same player in every period 

can be supported by an SPE. 

Lemma 1 implies that, with linear utilities, any Pareto efficient policy sequence must 

eventually assign the pie to a single player with probability one. By definition, this is impossible 

in a simple equilibrium: every player earns a positive share of the pie with 
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positive probability. More generally, suppose that a DE a prescribes that one player, say i, 

always earns the entire pie for sure after some history h. The proof of Theorem 2 

establishes that another player could profitably deviate if selected as proposer after h by 

successfully proposing a more equitable division of the current pie. The nonunanimity 

quota guarantees that this cannot be prevented by player i. Hence, a DE cannot be Pareto 

efficient. 

A few remarks are in order concerning Theorem 2. First, it does not assert that every DE 

is ex post Pareto inefficient. Indeed, such a claim would be false: We can construct a DE a 

at which each period's realized proposer earns the entire pie when players are sufficiently 

patient. (This construction relies on Corollary 1(iv): any deviation from the prescribed path is 

punished by using a simple equilibrium in which every player's continuation value 

is smaller than some small > 0 details of the construction are provided in Section B 

of the Supplementary Appendix.) There are realizations of the stochastic policy sequence 

engendered by a i.e. those corresponding to cases where the same player is selected to 

propose in every period which allocate the entire pie to the same player in every period. 

These realizations are Pareto efficient and, therefore, a is ex post Pareto efficient. 

Second, Theorem 2(i) relies on Lemma 1, whose premise requires that all utilities are 

linear. If some player were risk averse then DEs which generate stochastic policy sequences 

would obviously be Pareto inefficient; but we can construct a no-delay, deterministic DE in 

which the first proposer offers 1/n to every player, all of whom are risk averse and have 

different, but large enough discount factors.
2
' This equilibrium is inefficient because no 

player would earn 0 infinitely often (see footnote 15). In sum, generalization of Theorem 2 to 

nonlinear utilities remains an open question. 

Third, in contrast to Theorem 1, the premise of Theorem 2(i) does not require that 

players be patient enough. It only requires strict heterogeneity. It is easy to confirm 

that the argument works as long as enough players have different discount factors. 

Fourth, our construction of the efficient SPE extends Shaked's example (cf. Sutton 

(1986)) to games with an endogenous default, a nonunanimity quota, and a random proto-

col. It depends on the initial default assigning no share to either all or all but one player, 

else another player who starts with a positive share could profitably deviate by passing 

when selected to propose at the null history. Extending the construction to arbitrary initial 

defaults would require strategy profiles to support Pareto efficient policy sequences which 

21The logic behind the construction is analogous to that described in the previous paragraph: play reverts 

to a simple SMPE which wastes enough of the pie once the default is off the equilibrium path. 
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do not allocate the entire pie to the same player in every period. As we noted above, 

the characterization of Pareto efficient policy sequences in the infinitely repeated pie 

division problem is an open question. 

5 Unanimity Committees 

This section examines equilibria of standing committee games in which agreement 

requires unanimous consent: that is, q = n. 

5.1 Preliminary Example 

As in the previous section, we begin with a simple example that will provide some 

intuition for the general results that follow. 

Example 1 Continued. Consider a variant on Example 1 (of Section 4.2) in which the 

default can only be changed if all three players accept a proposal: that is, q = n = 3. 

The other primitives of the example remain the same: pi = 1/3, i = and ui(x) = xi for 

all i E N. We will construct a no-delay equilibrium a in which, at any default x E X, the 

selected proposer (say i) successfully offers the committee a policy x + si(x) E ∆n−1. 

We can think of proposer i offering to share the amount of pie not distributed yet i.e. 

1 − (x1 + x2 + x3) with the other players, with si 
j(x) being the (extra) share offered by 

proposer i to player j.22 
In such a situation, proposer i's optimal offer to player j, xj+si 

j(x), 

must leave the latter indifferent between accepting and rejecting. If j rejected i's offer, she 

would receive her payoff from the ongoing default in the current period, (1 − )xj, and 

would then receive offer xj + sk j (x) from each proposer k = 1,2,3 with probability 1/3 in 

the next period. The following condition must therefore hold: 

[ 

xj + s1 j(x) + s2 
j(x) + s3 

j(x) 
xj + si 

j(x) = (1 − )xj +  
3 

or, equivalently 
[s1 

si j(x) = j(x) + s2 
j(x) + s3 

j(x)] (1) 
3  

22Hence, all proposers pass when the ongoing default is already in the unit simplex: si(x) = (0, 0, 0) 

for all i = 1, 2, 3 whenever x E ∆2. 
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for each i and j ≠ i. Given the shares of the pie offered to the other committee 

members, proposer i receives the residual: 

∑xi + si 
i(x) = 1 _ [xj + si 

j(x)] . (2) 

j ̸=i 

Combining (1) and (2), we obtain the policy x+si(x) (absorbing point) successfully offered 

by each player i at any default x E X: 

  
∑3 

xi + si 
i(x) = xi + 3 _ 2 1 _ xj , 

3 j=1 

  
∑3 

xj + si 
j(x) = xj + 1 _ xj , Vj = ̸ i . 

3 

In particular, each player expects to 
earn 1/3 in the game itself: V (x0) = 1/3. 

i 

 

Its simplicity notwithstanding, there are two noteworthy features of this example. First, 

the set of absorbing points of the no-delay SMPE a coincides with the unit simplex: xj + si 

j(x) E ∆2 for all x E X and all i,j E N. Second, the SMPE payoffs coincide with those of the 

analogous Baron-Ferejohn model with a unanimity quota. As the rest of this section will 

demonstrate, these properties do not rely on our parametric assumptions. 

5.2 Positive Results  

Our first result generalizes some properties of Example 1 above to all DEs. These 

properties will be the key to proving the uniqueness of SMPE payoffs in Theorem 4(ii) 

and the inefficiency result of Theorem 5. 

Theorem 3. If q = n then every DE a is no-delay with A(a) = ∆n−1. 

Thus, under unanimity rule, a standing committee selects an absorbing point in the 

simplex immediately at any ongoing default. In contrast to nonunanimity committees, 

therefore, waste never occurs in a DE of unanimity committee games. In other words, the 

unanimity game has and only has no-delay, statically efficient DEs. 

Unanimity voting implies that continuation values in a DE satisfy a "temporal-monotonicity" 

property, which provides the key to understanding the intuition behind Theorem 3. Unanimity 

rule gives every player the power to prevent any amendment of the default. Therefore, in 

equilibrium, any player's continuation value of implementing a new policy must be 

23 

j = 1  



at least as great as her utility from the current default otherwise she could profitably 

deviate to a strategy that prevents any amendment of the default in all future periods. This 

implies that, as bargaining goes on, all players' continuation values are nondecreasing. This 

allows us to exploit Hyndman and Ray (2007) Proposition 1, which implies (in our model) 

that the equilibrium default converges almost surely. The monotonicity of continuation 

values thus implies the no-delay property: players will not wait for several periods to get 

their limit payoffs. Moreover, if the limit allocation were not statistically efficient, then any 

proposer could profitably deviate by offering a policy that makes all players strictly better off 

the monotonicity property of continuation values ensures that none of them would lose out 

in the future. Hence, absorbing policies must be in the unit simplex. In addition, all policies 

in the unit simplex must be absorbing: any amendment of a statically efficient default must 

make some players worse off in the current period, and temporal monotonicity of 

continuation values implies that the other players will never compensate them for their 

current losses. Hence, it is impossible to amend a policy in ∆n−1. 

Our next result asserts existence of a pure strategy no-delay SMPE in which resources 

are never wasted. The premise of Theorem 4 differs from the premise of Theorem 1 (our 

analogous result for q < n) in two important respects. First, we no longer require that 

players be patient enough. Indeed, unlike nonunanimity games (recall Observation 1), a 

no-delay equilibrium exists in unanimity games even when discount factors are small. 

Second, Theorem 4 asserts that the policies reached from any default (including the initial 

default) are statically efficient. The latter property also holds in the standard Baron-

Ferejohn model with a unanimity quota (Banks and Duggan (2000, 2006)). The second 

part of the theorem strengthens the analogy between equilibrium play in our game and in 

Baron and Ferejohn (1989). 

Theorem 4. If q = n then: (i) a pure strategy no-delay SMPE exists; and (ii) SMPE 

payoffs are unique, and coincide with the stationary SPE payoffs of the Baron-Ferejohn 

model. 

We prove Theorem 4(i) using a construction which generalizes that employed in Ex-

ample 1 above: A fixed point argument is used to show that there are proposals for each 

player which move the default into the simplex and make every respondent indifferent be-

tween accepting and rejecting, given that defaults in the simplex would not be amended; 

and that no player can profitably deviate from proposing such policies or accepting such 

an offer. 
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The proof of Theorem 4(ii) stems from Theorem 3, which establishes the no-delay prop-

erty of DEs and, therefore, of SMPEs. This property implies that the strategic incentives at 

work in SMPEs of the standing committee game resemble those in stationary SPEs of the 

Baron-Ferejohn model, where the selected proposer makes a successful proposal (thus 

ending the game) in every subgame. This allows us to show that, for every SMPE a of the 

standing committee game, one can construct a stationary SPE of the Baron-Ferejohn 

model that generates the same payoffs as a in the standing committee game. Uniqueness 

of SMPE payoffs then follows from the following observation.
23 

Observation 2. If q = n then the Baron-Ferejohn model has a unique stationary SPE. 

The uniqueness results of Merlo and Wilson (1995) and Eraslan (2002) could be 

applied to our setting under additional restrictions on the utility functions; but 

Observation 2 only relies on concavity and differentiability. 

In the Introduction, we asked how play in standing and ad hoc committees differs. 

Our results in the last section entail a significant contrast across stationary equilibrium 

outcomes in the two games when q < n. Theorem 4(ii) implies that this contrast does not 

carry over to games with a unanimity quota. 

5.3 Pareto efficiency 

If q < n and players are patient enough then there is a Pareto efficient SPE in which 

the same player earns the entire pie each period (cf. Section 4.4). If q = n then such an 

SPE exists irrespective of players' patience. The construction again relies on player-

specific punishments; so we turn to DEs which preclude such punishments. 

Theorem 2 states that every DE of a nonunanimity game with linear preferences is 

Pareto inefficient if discount factors are strictly heterogeneous. Pareto efficiency then 

requires that some player eventually gets the entire pie: which is impossible in 

equilibrium; but a DE could be ex post Pareto efficient. In addition, Corollary 1(ii) states 

that there are no-delay, statically inefficient equilibria. If q = n then waste is impossible in 

any DE (by Theorem 3). However, we have an even stronger inefficiency result: 

Theorem 5. Suppose that q = n. 

(i) If i = ̸ j for some i, j E N then every DE is ex post Pareto inefficient.  

23We are grateful to Sergiu Hart for suggesting the simple proof provided at the end of the Appendix. 
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(ii) Any (Pareto efficient) policy sequence that allocates the entire pie to the same 

player in every period can be supported by an SPE. 

Note that parts (i) and (ii) respectively refer to DEs and to SPEs. 

In contrast to Theorem 2(i), the premise of Theorem 5(i) does not require linear pref-

erences, and weakens strict heterogeneity to heterogeneity. We obtain this stronger result 

because the DEs of a unanimity game are no-delay (Theorem 3), which is not necessarily 

the case in nonunanimity games. No-delay is useful for two reasons: 

First, the no-delay property allows us to show that, on a DE path, all players receive a 

positive share of the pie each period (see Lemma 5 in the proof of Theorem 5(i)). To see 

why, suppose instead that on some DE path a player, say i, receives a zero share of the 

pie in some period. By the no-delay property (and unanimity rule), this implies that i 

accepts a zero share in the first period and, consequently, a total payoff of ui(0) (i.e. her 

lowest possible payoff). If player i instead rejected that proposal, thus deviating from the 

equilibrium path, then the period-2 default would still be x
0
 = (0,.. . , 0). Lemma 5 proves 

that this deviation is profitable: conditional on being selected to propose in period 2, 

player i could propose a policy allocating a positive share of the pie to all players 

(including herself), which all players would prefer to accept rather than to have to wait 

until the next period to obtain a positive share of the pie. Thus, x i E (0, 1) for all i E N and 

all t E N; so that transfers among players and across periods are always feasible from a 

given DE policy sequence. 

Second, the no-delay property allows us to prove inefficiency by constructing a Pareto-

improving policy sequence. Consider a DE policy sequence and two players with different 

discount factors. By the no-delay property, their shares of the pie remain constant over 

time. The feasibility of transfers implies that we can make the two players better off (and 

leave the others indifferent) by operating a transfer from the more to the less patient 

player in some period t, and a transfer in the opposite direction in period t + 1. 

Theorem 5(ii) extends Shaked's example (cf. Sutton (1986)) to games with an endogenous 

default (and a random protocol). We prove it by constructing an SPE in which any proposal 

to deviate from the policy sequence that allocates the entire pie to the same player is 

unanimously rejected. If it is not then (off the path) the equilibrium prescribes that players 

who rejected the proposal be "rewarded" with strictly positive future payoffs (i.e. one of them 

is randomly selected to receive then entire pie in all future periods), and that those who 

accepted it be "punished" with zero future payoffs. Therefore, independently 
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of her discount factor, each player strictly prefers to reject a proposal to deviate from 

the equilibrium path, even though she is not pivotal: this has no impact on her payoff 

in the current period, but yields her a strictly larger future payoff than accepting. 

Rejecting is thus a stage-undominated action. 

The results in this subsection imply that Pareto efficiency requires player-specific 

punishments. By contrast, Pareto inefficiency requires player-specific punishments in 

conventional models of an ad hoc committee: see, for example, Sutton (1986). 

6 The Effects of an Endogenous Default 

The analysis in the previous sections has revealed important differences between our stand-

ing committee game and Baron and Ferejohn's (1989) static game with an ad hoc com-

mittee. The comparison is directly relevant to committees like the Supreme Court, whose 

application of the stare decisis rule determines whether a decision can be amended. If the 

rule is strictly applied then the first decision establishes a precedent: the Court can then not 

revisit a case it has already decided (as in Baron-Ferejohn). By contrast, previous decisions 

only govern lower court rulings until amended if stare decisis is inoperative.
24

 

In this section, we compare equilibrium outcomes in our dynamic model with 

dynamic variants of the Baron-Ferejohn model in which a committee decides on the 

policy implemented in an infinite sequence of periods. (We will return to the Supreme 

Court example in the next section.) We focus on two such models: 

 Ad hoc committee with commitment ability. In this variant, the game ends once the 

committee has agreed to a single "policy"; but in contrast to the standard Baron-

Ferejohn model, a policy specifies the way in which a sequence of pies will be divided. 

 Standing committee with an exogenous default. In this variant, the committee negotiates 

over division of a single pie each period. Once an agreement is reached, players earn utility 

from their share of the pie, and the committee starts to negotiate division of another pie. The 

initial default for the new negotiations is exogenously fixed as the n-vector (0, ..., 0). 

24The two models naturally capture other aspects of the Court: justices bargain before voting on each 

case. Furthermore, life tenure stabilizes membership of the Court, with the (arguable) consequence 

that justices are relatively patient. 
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Stationary equilibria of both models clearly share a couple of properties with Baron and 

Ferejohn's (1989) static model: Each pie is shared by a minimal winning coalition of players; 

and each pie is fully shared there is no waste. The argument for standing committees 

with an exogenous default corresponds to that used to derive equilibria in the conventional 

Baron-Ferejohn model: for stationarity precludes conditioning the current division on the 

history up to the current period.
25

 Conventional arguments also entail these properties for 

an ad hoc committee with commitment ability, where the same coalition shares the pie in 

every period. However, the sequence of policies agreed by the two committees in equilibrium 

differ when discount factors are heterogeneous. In particular, an ad hoc committee with 

commitment ability must agree to a Pareto-efficient sequence of policies, as any proposer is 

a residual claimant of every pie. 

These observations can serve as benchmarks with which to compare the results of the 

previous sections. Some notable differences can be observed: 

(i) Substantial shares of the pie can be indefinitely wasted and the size principle may 

fail in nonunanimity standing committees with an endogenous default, whereas waste never 

occurs and only minimal winning coalitions form in both dynamic variants on the Baron-

Ferejohn model. Thus, while these models cannot explain either statically inefficient policies 

or violations of the size principle, agreements in a standing committee with an endogenous 

default may possess both properties. Interestingly, default endogeneity does not generate 

waste when the quota is unanimity. 

(ii) Equilibrium play in the standing committee game is Pareto inefficient when dis-

count factors are strictly heterogeneous and preferences are linear. Theorem 2 also applies 

to standing committees with an exogenous default, as stationarity requires repetition of the 

same expected payoff. As mentioned above, however, ad hoc committees with commitment 

ability reach Pareto-efficient agreements in every equilibrium. The key difference from our 

model is that an ad hoc committee with commitment ability cannot renegotiate an 

agreement. Viewed in this light, our model demonstrates that equilibrium play in a 

standing committee with an endogenous default is inefficient with generic discount factors 

because players cannot commit not to renegotiate the existing agreement. 

25Indeed, all stationary SPEs are no-delay and payoffs are unique. 
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7 Concluding Remarks 

This paper has identified a class of pure strategy (stationary Markov perfect) equilibria for 

pie-division bargaining games with an endogenous default, nonunanimity committees and 

patient enough players, which supplements existing constructions. This has allowed us to 

provide a number of predictions about decision making in standing committees, and to 

identify important implications of an endogenous default. The identified equilibria of the 

standing committee game have a no-delay property: the first policy proposal is accepted 

and remains in place in all future periods. In addition, our analysis has revealed that, 

unless committee members use history-dependent strategies based on player-specific 

punishments, heterogeneous discount factors cause Pareto inefficient policymaking. Dif-

ferences in committee members' inherent time preferences may not be the only source of 

such heterogeneity. For example, if members of the committee are district representatives 

(like Senators) then their time preferences may be affected by institutional features (like 

the probability of re-election), which vary across districts. 

Banks and Duggan (2000, 2006) have generalized the standard model of bargaining in 

ad hoc committees to include any convex set of policies as well as purely distributional 

policies, and established existence of a (mixed-strategy) stationary SPE. Before 

concluding, we discuss a similar extension of our model of bargaining in standing 

committees to more general policy spaces. 

Our positive results for nonunanimity games relied on the existence of simple 

solutions. Though the definition of a simple solution needs to be extended to this more 

general setting, the logic behind this extension remains the same as for Definition 1. Each 

player i can be in two possible states: a "good state," in which she has a high utility u , or 

a "bad state," in which she has a low utility v . Each proposer i selects a policy xCi 
which 

gives all members of winning coalition C their high utility, and gives the other players 

their low utility. Put differently, each proposer i selects the coalition C of players who will 

be in a good state. 

Figure 1 provides an example in the standard spatial model: n = 3; q = 2; X is a 

nonempty, compact and convex subset of R
2
; and u (x) = − ∥x − ˆx ∥ for all x E X and all i E 

N, where ˆx E X stands for the ideal policy of player i. Baron and Herron (2003) use 

computational methods to study this setting in a finite-horizon version of our standing 

committee game. Given their results, Baron and Herron conjecture that proposals are 

always statically efficient in the infinite horizon case; and that proposals are closer to the 
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Figure 1: Simple Solution in the Spatial Model 

centroid of the shaded triangle in Figure 1, the more patient are players, and the longer 

is the horizon. The example in Figure 1 disproves their conjecture: The set of policies S 

= {x
C1,x

C2,x
C3} in Figure 1 constitutes a simple solution and, therefore, the set of 

absorbing points of some pure-strategy no-delay SMPE whenever players are sufficiently 

patient. (The arguments used to prove Theorem 1 still apply.) This equilibrium is both 

statically and Pareto inefficient: all the policies in S lie outside the static Pareto set (the 

grey triangle in Figure 1) and all players would be strictly better off if the expected policy 

∑ i pix
C 
were agreed immediately and never amended. This is in accord with our findings 

for the distributive setting. 

These remarks suggest that our results may be applicable to committees like the 

Supreme Court, whose policy space is (arguably) more naturally thought of as spatial than 

as divisions of a pie. The literature on precedent in constitutional law has considered how 

stare decisis affects the trade-off between predictability of the law and the risk of error:
26 

stare decisis forces predictability; and the literature supposes that a divided Court would 

otherwise regularly overturn precedent.
27 

We have argued above that a Court which 

26Relevant papers include Schauer (1987), Stone (1988), Waldron (2012) and Kozel (forthcoming). 27The 

literature has typically treated the Court as a unitary body. However, Barrett (2013) considers how 



operates according to strict stare decisis is equivalent to a Baron-Ferejohn ad hoc commit-

tee, whereas our model represents a Court which does not recognize precedent; and have 

suggested that the justices are typically patient. Our results then provide two contributions 

to the literature. First, our construction of no-delay SMPEs when players are patient 

suggests that the law may well be stable, even if precedent is not recognized.
28

 Second, our 

comparison of Baron-Ferejohn with our model suggests that stare decisis may prevent the 

Court from reaching (statically) inefficient decisions. 

Having discussed how simple solutions may exist with different policy spaces, we should 

also note that simple solutions need not exist (and indeed cannot exist in unanimity-rule 

committees). Pie-splitting problems possess a main simple solution; but this is only known to 

exist for strong simple symmetric games in characteristic function form with transferable 

utility, and remains an open question for more general simple games.
29

 Indeed, no simple 

solution can exist when X is a compact interval on the real line, as the median voter cannot 

be excluded from any winning coalition. If players are patient enough then both ad hoc and 

standing committees reach policies close to the median voter's ideal policy in no-delay 

equilibria (cf. Baron (1996) and Banks and Duggan (2006)). 

We now turn to unanimity games. We showed in Section 5 that, in distributive settings, 

the same equilibrium payoffs can be obtained in our model as in models of standing 

committees with an exogenous default. The proof of this result (i.e. Theorem 4(ii)) pro-

ceeds in two steps: the first step shows that any SMPE payoff of the endogenous-default 

model is a stationary SPE payoff of the fixed-default model; the second uses the unique-

ness result of Observation 2 to show that these payoffs must coincide. Inspection of the 

first step reveals that it does not rely on the restriction to pie-division problems. Hence, 

when q = n, the equilibrium payoffs of the extended standing committee game are also 

stationary SPE payoffs of the related ad hoc committee game. However, we do not know 

whether the two sets of payoffs coincide. In particular, Observation 2 relies on pie division 

and can therefore not be directly applied to spatial settings. 

stare decisis affects play by individual justices with different constitutional viewpoints (or, equivalently, 

preferences). She focuses on bargaining once a precedent has been set; whereas we consider how stare 

decisis determines which precedent would be set. 
28This prediction is surely plausible: the Court rarely overturns precedent in areas (like constitutional  

law) where stare decisis has less force. See Gerhardt (2008) Ch. 1 for a discussion of the evidence. 
29We refer the reader to Ordeshook (1986, Chapter 9) for an in-depth discussion. 
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Appendix: Proofs of the Main Results 

Lemma 1. Suppose that ui (xi) = xi for all i E N. In any Pareto efficient policy 

sequence, the following is true for any i,j E N such that j < i: If player i's expected 

share of the pie in some period t is positive then player j's expected shares in all 

periods T > t are zero. 

Proof: Take any Pareto efficient policy sequence and let ut l denote player l's 

expected period-t utility in this sequence. 

Take any two players i,j E N with j < i. Suppose that, contrary to the statement of 

the lemma, ut i > 0 and that u > 0 for some T > t. This implies that there is a feasible 

marginal utility transfer dut j > 0 from player i to player j in period t, and a feasible 

marginal utility transfer du > 0 from player j to player i in period T. In particular, 

consider transfers that would leave player j indifferent; that is: dut j − _t 

j du = 0. The 
resulting change in player i's payoff would therefore be equal to 

( ) −du t  j  + _ t  i  du  j  =  −  _ t  j  d u  j  +  _ t  

i  du  _t  
j  =  i  −  _ t d u >  0  

j 

(where the inequality follows from i > j and du > 0). Thus, our initial supposition that 

ut i > 0 and that u > 0 for some j < i and some T > t implies that the vector of payoffs 

generated by the policy sequence is Pareto dominated (one can make player i strictly 

better-off without making the other players worse off). This is impossible since the 

policy sequence is by supposition Pareto efficient. 

Theorem 1. Suppose that q < n, and let S be a simple solution. There exists E (0, 1) 

such that the following is true whenever miniEN i ¯ : There exists a pure-strategy no-

delay SMPE whose set of absorbing points is S. 

Proof: Let {C1,. . . , Cn} c W and (x1,. . . , xn) , (y1,... , yn) E [0, 1]n 
satisfy the condi-

tions in Definition 1, and let S {xCi} be the simple solution induced by ({Ci}iEN ,x,y). To 

establish Theorem 1, we proceed in three steps: first, we define threshold ¯ E (0, 1); 

second, we construct a stationary Markov pure-strategy profile a; and third, we prove 

that a is a no-delay, stage-undominated SPE such that A(a) = S. In this last step, 

Claims 1 and 2 determine the continuation-value functions induced by a (the V  
i 's), and show 
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that is a no-delay strategy profile with absorbing set S. Using the continuation-value 

functions, Claim 3 shows that, in every voting stage, no player uses a weakly dominated 

strategy. Finally, Claim 4 proves that there is no profitab le one-shot deviation from in 

the proposal stage of any period. By the one-shot deviation principle, Claims 3 and 4 

establish that is a stage-undominated SPE, thus completing the proof of the theorem.  

Step 1: Definition of ¯ . Let pmin
 be the minimal probability of recognition among the 

members of the committee: pmin miniEN pi. For each player i E N, define the threshold 

¯
i as 

{¯
i max 

} 
ui(1) − ui (xi) ui (yi) − ui(0) 

ui(1) − pminui (yi) − (1 − pmin) ui (xi), E (0, 1) . 
pminui (xi) + (1 − pmin) ui (yi) − ui(0) 

 

The threshold is defined as max i E N i .  

We henceforth assume that miniEN i > ¯ . 

Step 2: Construction of stationary Markov strategy profile = ( 1 n) . For each 

i E N , define the function ϕ i : X -+ S as follows: (1) if w E S then ϕ i(w) = w; (2) if 

w E/ S then ϕi(w) (ϕi
1(w), . . . , ϕi

n(w)) where ϕi
j(w) = xCi 

j  for all  j E N .  

Equipped with functions (ϕi)iEN, we are now in a position to define . For each i E N, i 

prescribes the following behavior to player i: 

(a) In the proposal stage of any period t with ongoing default w, i's proposal (conditional on i 

being selected to make a proposal) is ϕi(w);3°
 

(b) In the voting stage of any period t with ongoing default w, player i accepts proposal z E X \ 

{w} if and only if: either (a) w E S and wi = yi; or (b) w E/ S and 
 

∑ ( ) ∑ 
(1 − i) ui (zi) + i pjui ϕj i (z) > (1 − i) ui (wi) + i 

( ) 
pjui ϕj i (w) . 

jEN jEN 

Observe that is a pure strategy stationary Markov strategy profile.  

Step 3:  Proof that is  a no-delay,  s tage-undominated SPE such that  A( ) = S .  

We proceed in  a  number of  s teps:  

Claim 1: The collection of functions (ϕi)iEN satisfies the following inequality for all i E N and w 

E/ S: 
 

∑ 
(1 − i) ui (wi) + i 

( ) 
pjui ϕj i (w) G ui (xi) . 

j E N  

3 °Recall that proposing the default w is interpreted as passing.  
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Proof: Consider any player and any policy . By definition of the ϕj's, we 

have 

(1 − i) ui (wi) + i  Ep ju i  (ϕ
j
i(w)) = (1 − i) ui  (wi) + i[ui (xi) E pj  + ui  (yi) E 

pj   
jEN j:iECi j:i/ECi 

 (1− i) ui(1) + i [(1 − pmin) ui (xi) + pmin
ui 

(yi)]  ui (xi) 

where the last inequali ty follows from i  i .  

Claim 2: (a) According to , in every period that starts with default , each 

proposer j (if selected to make a proposal) successfully offers ϕj(w) , which is 

never amended; is no-delay with A( ) = S. 

(b) For all and , 

 

V (w) = (1 − i)ui (wi) + iE 
( ) 
pjui ϕ

j
i (w) . (3) 

j E N  

Proof: (a) Consider a period that starts with default . Each player is 

selected to make a proposal with probability pj. From the definition of proposal strategies, 

she proposes z = ϕj(w). As the range of ϕj is equal to S, this implies that . From part 

(1) in the definition of ϕ
i
, we thus have ϕ

i(z) = z for all : proposal strategies 

prescribe all proposers to pass when the default is z. Hence, proposer j's offer, z, would be 

implemented in all future periods if it were voted up. Given that the default w does not 

belong to S, proposal z is voted up if there is a winning coalition of players i for which 

 
∑ ( ) ∑ 

(1 − i) ui (zi) + i pjui ϕj i (z) (1 − i) ui (wi) + i 
( ) 
pjui ϕj i (w) 

jEN jEN 

(see part (b) in the definition of voting strategies). To see that this is the case, consider the  
• 

winning coalition Cj: By definition of ϕj and x
C

i, we have ϕ
j
i(z) = zi = ϕj

i(w) = xc
3 = xi 

for each j  (where the first equality follows from and the third from 
S). 

( ) 
We therefore have ui (zi) = ui ϕj i (z) = ui (xi); so that 

 
∑ ( ) ∑ 

(1 − i) ui (zi) + i pjui ϕj i (z) = (1 − i) ui (xi) + i pjui (xi) 
jEN jEN 
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∑ = ui (xi) (1 − i)ui (wi) + i 

jEN 

( ) 
pjui ϕj i (w) 



(where the inequality is obtained from Claim 1). Thus, each player i in Cj  votes to 

accept z, which is then implemented (and never amended since ). 

This also shows that P (w, S) = 1 for all . As prescribes all proposers to 

pass at a default w in S, we also have P (w, S) = 1 for all . This proves part (a) 

of the claim. 

(b) Firs t suppose that is implemented in the current period. Every player  

receives i) u i  (w i) in the current period and, from the discussion above, 
her 

( ) 
continuation value from the next period on will be ∑j N pjui ϕj i (w) . This proves that equality (3) 
holds when . 

Now suppose that is implemented. From the definition of proposal strategies, 

all proposers pass in future periods — i.e. wi = ϕ
j
 i(w) for all — so that i 's 

continuation value is ui  (wi). This implies that 
 

(w) = ui (wi i)ui (wi iE 
( ) 

pjui ϕj i (w) , 
j E N  

fulfilling (3). 

Claim 3: Given default w and proposal z,  each voter accepts only if V  
i   

V  i  (w),  and rejects only if V i   
i  (z) .  

Proof: If then this claim is an immediate consequence of Claim 2 and the  

definition of voting strategies (part (b)).  

Suppose tha t   —  so  V i (w)  = u i  (w i ) .  We must  p rove  tha t  par t  (a )  in  

the  

definition of voting strategies prescribes i to accept only if V i i (w), and to 

reject 

only if V  
i  i (z). To do so, we distinguish between two different cases:  

  Case 1: .  In this case, V  
i  (z) = u i  (z i i  (x i) , u i  (y i)} .  According to , if i 

accepts then wi  = y i. Hence, V  
i  (w) = u i  (y i) = min {u i  (x i) , u i  (y i i (z). If i rejects 

then w i  = x i  and V  
i  (w) = u i  (x i) = max {u i  (x i) , u i  (y i i (z).  

  Case 2:  S . According to , if i accepts then w i  = y i .  As i   

i ( w )  =  u i  ( y i i )  u i i  [ p
m i n

u i  ( x i )  +  ( 1  −  p m i n )  u i  ( y i ) ]  
∑ 

i) ui (zi i 
( ) 

pjui ϕj i (w) = V  
i (z) . j E N  

If i rejects then w i  = x i  (see part (a) in the definition of voting strategies); so that  

( w )  =  u i  ( w i )  =  u i  ( x i ) .  M o r e o v e r ,  C l a i m  2  i m p l i e s  t h a t  
 

V  

V  
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Vi i) ui (zi i E 
( ) 

pjui ϕj i (z) . 
j E N  



As z E/ S, Claim 1 then implies that 

Vi
a(w) = ui (xi) > (1 − Si) ui (zi) + Si E 

jEN 

( ) 

pjui ϕj i (z) = V a 
i (z) ,  

thus completing the proof of Claim 3.  

Claim 4: There is no profitable one-shot deviation from a in the proposal stage of any 

period. 

Proof: Suppose, first, that the current default w is an element of S. Passing is evidently 

an optimal action for the selected proposer, for part (a) in the definition of voting strategies 

implies that members of some winning coalition — i.e. those voters j who receive wj = xj  

would reject any proposal in X. 

Now suppose that w E/ S. If proposer i followed the prescription of ai then her proposal 

ϕi(w) would be accepted (Claim 2) and her payoff would be ui (xi) (which is the highest 

payoff she can obtain by making a successful proposal in S). Therefore, if she is to profitably 

deviate, then she must either make an unsuccessful proposal — thus obtaining payoff Vi
a (w)  

or successfully propose some z E/ S — thus obtaining Vi
a (z). As w and z do not belong to S, 

Claims 1 and 2 imply that max {Vi
a (w), Vi

a (z)} < ui(x). This proves that no proposer has a 

profitable one-shot deviation from a. 

Combining Claims 1-4, we obtain Theorem 1. 

 

Theorem 2.  Let  q < n .  

(i) If ui (xi) = xi for all i E N and Si = ̸ Sj for all i, j E N then all DEs are Pareto 

inefficient. 

(ii) There exists ˜ E (0, 1) such that the following is true whenever miniEN Si > ˜ Any (Pareto 

efficient) policy sequence that allocates the entire pie to the same player in every period can be 

supported by an SPE. 

Proof :  

( i )  Pareto  inef f ic iency of  DEs in  the l inear -ut i l i ty case  

We assume without loss of generality that Si < Si+1 for each i = 1, . . . ,n − 1. Now 

suppose, contrary to the statement of Theorem 2(i), that a Pareto efficient DE a exists. 
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Let ut i denote player i's expected period-t payoff in this equilibrium. To obtain the 

desired contradiction, we first need to establish the following result: 

Claim For every i E N and every t E N, there exists r > t such that u < 1. 

Proof. Suppose that, contrary to the claim, there exist i E N and t E N such that u = 

1 for all r > t so that u l = 0 for all l = ̸ i and all r > t. Now consider a potential deviation 

by player j = ̸ i in some period r following some "policy history" (x1
,.. . , x −1): She 

proposes (1/n, . .., 1/n) whenever selected as proposer. This proposal must be rejected by 

at least one member of N \{i} say k and, following the new policy history (x1
,. . . , x −1, 

x ) = (x1
,. . . , x −1, x −1), player j must receive 0 in all future periods; otherwise the 

deviation would be profitable and, consequently, a would not be an SPE. As player k 

never uses a weakly dominated strategy (recall from Section 3.2 that equilibria are 

required to be stage-undominated), she behaves as if pivotal in voting stages. Hence, her 

payoff from rejecting j's proposal (and inducing policy history (x1
,... , x −1, x −1)) must 

be at least as great as her payoff from accepting it. As the latter payoff is 

greater than or equal to (1 − k) /n > 0, player k's expected payoff following 

policy history (x1
,. . . , 

must be strictly positive. But this in turn implies that if k is recognized to make a 

proposal at policy history (x1
,.. . ,x −1) (which occurs with probability pk > 0), then 

she can profitably deviate from a by passing (or, equivalently, proposing the current 

default x −1). This would indeed yield policy history (x1
,. . . , x −1, x −1) and, from 

the previous discussion, yield her a positive payoff (recall that k = ̸ i). This contradicts 

a being a DE. 

By supposition, a generates a Pareto efficient policy sequence. From Lemma 1, this 

implies that if ut n > 0 in some period t then u = 0 for all j = ̸ n and all r > t. As ui (xi) 

= xi for each i E N by assumption, this in turn implies that u = 1 for all r > t which, 

from the claim above, is impossible. Consequently, ut n = 0 for every period t. We can 

now proceed inductively by applying the same argument to each player i < n until we 

reach the conclusion that ut i = 0 for all i and all t which is evidently impossible in a 

DE. 
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( i i )  Cons t ruc t ion of  a  Pare to  e ff ic ien t  DE  

Let x  (1, 0, . . . , 0) and, for each i E N, let x−i
 E X be the policy defined as 

{= 0 if j = i , 
j 

To prove the result we construct a strategy profile that prescribes proposers to success-

fully offer policies in {x } U x−i : i E N}, which are then never amended. On the path, 

induces the constant policy sequence {x } which is Pareto efficient, irrespective of 

players' payoff functions and discount factors. (An analogous construction can be used to 

support any policy sequence in which the same player receives the entire pie each period.)  

Before proceeding, we begin with an informal description of the construction. On the 

path, prescribes all proposers to successfully offer x  in the first period, and then to pass 

in all future periods. Any proposal to deviate from this path would be unsuccessful and the 

proposer — say i — would be "punished" with the perpetual implementation of x−i
. If a 

winning coalition C accepted such a proposal, then one of its members — say j — would be 

"punished" with the perpetual implementation of x−j. Coalitions that fail to implement the 

prescribed punishments face similar punishments. For instance, farsighted player 2 does not 

offer players l > 1 to deviate from policy sequence {x }, because she anticipates that those 

players would coalesce with 1 to implement policy x−2
 indefinitely. By the same logic, 

farsighted players l > 1 find it optimal to coalesce with player 1, because if they do not 

then they will face themselves similar punishments with positive probability.  

The formal construction below proceeds in four steps. In Step (a), we define threshold 

˜ . Step (b) partitions the set of histories of the game into subsets H(C), where "
˜h E 

H(C)" is interpreted as "some member j of coalition C must be `punished' (with the 

implementation of x−j) at history 
˜h." Step (c) provides a formal definition of . In step 

(d), we check that, when mini N i > ˜ , there is no history at which a player has a 

profitable one-shot deviation and no player uses weakly dominated voting strategies. By the 

one-shot deviation principle, this proves that is an undominated SPE. 

(a)  Defini t ion of  ˜ .  Let  pmin  min i N p i .  For  each j  E N ,  def ine 

Wj
1 ( j) max {(1 − pmin) uj (1 1 n) , pj (11− jj) jj(1) 

( 1  ) 
(1 − pi) uj n−1 

Wj
2 ( j) min ____________  . 

 i N 1 − 
p i j  

x 

3 8  

−1/(n  1) if j i 



) 
Observe that W j 1 ( j) (1 −pmin) uj ( 1 ( 1  ) as j 1, and that Wj 2 ( j) j as 

1−n 1−n 

j 1. As 1 − pmin < 1, there exists 
˜

j  (0,1) such that 

(1− j)uj(1)+ jWj1 ( j) jWj2 ( j) (4) 

whenever j  > ˜
j.  

Define ˜ max j N ˜ j , and assume henceforth that min j N  j  > ˜ ; so that 

inequality (4) holds for all . 

(b) Histories. In our construction, we only need to refer to histories at which a proposer is 

about to be selected. Accordingly, we will abuse terminology by referring to such paths  

( ˜ht−1,
 ̃h1) 

˜ht = to 

denote the 

concatenation of a period-(t − 1) history with a one-period history 
˜h1

 — more precisely, 
˜h1

 

describes everything that happened in period t (proposer selection, proposal, pattern of votes, and 

implementation of a policy). 

As explained above, we want to identify every history with the coalition of players to 

punish — or, equivalently, with the policies in {x−i : } to implement indefinitely  

at that history. To this end, we will partition the set of histories into a collection  

{ } 
H(C) : where, for each , H(C) can be thought of as the set of 

histories 

at which a member of C should be "punished" — in the sense that a policy in X(C) 

{x−i : } should be indefinitely implemented. We define the elements of the 

partition as follows. Let X(∅) }. 

H ∅) contains the null history, and all histories at which x  has been proposed and 

(if there was a vote) unanimously accepted in all previous periods;  

(˜
ht−1,

 ̃ h1) 

(ii) And for any other history 
˜ht = with ˜ht−1 

(C) for  some :  

(iia) If some y = x−i
 (C), with C ≠ ∅, is proposed and (if there is a vote) unanimously 

accepted in 
˜h1

 then 
˜ht ({i}); 

(iib) If some (C) is proposed and rejected by the members of some (nonempty) C′ 

in 
˜h1

 then 
˜ht (C′); 

(iic) If player k proposes some (C) which (if a vote takes place) is unanimously 

rejected in 
˜h1

 then 
˜ht ({k}); 

3 1We use a ti lde to distinguish these histories from the implementation histories used in the rest 

of the paper.  
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as "histories." A typical period-t history is denoted by 
˜ht,31

 and we use 
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(iid) If player k proposes some which is accepted by the members of some 

(nonempty) C′ in ˜h1 then 
˜ht ′). 

These conditions can be informally interpreted as follows: (i) At the start of the game 

and until policy x  is amended, nobody should be punished; (iia) If, in the previous  period, 

a member of C was supposed to be punished, the proposer offered to punish some 

and the offer was unanimously accepted, then player i should be punished at the new 

history; (iib) If, in the previous period, a member of C was supposed to be punished, the 

proposer offered to punish some and the offer was rejected by the members of some 

coalition C′
, then some member of C′

 should be punished at the new history; (iic) If, in the 

previous period, a member of C was supposed to be punished, proposer k did not offer to 

punish any and her offer was unanimously rejected, then player k should be punished 

at the new history; and (iid) If, in the previous period, a member of C was supposed to be 

punished, the proposer did not offer to punish any and the offer was accepted 

by the members of some coalition C′
, then some member of C′

 should be punished at the 

{ } 
new history. Thus, any possible history belongs to an element of . 

(c) Definition of . For each , we define the linear orders D1, . . . , Dn on {x } 

as: 

 x  D1 x−n D1 x−(n−1) D1 . . . D1 x−1; 

 x  Di x−(i−1) Di . . .Di x−1 Di x−n Di . . . Dix−i for all 1 < i < n; and 

 x  Dn x−(n−1) Dn . . .Dn x1
 Dn x−

n. 

Suppose that a history in H(C) — where may be empty — has occurred, and 

let be the current default. prescribes the following behavior to each player j 

after such a history: 

In proposal stages: If C ≠ {j} or dj = 0 then player j proposes the Dj-maximum in X(C); 

otherwise, she passes. 

In a voting stage with proposal y (irrespective of the proposer): If then player j 

accepts y; if then player j rejects y. 

According to , the following happens on the path. The null history belongs to 

(∅) and X(∅) = {x }. As the default is d = (0,...,0), prescribes all proposers to offer 

x which is unanimously accepted. From (i) in the definition of proposer histories, 

therefore, the following happens in every period t > 1: the ongoing default is x  and 

X(C) = {x }, so that prescribes all proposers to offer x  (i.e. pass). Hence, 

sustains the Pareto 
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efficient policy sequence in which x  is implemented in every period.  

Before we proceed to show that is an SPE in which no player uses weakly dominated 

strategies in voting stages, we establish  two useful claims.  

Claim 1: Let . At any history h˜ ending with default , player j 's 

continuation valueV j
C(d) (engendered by ) is as follows: 

(i) If C = ∅ then: V j
C (d) = uj(1) for j = 1, andV j

C(d)= 0 for j ≠ 1; 

(ii) If C = {i} and di = 0 for some then: VjC (d) = 0 for j = i, and V j
C(d) = uj (1/(n − 

1)) for j ≠ i; 

(iii) If C = {i} and d i  > 0 for some then: 

 

(iv) If ∅ ≠ C ≠ {i} for all then: 

Vj
C

(d) = (1 −pi) uj (n −1 1) , 

where p− j L_,V' l Nj pl  and Nj  { − j  ◃ l  x− i for all l . 

Proof: (i) At the null history (which belongs to IR∅)),  prescribes all proposers to 

successfully offer x .  In addition, if x  was implemented in the first period and all 

selected proposers passed in subsequent periods then, from the de finition of and (i) 

in the definition of histories, all future proposers will also pass. Thus, from any history 

in H(∅) , policy x  is indefinitely implemented; so that continuation values are given 

by V j
∅(d) = u j(1) if j = 1 ,  and V j

∅(d) = u j(0) = 0 for j = ̸ 1 .  

(ii) Suppose that C = {i} and di  = 0 for some . In this case, prescribes all 

proposers (including player i) to offer x− i, which is unanimously accepted. From (iia) in 

the definition of histories, the next period's history will also belong to H({i}), ending with 

default x− i. As x−i  

i  = 0,  prescribes all proposers to offer x− i (i.e. to pass) at that 

history. Applying the same argument to all future period, we obtain that policy x− i is 

indefinitely implemented; so that continuation values are giv en by IT(d) = u j  (x i i) = 

u j(0) = 0 if j = i , and V j
C(d) = u j  (x ii) = u j  (1/(n − 1)) if j≠i .  

(iii) Suppose that C = {i} and di > 0 for some . If any player l ≠ i is selected to 

propose at h˜
 (which happens with probability (1 − pi)) then she proposes x− i, which (from 

Vj
 C(d) 

= 

pi(1− i)ui(di)  if j = i , 
1−pi i 

pi(1− j)uj(dj)+(1−pi)uj( 
n−1) 

 
 
 otherwise; 

1−pi j 
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and (iia) in the definition of histories) is unanimously accepted and never amended. If 

player i is selected to propose at h˜ (which happens with probability pi) then she passes. 

From and (iic) in the definition of histories, the next period's history 
˜h ′

 is still in 

11({i}) and the default remains d (with di > 0). Hence, prescribes the same behavior at 

h˜
 and 

˜h′
. This implies that players' continuation values from inducing histories same. 

Therefore, player i's continuation value V {i} 
i (d) satisfies 

h˜ and 
˜h′

 are the 

V i}
i(d) = (1 − pi) ui (xi 

i) + pi[(1 − i) ui (di) + i V {i} 

i (d )1 

or, equivalently, 
V {i} 

i(d) = pi (1 − i) ui (di) 
1 − pi i 

(recall that ui (x−i) = u i(0) = 0). Similarly, if j = ̸ i then player j 's continuation value 
i 

V {i} j(d) satisfies 

(d) = (1 − pi) ui (xii) + pi [(1 − j) uj (dj) + j V j{i} (d)1 

or, equivalently, 

V {i} (d) = pi (1 − j) uj (dj) + (1 − pi) uj (n1-1) 
j 1 − pi j 

(  )  (recall that uj  x− i = u j (1/(n − 1))). 
j 

(iv) If C includes more than one player then prescribes each proposer l E N to offer 

the ◃l-maximum in X(C). Thus, all proposers in Nj l E N : x−j ◃l x−i
 for all i E C} 

offer x−j, which (from and (iia) in the definition of histories) is unanimously accepted and never 

amended. Player j's payoff is then uj (x.Tj) = uj(0) = 0 with probability 

p−
j . With probability (1 − pi) , the selected proposer successfully offers a policy x−i 

with i = ̸ j (which by the same logic as above is never amended). Player j then receives ( ) 
uj x−i = uj (1/(n − 1)); and her continuation value at history h˜

 is j 

V j
C(d) = (1 − pi) uj (n −1 1) 

♢ 

Claim 2: For every player j E N and every coalition C j, we have 

(1 − j) uj(1) + j rxV  (53 (d) < • md X in fij{i} (d) uj (n −1 1) , for all i j . 
j 

42  



 

Proof: Fix j E N and C j, and take an arbitrary player i = ̸ j. From Claim 1(ii)-(iv), 

 

max 
d X 

V j
C(d) = 

 

 

 

0 if C = {j} k dj = 0 , 
pi(1− .i)ui(1) 
1−pi if C = {j} kdj > 0 , 
( 1  )  −  p i  u j  ( n 1 - 1 )  i f  

C  { j }  ,   

( uj11) if di = 0 , 
(1−pi)ui(n

1
  ) 

x if di > 0 . 
1−pioi 

By construction, there is at least one proposer k E N such that x−j is the ◃k-maximum in X(C). 

Hence, p−
 j> pk > pmin

 or, equivalently, 1 − p−
 j< 1 − pmin

. This implies that 

 
(1 − j)uj(1) + j max 

d X 
Vj

C(d) < (1 − j)uj(1) + jW j 

1( j) 

( 1  ) 
(1 − pi) uj n−1 

jWj2 ( j) j

 _____________________________________________________________________ 

1 − pi j 

j min 
d X ( V j

{i}(d) < uj n −1 1) 
 

where the second inequality follows from j > mini N i ˜ (recall inequality (4)), and the last 

two inequalities from 1 − pi < 1 − pi j. 

♢ 

( d )  i s  a n  S P E :  

(i) Voting strategies. Suppose that a history in H(C), C C N, with current default d has 

occurred and that the selected proposer — say k — has offered y = ̸ d. Consider player j 's 

voting behavior in such a situation. 

 Case 1: C is empty and y = x . Observe first that, by construction, the default is d = 

(0, . . . , 0) — if C = 0 and d = x  then y = x  implies that the proposer passes: there is 

no vote. From Claim 1(i), player j's payoff if she does not deviate from is V j
∅ (d) = 

uj(1) 
if j = 1, and V ∅(d) = 0 if j 1. Now consider a deviation by player 1. If she rejects 

j 

x then the next period's history will be in H  ({1}) (see case (iib) in the definition of 

histories). As all the other players vote to accept x  and q < n, her payoff from deviating 

is therefore 

V { i }  
j  ( d )  =  

a nd  

min 
d X  

 

 

 
−  

+ 
− 

− 
 pi(1 

i)ui(0) (1 
pi)ui( __  1 pi 

h 
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(1 − 1) u1(1) + 1 
V
{1} 

1 (x ) = (1 − 1)u1(1) < u1(1) , 



where the equality follows from Claim 1(ii) (and d1 = 0). This proves that the deviation is 

not profitable for player 1. In addition, as the inequality above is strict, she is strictly 

better off accepting x  when all the other players also accept it. This proves that accepting 

x is not weakly dominated in this voting stage.  

Now consider a deviation by player j = ̸ 1. By rejecting x  (while all the other players 

accept it), she induces a history in H ({j}) (see (iib) in the definition of histories). As d j 

= 0, her payoff from deviation is therefore uj(0) (Claim 1(ii)). This proves that the 

deviation is not profitable. To see that accepting x  is not a weakly dominated strategy in 

this voting game, consider an action profile (in this stage) in which player 1 [resp. each  

player i {1, j}] rejects [resp. accepts] x . If j votes to accept x  then the next history 

will be in H ({1}) (see (iib) in the definition of histories); if she votes to reject x  then the 

next history will be in H  ({1, j}). In the former case, whether she is pivotal or not, her 

payoff is 

(1 − j) uj(0) + j V 1} j(x ) = j min V 1} (d′) j 
d ′ X  

(Claim 1(iii)); in the lat ter case, whether she is pivotal or not,  her payoff is lower than  

(1 − j) uj(1) + j maxd′ X V 1,j} j(d′) (Claim 1(iv)). It follows from Claim 2 that she is 

strictly better off accepting x . This proves that accepting x  is not weakly dominated in this 

voting stage. 

 Case 2: C is nonempty and y E X(C). Let i be the player in C such that y = x−i
. In 

this case, prescribes all players to accept proposal x−i
. Therefore, the next period's 

history will be in H  ({i}) (see case (iia)) in the definition of histories). From Claim 1(ii), 

player j
′
s payoff is then 

(1 − j) uj (xii) 3 J.V j{i} (x−i) ( 1  = U j  n 
− 1 

if j = ̸ i and 

(1 − i)ui (xi i) + i V i{i} (x−i) = ui(0) 

if j = i. Now suppose that player j = ̸ i deviates by rejecting proposal x−i
. As q < n, policy 

x−i
 is still implemented in the current period. Moreover, the next period's h istory will be in 

H ({j}) (see case (iib) in the definition of histories). From Claim 1(iii), her payoff from 

deviating is 

(1 − j) uj (x−i) + (x−i) < (1 − j) uj(1) + i max V,{j} (d′) < uj ( n −1 1) 
d

' X  
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where the second inequality follows from Claim 2 . Hence, she is strict better off accepting 

x−i when all the other players also accept it. This proves that i cannot profitably deviate 

from accepting x−i
, which is not a weakly dominated strategy in this voting stage.  

Now consider a deviation by player i: If she rejects x−i
, then x−i

 is still implemented in 

the current period (she is not pivotal) and the next period's history will still be in H ({i}) 

(see case (iib) in the definition of histories). Therefore, her payoff remains the same and the 

deviation is not profitable. To see that accepting x−i
 is not a weakly dominated strategy in 

the stage game, consider an action profile (in the voting stage) in which all the other 

players but one — say l = ̸ i — vote to accept x−i
. If player i votes to accept x−i

 then it is 

implemented (q < n) and the next period's history will be in H ({l}) (see case (iib)). From 

Claim 1(iii), her payoff is then 

(1 − i) ui (xTi) + i i{l} (x−i) = i i{l} (x−i) = i min ,{l} (d′) . 
d ′ X  -  

If she votes to reject x−i
 then, from case (iib) in the definition of histories, the next period's 

history will be in H ({i, l}). As max {ui(0), ui (di) i(1), it follows from Claim 1(iv) 

that (whether she is pivotal or not) her payoff must be lower than  

 
(1 − i) ui(1) + i max 

d′ X 

{i,l}(d′ i min {l} 

(d′) , 
i i 

d′ X 

 

where the inequality follows from Claim 2. This proves that she is strictly better off 

accepting x−i
 which, therefore, is not weakly dominated in this voting stage.  

 Case 3: y is not in X(C).  Recall that the proposer is player k . In this case, 

prescribes all players to reject y. From case (iic) in the definition of histories, the next 

period's history will be in H ({k}). Hence, player j 's payoff is given by 

 

(1 − j) uj (dj) + j { k }  
j  ( d )   

(Claim 1(ii) -(iii)).  If  player j = ̸ k deviates by accepting y , then default d is still imple- 

mented in the current period and the next period's history will be in H ({j}) (see (iid) in 

the definition of histories). Her payoff is then equal to  (1 − j) uj (dj) + j {j} 

j(d)  (1 − j) u j(1) + j  max {j} (d ′) 
j 

d′ X 

j min 
d′ X 

{k} 
(d′) j 

 
(1 − j) uj (dj) + j {k} 

j (d) , 

4 5  



where the second inequality follows from Claim 2 (recall that uj(0) = 0 < uj (dj) for all d 

E X). Player j is thus strictly better off rejecting y which, consequently, is not a weakly 

dominated action in this voting stage. 

Now consider a deviation by player k. She earns the same payoff after either accepting 

or rejecting her own proposal y because she is not pivotal in the current period, and the next 

period's history is still in H ({k}) (see (iid) in the definition of histories). This proves that 

she cannot profitably deviate from rejecting y. To see that rejecting y is not weakly 

dominated in the stage game, consider an extra-equilibrium action profile in which all the 

other players but one — say l = ̸ k — reject y. If player k rejects y then default d is 

implemented (as q < n) and the next period's history will be in H ({l}) (see (iid) in the 

definition of histories). Her payoff is therefore equal to 

 

(1 − k)uk (dk) + k 
V {l} k (d) > k min(d

′
) 

d′ X k  

If she accepts y then the next period's history will be in H ({k, l}) (see case (iid)). As max 

{uk (yk) , uk (dk)} < uk(1), it follows from Claim 1(iv) that (whether she is pivotal or not) 

her payoff cannot exceed 

 
(1 − k) uk(1) + k max 

d′ X 

ij-{k,l} (d′N V {l} d′\ 
vk )k min d′  )X  

(where the inequality follows from Claim 2). This implies that player k is strictly better off rejecting 

y, which is therefore not weakly dominated. 

(ii) Proposal strategies. Take an arbitrary history in H(C), C C N, and let d E X be the 

current default. Let the selected proposer be player k E N. If she proposes some policy 

y E X(C) then, from the definition of , y is unanimously accepted and never 

amended. Her payoff is therefore uk (yk). If she proposes a policy outside X(C) then, 

by definition of , her proposal is unanimously rejected. Default d is implemented in 

the current period and, from (iic) in the definition of histories, the next period's history 

will belong to H({k}). (The same applies if she passes when default d is not in X(C).) 

Her payoff is therefore 

˜
vk(d) = (1 − k) uk (dk) + k { k }  

k  ( d ) .   

We now prove that prescribes optimal behavior at any such history. To this end, 

suppose first that C = 0; so that the default d is either (0, . . . , 0) (at the null history) 

or x . According to , proposer k should offer the only element in X(C), x , which by 
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definition of would then be accepted and never amended.
32 

If k = 1 then there is 

evidently no profitable deviation from k at this history: she obtains her maximal payoff 

of u i(1). If k ≠ 1 then a profitable deviation must yield a payoff that strictly exceeds uk 

(x
*

k) = uk(0) = 0. As explained above, any proposal that differs from x
* 

would be 

unanimously rejected, and player k 's payoff would be 
 

˜
vk(d) = (1 − k) uk(0) + k 

V {
k} 
k (d) = 0  

(since dk = 0), making the deviation unprofitable.  

Now suppose that C is nonempty and that C ≠ {k} . According to , proposer k should 

offer the ◃ k-maximum element y in X(C), which would then be accepted and never 

amended. As C ≠ {k} , yk = 1/(n − 1) and she obtains a payoff of uk (1/(n − 1)). By 

construction, she could not earn a larger payoff by proposing another policy in X(C) 

(which would also be unanimously accepted). If she deviated by proposing a policy outside 

X(C) then she would receive a payoff of  

˜
vk(d) < (1 − k) uk(1) + k IdIVI7k{k} (d

′) < uk (n1 1) 
(where the second inequality follows from Claim 2). Hence, the deviation would not be 

profitable. 

Next, suppose that C = {k} and dk = 0. According to , proposer k should (success-

fully) offer y = x− k — i.e. the ◃k-maximum in X(C) = {x−k} —  thus obtaining a payoff 

of uk (yk) = uk(0) = 0. If she deviates from by passing or (unsuccessfully) proposing 

another policy then, from Claim 1(ii), her payoff will be  
 

˜
vk(d) = (1 − k) uk(0) + k 

V
{k} 

k (d) = 0 .  

This proves that she cannot profitably deviate.  

Finally, suppose that C = {k} and dk > 0 — so that d X(C). In this case, prescribes 

proposer k to pass, thereby obtaining 
˜vk(d) > u i(0) = 0 . From the discussion above, 

proposing any other policy outside X(C) would yield the same payoff 
˜vk(d). If she 

deviates by proposing policy x− k  — i.e. the only policy in X(C) — then, by definition of 

, her offer will be accepted and never be amended. Hence, she gets u i  (xk−k) = uk(0) = 

0 < 
˜
vk(d). As a result, k does not have a profitable deviation.  

By the one-shot deviation principle, is an SPE. 

 

3 2Observe that, when d = x*, the proposer passes, precluding a vote. 
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Theorem 3. If  q = n then every DE is no-delay with A( ) = ∆n−1 .  

Proof: We prove Theorem 3 in four steps. The first step provides three preliminary 

lemmata: Lemmata 2 and 4 state useful results on continuation values and their relations to 

instantaneous utilities, and Lemma 3 shows that the set of absorbing points of any DE is 

nonempty and contained in the unit simplex. Using these results, Step 2 shows that, in every 

DE, the committee implements a policy in the unit simplex in every period, and Step 3 that 

the set of absorbing points of any DE coincides with the simplex. Step 4 concludes: the 

previous three steps jointly prove the theorem. 

Step 1: Preliminary results. Recall that we use h
t
 to denote a typical "implementation history" — i.e. 

those just before the implementation of a new policy 
— and V a (ht) to i 

denote player i's continuation value at this history. For each , let Hx be the set of 

implementation histories just prior to the implementation of x. The proof of Theorem 3 

hinges on the following lemmata. (Two of these lemmata not only apply to DEs, but to 

SPEs more generally.) 

Lemma 2. Suppose that q = n, and let be an SPE. For every and every 

history ht  x, we have 

(i) V a (ht+1) i (xi) for every equilibrium realization of h
t+1

 conditional on h
t
; i 

(ii) V a (ht) i (xi); and i 
(iii) E [V a (ht+1) |ht] a (ht). 

i i 

Proof: (i) This is an immediate consequence of the unanimity rule. If V a (ht+1) < 
i 

ui (xi) for some realization of h
t+1

, then player i could profitably deviate from by rejecting (and 

therefore preventing) any amendment of x leading to h
t+1

. (ii) Part (i) implies that V 
a (ht+1) i (xi) for P

a (h
t
, ·)-almost all h

t+1
. Hence 

i 
V 

a (h
t), which is a time average, must also exceed ui (xi): By monotonicity of integrals, 

i 

we have 
Via (h

t) = (1 − i) ui (xi) + i ∫ 

Via 
(ht+1) Pa(ht,dht+1) 

∫ ui (xi) Pa (ht, dht+1) = ui (xi) . 
(1 − i) ui (xi) + i 

(iii) Suppose that E [V a (ht+1)|ht] < V 
a (h

t). From part (ii), this implies that 
i i 

Via (ht) = (1 − i) ui (xi) + iE [Via 
(ht+1) |h

t] < Via (ht) 

which is obviously impossible. 
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♢ 

Lemma 3. Suppose that q = n. If a is a DE then 0 = ̸ A(a) C ∆n−1. 

Proof: It is easy to see that A(a) = ̸ 0 (for instance, take policy (1, 0, . . . , 0) E ∆n−1). 

Let a be a DE and suppose, contrary to the statement of the result, that there exists x E 

A(a) \ ∆n−1. As x E/ ∆n−1, there is y E ∆n−1 such that ui (yi) > ui (xi) for each i E N. By 

definition of A(a), there must be a sequence of (consecutive) implementation histories 

{hm} such that, for all m, hm E Hx and hm+1
 is induced from hm

 by a. (In words, x is 

indefinitely implemented from h1
 on according to a.) Thus, the following is true for each 

i E N and each hm
: 

Vi  (hm) = ui (xi) < ui (yi) < V (h′) , (5) 

for any history h′ E Hy - the second inequality follows from Lemma 2(ii). 

Let the first element of {hm}, h1
, be a period-( 1) implementation history for some 

'r E N. Consider the period-7- proposal stage that follows history h1
, and let the sequence 

of policies implemented prior to this stage be denoted by (x1, x2, . . . , x −1) (so that 

x −1 = x). Now x is absorbing at h1
. Consequently, if proposal y = ̸ x were made at this 

stage of period 'T, then it would be rejected by at least one player j — otherwise any 

proposer i could profitably deviate from a by inducing a history h′ E Hy (inequality (5) 

above). As player j never uses a weakly dominated strategy (recall from Section 3.2 that 

equilibria are required to be stage-undominated), she behaves as if pivotal in voting stages. 

Hence, her payoff from rejecting proposal y (and inducing policy history (x1, . . . , x −1, 

x)) must be at least as great as her payoff from accepting it. As a is a DE (so that behavior 

only depends on policy histories rather than entire histories), her payoff from rejecting y is 

equal to Vi  (h2); her payoff from accepting it is equal to Vi  (h′) for some h′ E Hy. 

Hence, we have V (h2) > 3 (h′), which contradicts (5). 
j  - 

♢ 

At this point, we need some notation. Any strategy profile a = (ai)i N induces a 

stochastic process {
˜
xt} on the policy space, where the random variable 

˜xt
 stands for the 

policy implemented in period t. For any period-t implementation history ht
 and any m E N, 

we can define a random variable 
˜xm(ht), which describes the policy implemented in period t 

+ m conditional on ht
. Thus, E [

˜
xm

i (h
t)] = E [˜xt+m 

i |ht], where E [-] is the expectation 

operator with respect to the stochastic process engendered by a. 

49  



Lemma 4.  I f  i s  an SPE th en  the  f o l l owing  s ta t ement s  ar e  t rue  f o r  a l l  and 

a l l  h t  x :  

(i) (˜xm (ht)) converges almost surely to a limit x
˜
 (h

t
); 

( i i )  For ev e r y  ,  w e  have  

 ui (xi) E [V (ht+1) |h
t
] E [ui (˜xi (ht))] . (6) 

i 

Proof: Take an arbitrary and an arbitrary h
t
 x.  

(i) By Proposition 1 in Hyndman and Ray (2007), the stochastic sequence (ui (˜xmi 

(ht)))iEN converges almost surely to a limit.
33

 As the ui's are strictly 
increasing functions, the stochastic sequence of policies (

˜
x

m
(h

t
)) 

converges along any sample path for which (ui (
˜
x

m
i (h

t
))) iEN converges. 

Hence, (
˜
x

m
(h

t
)) converges almost surely to a limit ˜x(h

t
). 

(ii) The first inequality in (6) is an immediate implication of Lemma 2(ii)-(iii). 

To complete the proof of the lemma, therefore, it remains to establish that 

E [Vi (ht+1) 
E [ui(

˜
xi(h

t
)) 

for all all . To do so, observe first that Lemma 2(iii) (applied recursively) im - 
plies that E [V (ht+m) |h

t
] E [V (ht+m+1) |h

t
] and, therefore, that E [V (ht+1) |h

t
]  

i i i 

 [V (ht+m) |h
t
] for all N. Now suppose that, contrary to our assertion, E [V (ht+1) 

|ht]− i i 
E [ui (˜xi (ht))] = 0. By definition, 

 00 i 00 

E [V (ht+m) |h
t
] = (1 − i)E ∑gui (

˜
x

m+
(h

t
)) = (1 − i) ∑ TE [ui (

˜
x

m+
(h

t
))] 

=0 J =0 

As (˜xm (ht)) converges almost surely to a limit ˜x(h
t
), Lebesgue's Dominated Convergence 

Theorem implies that E [ui (
˜
x

m
i (h

t
))] E [ui (

˜
xi(h

t
))]. This in turn implies that there 

exists 1 such that E [ui (
˜
x

m
i (h

t
))] E [ui (

˜
xi(h

t
))] + 2and, consequently, 

E [V (ht+m) |h
t
] E [ui (

˜
xi(h

t
))] +  2 < E [V (ht+1) |h

t
] (7) 

i i 

for all m > M. This contradicts our initial observation that E [V (ht+1) |h
t
] E [V (ht+m) 

|ht] 
i  i  

for all N. 

♢ 
33Note that Hyndman and Ray's result applies to a more general class of coalitional games — in which unanimous 

voting is only a special case. 

E 
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Step 2: If a is a DE then, in every period, the committee implements a policy in 

∆ n−1  according to a .  For any w E X and any h E Hw ,  define policy y(h) as y(h) E 

[ ˜x(h)] .  As the u i 's  are concave, Jensen's inequality implies that 

E [ui (˜xi(h))] < ui (yi(h)) (8) 

for all i E N. 

Now suppose, contrary to the statement of the lemma, that there is some implementa -

tion history ht
 such that the committee implements x E/ ∆n−1 — so that ht E Hx. Using 

(8) and Lemma 4(ii), we obtain 

ui (xi) < E [Via (ht+1)ti 

|h [ui (˜xi(ht))] < ui (yi(ht)) , (9) 

which implies that yi(ht) > xi for all i E N. Consequently, there must be some y E ∆n−1 such that yi 

> yi(ht) and yi > xi for all i E N. We therefore have 

Via (ht) = (1 − Si) ui (xi) + SiE [Via (ht+1 

) 
|ht] < ui (yi) Via (h′) (10) 

for all i E N and all h′ E Hy (where the last inequality follows from Lemma 2(ii)). This in turn 
implies that any proposer whose proposal induces implementation history ht

 (and therefore policy 
history (x1, . . . , xt−1, x)) can profitably deviate by inducing h′ E Hy (and therefore policy history 
(x1, . . . , xt−1, y)) instead. Proposal y is unanimously accepted for the following reason. Once y 
has been offered, voters implicitly have to choose between policy sequences (x1, . . . , xt−1, y) and 
(x1, . . . ,xt−1, xt−1) as a is a DE, each player's continuation value Vi

a(h) at any history h only 
depends on the history of policies in h. If xt−1 = x (so that x is the default at the start of period t), 
then (x 1, . . .,xt−1,xt−1) is the policy sequence in ht

 and (10) ensures that all players are strictly 
better off accepting y. 

t-1\ 
If xt−1 x, then x is in the acceptance set after policy sequence (x1,..., x ) and, by 

(10), so is y. We therefore have a contradiction with a being a DE. 

Step 3: If a is a DE then A(a) = ∆n−1.  We already know from Lemma 3 that A(a) C 

∆n−1.  To complete the proof of this step, we must show that every point in the unit 

simplex is absorbing. 
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Let x ′ E ∆n−1 and suppose, contrary to the statement above, that there is a history at 

which x ′
 is amended to some x = ̸ x ′

 with positive probability. From Step 2, we have x 

E ∆n−1. By (9), we have ui (xi) < ui (yi(ht)) for all i E N and all ht E Hx. But, as x E 

∆n−1, this implies that x = y (ht), and therefore, that ui (x i) = ui (yi(ht)) for all 



i E N and all ht E Hx. Using (9) again, this implies that ui (xi) = E [V (ht+1) |ht] for 
i 

every i E N and all ht E Hx. Hence, at implementation history ht E Hx where the current 

default x′ is about to be amended to x, 

ui (xi) = (1 − i) ui (xi) + iE [V (ht+1) |ht] = V (ht) > ui (x′ ) 
i i i 

for all i E N (where the inequality follows from Lemma 2(i)). As x′ is by assumption an 

element of the simplex, the inequality above implies that x = x′, thus yielding the 

desired contradiction. 

Step 4: Every DE is a no-delay DE with A( ) = n−1. Combining Steps 2 and 3, we 

obtain that every DE is no-delay and that its absorbing set coincides with the unit 

simplex. 

 

For future reference (proof of Theorem 4(ii)), observe that before a policy in n−1 is 

implemented no proposer randomizes over proposals. Indeed, the no-delay property 

implies that, at any default outside n−1, each proposer makes an offer that is accepted 

by all players. By sequential rationality, the proposer must give the other players the 

minimum shares that they are willing to accept. 

Theorem 4. If q = n then: (i) a pure strategy no-delay SMPE exists; and (ii) SMPE 

payoffs are unique and coincide with the stationary SPE payoffs of the Baron-Ferejohn 

model. 

Part (i) 

To prove Theorem 4(i), we will construct an equilibrium in which, at any default x E 
X, 

the selected proposer say i offers the committee a policy x + si(x) E n−1, which 

is accepted by all players and then never amended. We can think of proposer i offering 

to share the amount of money not distributed yet i.e. 1 − jEN xj with the other 

players, with si 
j(x) being the share offered by proposer i to player j. The first step of the 

proof is to define these transfers and to use them to construct the stationary Markov 

pure-strategy profile . Step 2 then establishes that is a no-delay stage-undominated 

SMPE. To do so, we first establish that the set of absorbing points of coincides with 

the 
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simplex, and determine the continuation-value function induced by (Claim 1). Using 

these results, we then show that players never use weakly dominated strategies in voting 

stages (Claim 2), and that there are no profitable one-shot deviations from in proposal 

stages (Claim 3). By the one-shot deviation principle, this establishes Theorem 4(i).  

S t ep  1 :  Cons t ruc t ion  o f  s t a t iona ry Markov  pu re -s t r a t egy p ro f i l e  .  Fo r  each  

x E X ,  l e t  

Tx . 

 

 

 

∑ 
s E [0, 1]n : 

jEN 

xj + sj = 1 
} 

. 

Thus, any element of the n-fold product of Tx, T xn
 ,can be thought of as a vector of shares of the 

budgetary surplus s = (si) iEN, where si E Tx stands for the shares offered by proposer i. Next, let 

ϕ(x)(•) = (ϕ1
(x)(·), . . . ,ϕn

(x)(')) be a self-map on T xn
 defined as follows: for 

all i E N and all s = (sk) E Tn 
kEN x , 

ϕ i
j(x)(s)  .  u i 1  (1 −  j)  u j  (x j)  + j  E pku j  (x j  + s j

k) − x j  ,  Vj i  

,  ( 
kEN 

∑ϕi
 i(x)(s) 1 − xi − [xj + ϕi

j(x)(s)] . 
ja i 

As all the ui 's are by assumption continuous, ϕ(x)(•) is a continuous function from Tx
n

 

(which is convex and compact in R
n2

) into itself. Brouwer's Fixed Point Theorem then 

implies that there is s(x) = (si
.(x)) 

i 
3 jEN E Tx

n
 

such that ϕ(x)(s(x)) 
= s(x); that is 

∑ 
uj (xj + si

 j(x)) = (1 − j) uj (xj) + j 

kEN 

∑xi + si
 i(x) = 1 − [xj + si

j(x)] , (12) 

ja i  

for all i E N. Observe that, by construction, x + si
(x) E ∆n−1 for all i E N and all x E X. 

Moreover, if x E ∆n−1 then Tx = {(0, . . . , 0)} and, therefore, si
(x) = (0, . . . , 0) for every i E N. 

We are now in a position to define the strategy profile = ( 1 n): 

 In the proposal stage of any period t with ongoing default xt
−1 = x, i's proposal (conditional 

on i being selected as proposer) is x + si
(x); 

 In the voting stage of any period t with ongoing default xt
−1 = x, following any proposal y E 

X \ {x}, player i accepts if and only if 

 
∑ (1 − i) ui (yi) + i 

jEN 

( ) ∑ 
pjui yi + sj i (y) (1 − i) ui (xi) + 

i 

jEN 

( ) 
pjui xi + sj i (x) . 
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( ) 
pkuj xj + sk j (x) , Vj ≠ i , (11) 



Observe that is a pure strategy stationary Markov strategy combination . To com-

plete the proof of Theorem 4(i), it therefore remains to show that is a no-delay, 

stage-undominated SPE. 

Step 2: Proof that  is a  no-delay,  s tage-undominated SPE.  We proceed in  

several  s teps.  

Claim 1: is no-delay with A( ) = ∆n_1 and, for all i E N and all x E X: 

 

Vi (x) = (1 − i) ui (xi) + i E ( ) 
pjui xi + sj i (x) . 

j E N  

Proof: If x E ∆n_1 then prescribes all proposers to pass in all periods. This implies 

that x E A( ) — thus establishing that ∆n_1 C A( ) — and, for each i E N, 

 

(x) = ui (xi) = (1 − i) ui (xi) + i E ( ) 
pjui xi + sj

i (x) 
j E N  

(since x E ∆n_1 implies that sj
i(x) = 0 for all i,j E N). 

If x E/ ∆n_1 then, in the next period, prescribes each proposer j to propose policy 

x + sj(x). As x + sj(x) E ∆n_1, we have sk (x + sj(x)) = 0 for all i, k E N, so that 
i 

(  (

 )  
pkui xi + sj

i(x) + sk (x + sj(x))) = ui xi + sj
i(x) , i 

(13) 

for all i E N. From the definition of voting strategies, therefore, player i accepts if and 

only if 

( ) ∑ 
ui xi + sj i (x) > (1 − i) ui (xi) + i 

( ) 
pkui xi + sk i (x) , 

k E N  

which by equation (11) holds for all i = ̸ j. To prove that j 's proposal is voted up, we 

therefore need to confirm that she accepts her own proposal. By concavity of the ui 's, 

equation (11) implies that 

 
( ) ∑ 
ui xi + sj

i(x) = (1 − i) ui (xi) + i 
( ) 
pkui xi + sk i (x) 

k E N  

ui ((1 − i) xi + iE pk (xi + sk
i (x))) = ui 
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(  )  ∑  ( 1  −  
i )  u i  x i  +  s j

i ( x )  +  
i  

k E N  

kEN kEN 



(xi + iEpksk
i (x)) , 



 

 

for all i ≠ j , which in turn implies that sj
i EkEN pksk

i (x) for all i ≠ j (recall that 

i ). Using this inequality and the concavity of u j, we obtain 

 
∑ 

j)uj (xj j 

kEN 

k 

pkuj (xj + sj(x)) j xj j 
E pkskj(x) 

kEN 

  =uj xj j 
E pk 1 − E xl − E sk

l (x) = uj xj j [E sj
i(x) − E E pksk

i (x)  
l ̸=j kEN lEN 

(uj xj j 
E sj

i(x) − E sj
i(x) = uj (xj jsj

j(x)) uj (xj + 

sj
j(x)) 

i j 
iEN 

A 
(  )  ∑  = ( 1  −  

j )  u j  x j  +  s j
j j  

( (x + sj(x))) pkuj xj + sj
j(x) + sk

 , (14) j 
k E N  

where the last equality follows from (13). Thus, j prescribes player j to accept as well, 

and xj +sj(x) is therefore voted up. This proves that policies outside the simplex cannot 

be absorbing points of — i.e. (X \ ∆n−1 ∅ — and, therefore, that 

∆n−1. This also proves that P   (x, ∆n−1) = 1 for all ; that is, is 

no-delay. 

Moreover, as xj +sj n−1, prescribes all proposers to pass in all future 

periods. This implies that, for all and , 

 

Vi i) ui (xi i E 
( ) 

pjui xi + sj i (x) , 
j E N  

thus completing the proof of the claim.  

For future reference (see Claim 3 below), observe that (14) implies that V (x + si(x))  
i 

( x )  f o r  a n y  p l a y e r  .  C l a i m  2 :  

G i v e n  d e f a u l t  x  a n d  p r o p o s a l  y ,  e a c h  v o t e r  

a c c e p t s  i f  a n d  o n l y  i f  

i ( x ) ,  a n d  r e j e c t s  o n l y  i f  V i  
i ( y ) .  P r o o f :  T h i s  i s  a n  i m m e d i a t e  c o n s e q u e n c e  o f  

C l a i m  1  a n d  t h e  d e f i n i t i o n  o f  v o t i n g  s t r a t e -  

gies. 

Claim 3: There is no profitable one-shot deviation from in the proposal stage of any 

period. 

Proof: Let x t
−1 = x ,  and suppose that player i  is recognized to make a proposal in 

V  

V  
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i ̸=j 
i E N  kEN 



period t .  If she plays according to i  then she proposes x + s i(x) (or, equivalently,  

passes when n−1). As is no-delay (Claim 1),  this offer is accepted and player 

i 's  payoff is i(x)) .  
ui (xi + si 



In the proof of Claim 1, we showed that V i (x) (x + s
i
(x)) .  Hence, player 

i 
i 

cannot profitably deviate by passing or by making a proposal that is voted down.  

Now consider a deviation to a proposal y ≠ x + s
i
(x), which is accepted. According to the 

definition of voting strategies, y must satisfy 

 
E 

(1 − j) uj (yj) + j 

kEN 

( ) E pkuj yj + sk j (y) (1 − j) uj (xj) + j 

kEN 

( ) 
pkuj xj + sk j (x) 

(15)  

for all . We distinguish between two different cases:  

 Case 1: ∆n_1. In this case, inequality (15) becomes 

 
E uj (yj) (1 − j) uj (xj) + j 

kEN 

( ) pkuj xj + s
k
 j(x)) 

j (x) = uj (xj + si 

 

for all j = ̸ i (the equality is obtained from (11)). As uj  is increasing, this implies that yj 

j  + s
i
j(x) for all j = ̸ i and, consequently,  

Exi + s
i
 i(x) = 1 − (xj + s

i
j(x) 1 − Eyj = yi . 

jai j~i 

This in turn implies that V (x i  + s
i
 i(x)) = u i  (x i  + s

i
 i(x) i  (yi) = V  i  (y) .  Hence, 

i 

proposing ∆n_1 is not a profitable (one-shot) deviation for player i. 

 Case 2: ∆n_1. In this case, equations (11) and (15) (as well as the concavity of the uj's) 

imply that 

( 

u j  y j  + j  E  p ks
k

j(y) (1 −  j) u j  (y j) + j  

E p ku j  (y j  + s
k

j  (y)) 
kEN kEN 

E 
 (1 −  j) u j  (x j) + j  

kEN 

j(x)) , 
= uj  (xj  + si  

so that yj  + EkEN pks
k

j(y) j  + s
i
j(x) for all j = ̸ i (recall that j  (0,1) and s

k
j(y) 

0 for all ). Consequently,  

 

[ 1 − E [yj + Epks
k
j(y)1 = 1 − 

Eyj − E pk Es
k
j(y) . (16) 

( ) 
pkuj xj + sk j (x) 

 

 

[xj+ s
i
j(x)] 

 
jai kEN jai kEN jai 



Exi + si i(x) = 1 − 

j̸=i 

5 6  



∑ sk j(y) = 1 − ∑ yl −sk
i (y) . (17) 

jai lEN 

Combining (16) and (17), we obtain 
 

∑xi + si
 i(x)  1 − 

jai 

yj − ∑ [pk (1 − ∑yl − sk
i (y))] = yi +∑pksk

i (y) . 
kEN lEN kEN 

Hence: 

( ) ( ]) 

∑  ∑  [  
V (xi + si

 i(x)) = ui (xi + si
i(x)) i yi + pksk i (y) i (1 − i) yi + i pk yi + sk i (x) 

i 
kEN kEN 

∑ (1 − i) ui (yi) + i 

kEN 

( ) 
pkui yi + sk i (x) = V  

i (y) . 
This shows that proposing ∆n_1 is not a profitable deviation for player i, and completes the 

proof of Claim 3. 

Combining Claims 1-3, we obtain Theorem 4(i). 

Part (ii) 

Denote our game with an evolving default by 
e
, and the game with a constant default 

of x° = (0, . . . , 0) by 
c
. To prove the second part of the theorem, we first show 

that, for every SMPE of 
e
, we can construct a stationary strategy profile 

c
 in 

c
 

that generates the same payoffs as in 
e
. We then show that 

c
 is a stationary SPE 

of 
c
. Uniqueness of SMPE payoffs in 

e
 then follows from uniqueness of stationary 

SPE in 
c
 (Observation 2).  

Let = ( i)iEN be an SMPE of 
e
, and let 

i(x) be the proposal made by 

player i when the ongoing default is some x outside ∆n_1. (Recall that proposers do not 

randomize at such a default: cf. the paragraph immediately after the proof of Theorem 3.) 

Hence, player i 's expected payoff as evaluated after rejection of a proposal in the first 

period is given by: 

U (x°) = (1 − i) ui (x°) + i ∑ ( (x°)) 
pjui j i 

j E N  

(recall that, by Theorem 3, must be no-delay). 

Now define the stationary strategy profile 
c = ( ci) iEN in game 

c
 as follows. 

At the proposal stage of every period t , each player makes proposal 
i 

Moreover, by equation (12), 
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(x°).  At the 



voting stage of each period, player i accepts the proposal just made, say y, if and only if 

ui(y) > V (x°). 
i 

As is no-delay, proposal 
i (x°), i E N, must be accepted with probability 1 at 

default x° in Fe
. By sequential rationality and unanimity rule, this implies that IT ( i (x°)) 

= 

u j  j  (x° ) )  > V (x° )  fo r  a l l  j  E  N ,  which  in  tu rn impl ies  tha t  p roposa l  i  (x° )  i s  -  j  

also accepted with probability 1 in any period of Fc
. Two immediate consequences of this 

observation are that: (i) player i's expected payoff as evaluated after rejection of a proposal 

in the first period of Fc
 is V (x°); and (ii) player i E N has no profitable deviation from i 

the voting behavior prescribed by 
c

i. 

To complete the proof of the result, therefore, it remains to show that no player i E N 

can profitably deviate from 
c
 in a proposal stage of Fc

. Consider the proposal of an 

arbitrary player i when the default is x°
. As is an SMPE of Fe

, player i cannot profitably 

deviate by (successfully) proposing a policy y E X\ i (x°) or by making an unsuccessful 

proposal at default x°
. Hence, 

 

where the second inequality follows from Lemma 2(ii). Now consider a deviation from i 

(x°) in Fc
. If i proposed some policy y then her expected payoff would be ui(y) if her 

proposal were successful, and V (x°) otherwise. Hence, the inequality above implies that i 

i cannot improve upon proposing i (x°) and, therefore, cannot profitably deviate from 
c
i in 

proposal stages. 

The theorem then follows from Observation 2, which says that Baron and Ferejohn's (1989) 

model has unique stationary SPE payoffs when q = n. 

 

Theorem 5. Suppose that q = n .  

(i) If i = ̸ j, for some i, j E N, then every DE is ex post Pareto inefficient.  

(ii) Any (Pareto efficient) policy sequence that allocates the entire pie to the same player in 

every period can be supported by an SPE. 

P r o o f :  

 V °)) 
= 

ui i (x°)) 
>max 

 

 

 
V (x°)  , (1 − i) ui(y) + i E i 

jEN 

 

( ) 

 pjui j i (y) > ui(y) 

  

58  



( i )  Ex post  Pareto  ineff ic iency of  DEs  

We begin with a lemma which shows that, in a DE, the pie is never entirely allocated to a 

single player; so that transfers among players are always feasible. This will then allow us 

to prove that any realization of a DE policy sequence can be Pareto-improved using 

transfers across periods. 

Lemma 5. Let q = n. If {
˜
x

t} is the stochastic sequence of policies on some DE path then, for every 

realization {x
t} of {

˜
x

t}, we have x
t
i (0, 1) for all and all N. 

Proof: Let {x
t} be an arbitrary realization of the sequence {

˜
x

t} engendered by some 

DE . Suppose that, contrary to the statement above, x j = 0 for some and some 

N. Theorem 3 then implies that, in the first  period, player j accepted a proposal x 

such that xj = xt
j = 0 for all N. Player j 's payoff under is therefore uj(0) = 0. 

To prove the lemma, we will now show that j could profitably deviate — i.e. obtain a 

payoff strictly greater than uj(0) — by rejecting x. To this end, suppose that x is rejected 

in period 1 and that j is selected to propose at the start of period 2. Define h0 xo as 

the implementation history that would be induced by a rejection of j 's proposal. We know 

from Theorem 3 that, for each , 

 
Vi (h0) = (1 − i) ui(0) + iE 

lEN 

plui (x
l
, 

i)  

where x
l  

denotes player l 's successful proposal in period 3. As x
l  ∆n_1 for all , 

{ : ui(0) < ∑  ------- )} is nonempty; so that, for each , 
lEN plui (xl i 

 

(h0) < E 
lEN 

plui (xl)  ui (Eplx1) , 
lEN  

where the second inequality follows from Jensen's inequality. By continuity of the ui 's, 

therefore, there exists a sufficiently small 0 such that 

V i (h0) < u i(E 
p l x i l  )  ,  .  

lEN 

By definition of W, Vi (h0) = ui(0) for every \ W. 

Now define policy y = (yi)iEN as follows: 

 

∑yi  

lEN 

plxl i − , for all , and yi  
0 for all \ W . 
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It is readily checked that ui (yi) > V i  (h0) and then, by Lemma 2(ii), 
 

Vi  (h0 i) ui iE 
l N 

plui (xi) < ui (yi) < Vi  (h) 

 

for all h E Hy and all i E N. By the same argument as in Step 2 in the proof of Theorem 

3, this inequality implies that j could successfully propose y in period 2 and thus get a 

payoff of Vj  (h) > V  (h0) > uj(0). This in turn implies that her equilibrium proposal 

under (conditional on being recognized to make a proposal in period 2) must yield a 

payoff at least as great as Vj  (h) > uj(0). As pj > 0 and q = n (and uj(0) is obviously 

the minimum payoff she can get), she must therefore reject any period-1 proposal x such 

that xj = 0 in equilibrium. 

♢ 

Suppose that there are i,j E N such that i j. Now suppose that, contrary to the 

Theorem, there exists an ex post Pareto efficient DE . This implies that some realization 

of the policy sequence engendered by is Pareto efficient. Take one of these realizations, 

say {x
t}. From Theorem 3, there exists a policy x¯ E ∆n−1 such that x

t
 = x¯ for all t E N. 

To obtain the desired contradiction, therefore, it suffices to show that t he indefinite 

implementation of x¯ can be Pareto improved. 

Lemma 5 implies that ¯xi and ¯xj are both in (0,1). Consequently, there is a feasible 

marginal transfer dx
1

j from player i to player j in period 1, and a marginal transfer dx.1 

from j to i in period 2, such that player 1's discounted payoff remains unchanged. If we 

suppose by contradiction that the repeated implementation of policy x¯ is Pareto efficient 

then the changes in players i and j's payoffs must satisfy: 

−u
′
 i(¯xi) dx

1
j iu

′
i (¯xi) dx.1 = 0 , and u

′
j (¯xj) dx

1
j ju

′
j (¯xj) dx.1 < 0 , 

where u
′
i (¯xi) > 0 and u

′
j (¯xj) > 0 — recall that by assumption all players' (instantaneous) 

payoff functions are strictly increasing. Combining these two conditions, we obtain i = 

dx
1

j/dx
2

j j, which contradicts our initial assumption that i j. 

( i i )  Cons t ruc t ion  of  a  Pare to  e f f ic ien t  SPE  

For every d = (d1, . . . , dn) E X and i E N, let x
i
(d) be the policy in X that allocates dj to each player 

j ≠ i and the residual to player i; that is, for each j E N: 
 

xi j  
{1 − d− i  i f  j  = i  ,  

d j  i f  j  = ̸  i  ,  
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w h e re  d− i  1 −  j ̸ = i d j .  

To prove the result, we construct a strategy profile that has the following absorbing 

policies: xi(d) for all d E X and all i E N. On the path, induces the constant policy 

sequence {x1 (x0)} = {(1, 0, . . . , 0)} which is Pareto efficient, irrespective of players' 

payoff functions and discount factors. (An analogous construction can be used to support 

any constant policy sequence of the form {xi (x0)} for some i E N.) The construction 

below proceeds in three steps. Step (a) partitions the set of histories of the game into 

subsets H(C), where "
˜h E H(C)" is interpreted as "some member i of coalition C must be 

`rewarded' (with the implementation of xi(d)) at history 
˜h." Step (b) provides a formal 

definition of . In step (c), we check that there is no history at which a player has a prof -

itable one-shot deviation, and that none of the players use a dominated voting strategy. By 

the one-shot deviation principle, this proves that is a (stage-undominated) SPE. 

(a) Histories. In our construction, we only need to refer to histories at which a proposer is 

about to be selected. Accordingly, we will abuse terminology by referring to such paths  

( 
˜
ht−1,

 ̃h1) ˜ht = to 

denote the 

concatenation of a period-(t − 1) history with a one-period history 
˜h1

 — more precisely, 
˜h1

 

describes everything that happened in period t (proposer selection, proposal, pattern of votes, and 

implementation of a policy). 

As explained above, we want to identify every history with the players to reward at that 

{ } 

history. To this end, we will partition the set of histories into a collection H(C) : Q1 = ̸ C C 

N where, for each nonempty coalition C C N, H(C) can be thought of as the set of histories 

at which a member of C should be "rewarded" — in the sense that a policy xi(d), for some i 

E C, should be indefinitely implemented when the current default is d. We define the 

elements of the partition as follows. 

(i) The null history and all the histories at which (1, 0, . . . , 0) has been proposed and 

(if there was a vote) unanimously accepted in all previous periods are contained in 

H({1}); 

(
˜
ht−1,

 ̃ h1) 
(ii) And for any other history 

˜ht = where 
˜ht−1

 belongs to :FRC), for some 
nonempty C C N, and ends with the implementation of some d E X: 

(iia) If some xi(d), where i E C, is proposed and (if there is a vote) unanimously accepted in 

˜h1
, then 

˜ht E H ({i}); 

34As in the proof of Theorem 2, we use a tilde to distinguish these histories from implementation 
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(iib) If some xi(d), where i E C, is proposed and rejected in 
˜h1

, then 
˜ht E H ({i}); 

(iic) If player k proposes some y = ̸ xi(d) for all i E C, which (if a vote takes place) is 

unanimously accepted in 
˜h1

 then 
˜ht E H ({k}); 

(iid) If player k proposes some y = ̸ x i(d) for all i E C, which is rejected by the  

members of some (nonempty) C
′
 = ̸ {k} in ˜h1 then 

˜ht E H (C
′
 {k}); 

(iie) If player k proposes some y = ̸ xi(d) for all i E C, which is rejected by player k alone in 
˜h1

 then 
˜ht E H ({k}). 

These conditions can be informally interpreted as follows: (i) At the start of the game and 

until some player attempts to amend policy (1, 0, . . . , 0), player 1 should be rewarded; (iia) 

If a member of C was supposed to be rewarded in the last period, the proposer offered to 

reward some i E C, and the offer was unanimously accepted, then player i should be 

rewarded at the new history; (iib) If a member of C was supposed to be rewarded in the last 

period, the proposer offered to reward some i E C and the offer was rejected, then player i 

should be rewarded at the new history; (iic) If a member of C was supposed to be rewarded 

in the last period, the proposer k did not offer to reward any i E C and her offer was 

unanimously accepted, then player k should be rewarded at the new history; (iid) If a 

member of C was supposed to be rewarded in the last period, the proposer k did not offer to 

reward any i E C and the offer was rejected by the members of some coalition C
′
 = ̸ {k} 

(which may include player k) then some member of C
′
 {k} should be rewarded at the new 

history; and (iie) If a member of C was supposed to be rewarded in the last period, the 

proposer k did not offer to reward any i E C and the offer was rejected by player k alone, 

then player k should be rewarded at the new history. 

(b) Definition of a. For each i E N, we define the linear order Di  on N as: 

 1 D1 2 D1 ... D1 n; 

 i Di i + 1 Di ... Di n Di 1 Di ... Di i − 1 for all 1 < i < n; and 

 n Dn 1 Dn 2 Dn . . . D n − 1. 

Suppose that a history in H(C), Q1 ≠ C C N, ending with default d E X has occurred. Strategy 

profile a prescribes the following behavior after such a history: 

In proposal stages: Player j proposes xi(d) where i is the Dj-maximum in C. 

In a voting stage with proposal y by player k: If y E {xi(d) : i E C} then a prescribes every 

player j to accept y; if y E/ {xi(d) : i E C} then: 
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 when d E/ ∆n−1, prescribes player j = ̸ k to reject y, and player k to accept it if 

and only if 

(1 − k)uk (yk) + kuk (1 − y−k) > (1 − k)uk (dk) + kuk (1 − d−k) ; 

 when d E ∆n−1,  prescribes every player j = ̸ k to accept y if and only if ui (yi) 

> ui (di), and player k to accept it if and only if  

(1 − k) uk (yk) + kuk (1 − y−k) > uk (dk) . 

According to , the following happens on the path. The null history belongs to H({1}). 

Therefore, in period 1, all proposers offer (1, 0, . . . , 0) which is unanimously accepted. 

From (i) in the definition of proposer histories,  therefore, we have d = (1, 0, . . . , 0) and ˜ht 

E H({1}) in every period t > 1. This in turn implies that all proposers offer (1, 0, . . . , 0) 

(i.e. pass) in every period t > 1. Hence, sustains the efficient policy sequence in which (1, 

0, . . . , 0) is implemented in every period. 

(c) an SPE: (i)  Voting strategies.  Suppose that a history in H(C),  0 = ̸ C C N ,  ending 

with default d E X has occurred and that the selected proposer —  say k — has offered y 

= ̸ d .  Consider player j 's voting behavior in such  a situation. 

 Case 1: y = x i(d) for some i E C .  If player j plays in accordance with i, then she 

accepts proposal x i(d). As the other players do the same according to , policy x i(d) 

will be implemented and never be amended. Player j 's payoff is therefore  

 

{ui (xi
i(d)) = 

ui (di) if j ≠ i , 

ui (1 − d−i) if j = i .  

Now suppose that player j deviated from by rejecting proposal x i(d) in the current 

period. The current default d would be implemented in the period and then, from (iib) in  

the definition of histories and the definition of , x i(d) would be successfully proposed in  

( ) 

the next period and never amended. As di < 1 − d−i, this implies that ui x i
i(d) is the 

maximum payoff that player j can earn at such a history. This shows that, irrespective of 

the other players' actions in this voting stage, player j cannot profitably deviate from i,  

which is therefore not weakly dominated.  

 Case 2: d E/ ∆n−1 and y = ̸ xi(d) for all i E C. Suppose first that j = ̸ k — i.e. player j is 

not the proposer. Strategy prescribes j and all l = ̸ k to reject y. If j plays according 

6 3  



to a then y will be rejected and she will receive (1 − j) uj (dj) in the current period. 

From (iid) in the definition of histories, this history at the start of the next period will 

then be in \ {k}); so that, by definition of a, a nonempty set of proposers 

(including herself) will successfully offer xj(d) while the others will successfully 

propose policies in {x
l
(d) : l E N \ {j, k}}. In the former case she will receive uj (1 − d−j) 

> uj (dj) (recall that d E/ ∆n−1) in all future periods; in the latter she will receive uj (dj) in 

all future periods. 

If she deviated from a, then the default d would still be implemented in the current 

period (players l ≠ k would still reject y) and some policy in {x
l
(d) : l E N \ {i, k}} would 

be implemented in all future periods. Hence, player j's payoff would be uj (dj), which is 

strictly less than her payoff from rejecting y (because j proposes, and therefore obtains 

uj (1 − d−j) > uj (dj), with positive probability next period). This proves that player j 

cannot profitably deviate from rejecting y and that this is not a weakly dominated 

strategy in the stage game. 

Now suppose that j = k i.e. player j is the proposer. As the other players reject her 

proposal (according to a), she receives (1 − k) uj (dk) in the current period. From (iid) in the 

definition of histories, the next period's history belongs to with C not including k; 

so that, irrespective of k's move, a policy x
l
(d) with l ≠ k will be implemented in the next 

period and never amended. This implies that player k's discounted sum of payoffs from 

the next period on is uk (dk) irrespective of her choice in the voting stage. Hence, under a, 

player j = k cannot profitably deviate from a because her payoff will be uk (dk) whether she 

accepts the proposal or not. This is true as long as at least one of the other players 

rejects y. To prove that ak is a weakly undominated strategy in the stage-game, it 

therefore remains to show that she could not improve on the choice prescribed by ak if all 

the other players accepted y. In this case, accepting y would lead to a history in 

((iic) in the definition of histories): in the next period, x
k
(d) would be implemented (and 

never amended) with probability 1. Her payoff would then be (1 − k)uk (yk) + kuk (1 − y−k). 

Rejecting y would also induce a history in ((iie) in the definition of histories), so 

that x
k
(d) would be implemented with probability 1 in the next period. Her total payoff 

would therefore be (1 − k) uk (dk) + kuk (1 − d−k). From the definition of the proposer's voting 

strategy, this implies that her voting behavior is weakly undominated in the stage-game. 

 Case 3. d E ∆n−1 and y ≠ x
i
(d) for all i E C. As d is in the simplex, x

i 
j(d) = dj for 
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all i,j E N. From the definition of a, any policy in the simplex is absorbing. Therefore, 

rejection of y leads to the indefinite implementation of d, yielding a payoff of uj (dj) for 

player j irrespective of who voted y down. This implies that, whenever any other player 

rejects y, player j is indifferent between accepting and rejecting; so that her strategy is a 

best response. 

Therefore, to show that j cannot profitably deviate from a and that a prescribes her a 

weakly undominated action in this voting stage, it suffices to show that she cannot 

improve on playing according to a when all the other players accept y. In this case, if j 

accepts y then she receives (1 − Sj) uj (yj) in the current period. From (iic) in the 

definition of histories, the next period's history is in H ({k}), so that player j will receive 

( ujx
k(y)) = uj (yj) in all future periods if j k, and uj (xt (y)) = uj (1 − y_k) in all 

future periods if j = k. Her total payoff from accepting y is therefore uj (yj) if j = ̸ k, and (1 − Sj) uj 

(yj) + Sjuj (1 − y_j) if j = k. As explained in the previous paragraph, her payoff will be uj (dj) if, 

instead, she rejects y. By definition of a, therefore, j's choice (as prescribed by a) is a best response 

and weakly undominated in the stage-game. 

(ii) Proposal strategies. Take an arbitrary history in H(C), Q1 = ̸ C C N, and let d E X be 

the current default. If proposer k offers some x
i(d) with i E C (as prescribed by a), then 

from the definition of voting strategies, x
i(d) is unanimously accepted (and never 

amended). Her payoff is therefore 

{ 

uk (1 − d_k) if k = i , 
uk (xi

k(d)) = 
uk (dk) if k = ̸ i . 

Suppose f irs t  tha t  d E/  ∆ n _ 1 .  I f  k devia ted from a by propos ing some y = ̸  x
i(d) fo r  

a l l  i  E C ,  then her  proposal  would be rejec ted by al l  o ther  playe rs  ( so that  d 

would be implemented in  the curren t  per iod) .  From (i id)  in  the def ini t ion of  

his tor ies ,  the next  per iod 's  his tory would be in  H (N {k}) .  By def ini t ion of  a ,  th is  

impl ies  tha t  some po licy x
l (d) ,  wi th  l  = ̸  k ,  would be implemented indefini te ly.  As 

x
l
k(d) = dk ,  th is  impl ies  that  her  k(d)) :  the  devia t ion total  payoff  f rom 
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devia t ing would be u i  (dk) < uk  (1 −  d_k ) < uk  (x i  

would not be profitable. 

Now suppose that d E ∆n_1 — so that x
i
k(d) = dk for all i E N. If player k makes a 

proposal that is rejected by at least one of the other players, then the same argument as in 

the previous paragraph shows that such a deviation cannot be profitable. If player k makes 

a proposal that only she rejects, then she receives (1 − Sk)uk (dk) in the current period. 



As the next period's history will be in H({k}) ((iie) in the definition of histories), she will 

then receive uk (xk
k(d)) = uk (dk). Hence, her payoff from the deviation is the same as that 

from not deviating; i.e. uk (dk). Finally, by definition of voting strategies when d E ∆n−1, 

player k would have to offer yj > dj to each j = ̸ k to make a successful proposal. As d is in 

the simplex, this implies that yk < 1 − y−k < 1 − d−k = dk. Hence, player k's payoff from 

making a successful proposal (1 − k) uk (yk) + kuk (1 − y−k) would be strictly less 
k(d)). As a result, i does not have a profitable deviation.  

than ui (dk) = uk (xi 

By the one-shot deviation principle, is an SPE. 

 

Observation 2. If q = n then the Baron-Ferejohn model has a unique stationary SPE. 

Proof: We prove Observation 2 in two steps. Step 1 derives several properties of 

stationary SPE behavior, which we will use in Step 2 to establish the uniqueness of a 

stationary SPE. 

Step 1: Properties of stationary SPEs. 

Let be any stationary SPE and, for each i E N, let Wi  be player i's continuation 

value from moving to period t + 1 conditional on and on any period-t proposal being 

rejected. Because is a stationary SPE, the very first proposer makes a successful 

proposal. Let xi = (xi
 1,. . . , xi ) E X be player i's proposal when she is selected to 

propose. As W is 
n 

the most that player j can expect to receive from continuing the bargaining process beyond the 

current period, routine arguments imply that j votes to accept proposal xi
 if and only 

(  )  

if uj x i jW (recall that uj(0) = 0). Since ui is strictly increasing in xi
 i, this in 

turn j implies that uj (x i
j) = jWj  for all j i. Therefore, each player j E N receives the 

same 

share of the pie ¯x j u−1( jWr) from all proposers i j. (Players do not randomize 

in equilibrium: each proposer allocates just enough to the other players to induce them to accept the 

proposal and allocates the residual to herself.) 

By definition of Wj , we can rewrite uj (¯x7) = jWj  as 

uj (¯x7) = j [pjuj (xi) + (1 − pj)uj (¯x7)] 

or, equivalently, as 

jpj  uj (xj
.)  (xj) (18) 

uj (¯x7) = 66  



1 − j (1 − pj) 3 



As j  (0,1), we have ¯x j < x j
j for all . This implies that  

∑D  1 − = 1 − E ¯x  i− ¯x = xj j − ¯x > 0 . 

i E N i ~ j  

Substituting into (18), we obtain 
)  =  j u j  

uj (¯x  (D  + ¯x ) . (19) 
j j 

Now take an arbitrary and define Hi : [0,1]2 R as 

H i(s, f) i(f) − iu i(s + f) ,  for all [0,1] .  

It is readily checked that Hi(0,0) = 0 and that, for all (s, f) = ̸ (0,0), Hi  is strictly 

decreasing in s, strictly increasing in f and continuous in its arguments. Let S i  max 

[0,1] : Hi(s, 1) 0}. The properties of Hi  ensure that we can (explicitly) define 

f i : [0, Si] [0,1] as the unique solution to Hi (s, f i(s)) 0 for all [0, Si]. By 

the implicit function theorem, the derivative of f i satisfies 

i u ′  i  ( s +  f i ( s ) )   

f′ i(s) = u′ i (fi(s)) − iu′ i (s + fi(s)) > 0 

for all s (where the inequality follows from i (0,1), u
′
i > 0 and concavity of the ui 's). 

By definition of the Hi 's and fi 's, we know from (19) that ¯x i and D  must satisfy 

 ¯x  i= fi (D ) for all , (20) 

in any stationary SPE . 

Step 2: Uniqueness of stationary SPE. 

To complete the proof of the Observation, it suffices to show that for any two stationary 

SPEs of the Baron-Ferejohn model, 1 and 2, we have ¯x 1 = ¯x 2
 for all — so 

that 
 j j 

1  

= 2 .  Suppose instead that ¯x 1
 

i  < ¯x 2
 

i  for some . As f i  is strictly increasing, (20) implies that D 1  < D 2
.  This in turn implies that ¯x 1

 

j  < ¯x 2
 

j  f o r  a l l  N  a n d ,  
consequently, that EjEN ¯x 1 

j < EjEN ¯x 2
 j. We then have 

∑D 1 1 − 

jEN 

j > 1 − E 
jEN 

¯x 2 2
 

: 
j  

a contradiction. 
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