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Abstract
Rationale Dopamine D1-like receptor signalling is involved
in contextual fear conditioning, but the brain regions involved
and its role in other contextual fear memory processes remain
unclear.
Objectives The objective of this study was to investigate (1)
the effects of SCH 23390, a dopamine D1/D5 receptor antag-
onist, on contextual fear memory encoding, retrieval and
reconsolidation, and (2) if the effects of SCH 23390 on con-
ditioning involve the dorsal hippocampus (DH) and/or
basolateral amygdala (BLA).
Methods Rats were used to examine the effects of systemical-
ly administering SCH 23390 on the acquisition, consolidation,
retrieval and reconsolidation of contextual fear memory, and

on locomotor activity and shock sensitivity. We also deter-
mined the effects of MK-801, an NMDA receptor antagonist,
on contextual fear memory reconsolidation. The effects of
infusing SCH 23390 locally into DH or BLA on contextual
fear conditioning and locomotor activity were also examined.
Results Systemic administration of SCH 23390 impaired con-
textual fear conditioning but had no effects on fear memory
consolidation, retrieval or reconsolidation. MK-801 was
found to impair reconsolidation, suggesting that the behav-
ioural parameters used allowed for the pharmacological dis-
ruption of memory reconsolidation. The effects of SCH 23390
on conditioning were unlikely the result of any lasting drug
effects on locomotor activity at memory test or any acute drug
effects on shock sensitivity during conditioning. SCH 23390
infused into either DH or BLA impaired contextual fear con-
ditioning and decreased locomotor activity.
Conclusions These findings suggest that dopamine D1-like
receptor signalling in DH and BLA contributes to the acqui-
sition of contextual fear memory.

Keywords Amygdala . Contextual fear conditioning .

Dopamine .D1receptor .Hippocampus .Locomotoractivity .

Memory . Retrieval . Reconsolidation . Shock sensitivity

Introduction

The neurotransmitter dopamine plays a crucial role inmemory
processing. Although well known for its involvement in ap-
petitive learning and memory (Schultz 2013), dopamine also
mediates certain aversive memory processes (Pezze and
Feldon 2004; Iordanova 2009; Volman et al. 2013). During
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Pavlovian fear conditioning, an innocuous conditioned stim-
ulus (CS) is paired with an aversive unconditioned stimulus
(US); this results in the CS becoming associated with the US,
such that the CS alone elicits fear responding after condition-
ing (Fendt and Fanselow 1999). Following conditioning, fear
associated with the CS is transferred to long-term memory
through consolidation (McGaugh 2000). Upon retrieval, fear
memory can become labile which may allow for the updating
of the memory to maintain its relevance, before it is
restabilized through reconsolidation (Lee 2009).

Dopamine D1-like receptor signalling is involved in
Pavlovian fear conditioning to discrete and contextual cues.
SCH 23390 is a selective D1/D5 receptor antagonist in vivo
(Bourne 2001) that has been used extensively as a pharmaco-
logical tool for investigating the role of D1-like receptor sig-
nalling in modulating fear memory processing. Systemic ad-
ministration of SCH 23390 before training impairs fear-
potentiated startle and contextual fear conditioning (Inoue
et al. 2000; Greba and Kokkinidis 2000; Calzavara et al.
2009). In contrast, SCH 23390 administered immediately after
training has no effect on contextual fear conditioning (Inoue
et al. 2000; Bai et al. 2009), suggesting that D1/D5 receptor
antagonism impairs the acquisition, but not consolidation, of
contextual fear. Yet the brain regions involved in mediating
the effects of SCH 23390 on contextual fear conditioning
remain unclear. The dorsal hippocampus (DH) and basolateral
amygdala (BLA) are both well known for their involvement in
contextual fear conditioning. One prevalent view is that con-
textual representations are encoded by DH and associated
with the US in BLA (Anagnostaras et al. 2001). Both DH
and BLA receive dopamine projections from the ventral teg-
mental area (VTA) and show D1/D5 receptor expression
(Huang et al. 1992; Scibilia et al. 1992; Gasbarri et al. 1997;
Pinard et al. 2008; Muller et al. 2009). SCH 23390 suppresses
long-term potentiation in DH and BLA, suggesting that D1-
like receptor signalling is involved in synaptic plasticity in
these regions (Otmakhova and Lisman 1996; Huang and
Kandel 1995, 2007). Infusion of SCH 23390 into DH impairs
spatial learning, and SCH 23390 infusion into BLA impairs
fear learning to discrete cues (Greba and Kokkinidis 2000;
O’Carroll et al. 2006; Pezze and Bast 2012). However, the
role of D1-like receptor signalling in these areas in regulating
contextual fear conditioning is poorly understood; therefore,
one of the aims of the present study was to address this issue.

More recent studies have begun to investigate the role of
dopamine transmission in memory reconsolidation.
Amphetamine, an indirect dopamine receptor agonist, enhances
the reconsolidation of conditioned place preference, but not
Pavlovian conditioned approach, memory (Blaiss and Janak
2006, 2007). D3 receptor antagonism interferes with the
reconsolidation of drug-associated memory (Yan et al. 2013,
2014). SCH 23390 also disrupts drug-associated memory
reconsolidation and the reconsolidation of passive avoidance

memory (Sherry et al. 2005; Yan et al. 2014). Infusion of SCH
23390 into medial prefrontal cortex impairs the reconsolidation
of recognition memory under certain conditions (Maroun and
Akirav 2009). However, the potential involvement of D1-like
receptor signalling in modulating the reconsolidation of contex-
tual fear memory has not been examined.

Here we sought to confirm and extend previous findings by
examining (1) the effects of SCH 23390 on the acquisition,
consolidation, retrieval and reconsolidation of contextual fear
memory, (2) if any effects of SCH 23390 on conditioning are
attributable to non-specific drug effects on locomotion or
nociception, and (3) the effects of infusing SCH 23390 into
DH or BLA on contextual fear conditioning and locomotion.

Methods

Animals

Male Lister hooded rats (250–400 g; Harlan, UK, or Charles
River, UK) were group-housed on a 12-h light/dark cycle
(lights on at 0800) and had free access to food and water.
The principles of laboratory animal care were followed, and
all experimental protocols were performed in accordance with
internal ethical review and the Animals (Scientific
Procedures) Act 1986, UK. All behavioural testing occurred
during the animals’ light cycle.

Systemic drug administration

Animals were injected with SCH 23390 (0.1 mg/kg, i.p.) or
MK-801 (0.1 mg/kg, i.p.) dissolved in 0.9 % saline (0.1 mg/
mL). These doses of SCH 23390 and MK-801 have previous-
ly been shown to impair fear conditioning and memory
reconsolidation, respectively (Greba and Kokkinidis 2000;
Inoue et al 2000; Lee et al. 2006). Vehicle-treated controls
received injections of saline (1 mL/kg, i.p.).

Systemic drug effects on contextual fear conditioning
and memory testing

The effects of systemic SCH 23390 administration on differ-
ent stages of contextual fear learning and memory processing
were investigated using two chambers which have been de-
scribed in detail elsewhere (Stevenson et al 2009). All animals
underwent contextual fear conditioning on day 1 using testing
parameters modified from our previous study (Stevenson
2011). Animals were conditioned in a novel context consisting
of distinct visual (stripes or spots on twowalls of the chambers
with the house light on), auditory (60-dB white noise) and
olfactory (ethanol cleaning solution) cues present during con-
ditioning. The US used was mild electric shock delivered au-
tomatically through the floor bars of the chamber by a
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computer (MED-PC IV software, Med Associates, VT). The
animals were placed in the chambers and after 2 min were
subjected to four unsignalled shocks (0.5 mA, 0.5-s duration,
1-min inter-trial interval). The animals were removed from the
chamber 2 min after the last shock and returned to the home
cage. On day 2, all animals were returned to the conditioning
chambers for 2 min. In some experiments, this served to test
long-term memory (LTM), whereas in other experiments, this
served to test memory retrieval and to reactivate memory be-
fore testing post-reactivation long-term memory (PR-LTM)
for 2 min on day 3 (see Fig. 1). Separate cohorts of animals

were injected with SCH 23390 or vehicle as follows: (1)
30 min before conditioning on day 1, (2) immediately after
conditioning on day 1, (3) 30min before reactivation on day 2,
or (4) immediately after reactivation on day 2. Another cohort
of animals was injected with MK-801 or vehicle 30 min be-
fore reactivation on day 2 to determine if the conditioning and
reactivation parameters used allowed for the pharmacological
disruption of reconsolidation; this NMDA receptor antagonist
has previously been shown to disrupt the reconsolidation of
other types of memory (Lee et al. 2006; Milton et al. 2008;
Flavell and Lee 2013). The chamber floor bars and waste trays

Fig. 1 a Systemic SCH 23390
administration 30 min before
contextual fear conditioning
decreased freezing during LTM
testing the next day (**P<0.01).
b SCH 23390 given immediately
after conditioning had no effect
on freezing during later LTM
testing. c SCH 23390 given
30 min before brief memory
reactivation (REACT) had no
effects on freezing during
REACT or during PR-LTM
testing the next day. d SCH 23390
given immediately after REACT
had no effect on freezing during
later PR-LTM testing. e MK-801
given 30 min before REACT
decreased freezing during PR-
LTM testing the next day
(*P<0.05)
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were cleaned with the ethanol cleaning solution between each
session, and the animals were tested at approximately the
same time of day on each day. Behaviour was recorded via
digital cameras in the chamber ceilings for subsequent data
analysis.

Systemic drug effects on locomotor activity and shock
sensitivity testing

To determine if any effects of systemic SCH 23390 given
before conditioning on freezing during later LTM testing were
due to non-specific effects on locomotion or nociception,
some of the animals from the contextual fear conditioning
and memory processing experiments described above were
also used to examine the effects of this drug treatment on
locomotor activity or shock sensitivity. Animals were tested
2–7 days after the last day of memory testing (Stevenson
2011).

Locomotor activity was tested in the open field using an
apparatus (1×1-m base, 0.5-m high walls) made of black
Perspex. Separate cohorts of animals were injected with
SCH 23390 or vehicle as above, either 30 min or 24 h before
testing. Animals were tested for 10 min in the open field.
Testing occurred in a dimly lit room to match the lighting
conditions present during contextual fear conditioning and
memory testing. The floor of the open field was cleaned using
a methanol solution after each testing session. Behaviour was
digitally recorded for subsequent data analysis.

Shock sensitivity was tested using a modified version of a
previously described paradigm (Quirk et al. 2000). A separate
cohort of animals was injected with SCH 23390 or vehicle as
above and tested 30 min later. Animals were placed in a novel
chamber and after 10 min were subjected to 10 unsignalled
shocks (0.5 s, 1-min inter-trial interval). The first shock was
0.05 mA and each subsequent shock increased in 0.05-mA
increments, such that the last shock was 0.5 mA. The chamber
floor bars and waste trays were cleaned with a methanol
cleaning solution between each session. Behaviour during
testing was digitally recorded for subsequent data analysis.

Surgery

To determine the possible sites of action of SCH 23390 on
contextual fear conditioning and locomotor activity, separate
cohorts of experimentally naïve animals were implanted with
cannulae targeting DH or BLA to infuse drug locally into
these regions. Anaesthesia (isoflurane) and analgesia
(buprenorphine) ensured complete inhibition of the hindpaw
withdrawal reflex during surgery. Animals were placed in a
stereotaxic frame and the incisor bar was adjusted to maintain
the skull horizontal. For DH, guide cannulae (26-gauge;
PlasticsOne, VA) were implanted bilaterally 0.5 mm dorsal
to the target site using the following stereotaxic coordinates:

4.5 mm posterior and 3 mm lateral to bregma, and 3 mm
ventral to the brain surface (Paxinos and Watson 1998). The
stylets (33-gauge; PlasticsOne) extended 0.5 mm beyond the
tip of the guide cannulae. These coordinates were based on
our previous study investigating the effects of hippocampal
SCH 23390 infusions on spatial learning and memory
(Pezze and Bast 2012). For BLA, guide cannulae were im-
planted bilaterally 1 mm dorsal to the target site using the
following stereotaxic coordinates: 2.8 mm posterior and
4.7 mm lateral to bregma, and 6.4 mm ventral to the brain
surface. The stylets extended 1mmbeyond the tip of the guide
cannulae. These coordinates were modified from our previous
study investigating the effects of BLA inactivation on contex-
tual fear memory expression (Stevenson 2011). Cannulae
were secured with dental cement to four screws threaded into
the skull. Animals were singly housed after surgery and given
post-operative analgesia (buprenorphine and meloxicam).
From 1–2 days after surgery, animals were mildly restrained
every 1–2 days and the stylets were loosened and retightened
to ensure that the cannulae remained unblocked; this also
served to habituate the animals to handling during the central
drug infusion procedure. Behavioural testing began 5–7 days
after surgery.

Central drug effects on contextual fear conditioning
and locomotor activity

For DH infusions, 5 μg of SCH 23390 dissolved in 1 μL of
0.9 % saline was infused (Pezze and Bast 2012). For BLA
infusions, 2.5 μg of SCH 23390 dissolved in 0.5 μL of
0.9 % saline was infused. This dose was adapted from our
previous studies investigating the effects of BLA SCH
23390 infusion on acoustic startle regulation (Stevenson and
Gratton 2004a, 2004b). The stylets were removed, and SCH
23390 or vehicle (0.9% saline) was infused bilaterally at a rate
of 0.5 μL/min using injectors (33-gauge; PlasticsOne), ex-
tending 0.5 mm (DH) or 1 mm (BLA) beyond the tips of the
guide cannulae, which were connected to 1-μL Hamilton sy-
ringes via a length of polyethylene tubing. The injectors were
left in place for 1 min following infusions before they were
removed and the stylets replaced; behavioural testing started
10 min later. Animals were first given SCH 23390 or vehicle
infusions before contextual fear conditioning using the same
parameters as above except that the shock duration was
increased to 1 s to reduce any potential deficit in freez-
ing caused by surgery (Hart et al. 2009). The next day,
the animals underwent LTM testing for 2 min as above.
The same animals were then used 2–7 days later to test
the effects of DH or BLA infusions of SCH 23390 or
vehicle given 10 min before open field testing as above.
Behaviour during LTM and open field testing was dig-
itally recorded for subsequent data analysis.
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Histology

Upon completion of the central drug infusion experiments, the
animals were deeply anaesthetized and transcardially perfused
with 0.9 % saline followed by 4 % paraformaldehyde. Brains
were removed and post-fixed in 4 % paraformaldehyde and
kept at 4 °C until slicing. DH or BLA sections were obtained
and stained for acetylcholinesterase as previously described
(Stevenson et al. 2007).

Data analysis

Freezing, defined as the absence of movement except for that
related to respiration, was taken as a behavioural index of fear
during LTM, reactivation and/or PR-LTM testing. Freezing
behaviour was scored manually by one or two trained ob-
servers, one of whom was blind to the treatment group of
the animal. Freezing was determined at 3-s intervals through-
out testing, and the cumulative duration of freezing was then
calculated and expressed as a percentage of each 2-min test.
The effects of systemic SCH 23390 given before or after con-
ditioning on freezing during LTM testing the next day were
analysed separately using two-tailed unpaired t tests. The ef-
fects of systemic SCH 23390 given before reactivation on
freezing during reactivation and PR-LTM testing the next
day were analysed using a two-way analysis of variance
(ANOVA), with treatment and test as the between- and
within-subject factors, respectively. The effects of systemic
SCH 23390 given after or MK-801 given before reactivation
on freezing during PR-LTM testing the next day were
analysed using separate two-tailed unpaired t tests. The effects
of DH or BLA SCH 23390 given before conditioning on
freezing at LTM test the next day were analysed separately
using two-tailed unpaired t tests.

Behaviour in the open field was analysed using
Ethovision software (Noldus, Netherlands). The total
distance moved was determined and taken as an index
of locomotor activity. The effects of systemic SCH
23390 given 30 min or 24 h before testing were
analysed separately using two-tailed unpaired t tests.
The effects of DH or BLA SCH 23390 given 10 min
before testing were analysed in the same way.

Behaviour during shock sensitivity was scored manually to
determine the threshold current which elicited ‘flinch’ and
vocalization responses (Quirk et al. 2000). Behaviour was
scored by two observers, one of whom was blind to the treat-
ment group of the animal. The effects of systemic SCH 23390
given before testing were analysed using two-way ANOVA,
with treatment and response as the between- and within-
subject factors, respectively. All data are presented as the
mean+SEM and the significance level for all comparisons
was set at P<0.05.

Results

Systemic SCH 23390 effects on contextual fear conditioning
and memory processing

The effects of systemic SCH 23390 given 30 min before or
immediately after contextual fear conditioning on freezing
during LTM testing the next day are presented in Fig. 1a, b.
Compared to vehicle (n=10), SCH 23390 (n=10) given be-
fore conditioning significantly decreased freezing at LTM test
(t(18)=3.03, P<0.01; Fig. 1a). No differences in freezing dur-
ing LTM testing were observed between SCH 23390 (n=10)
and vehicle (n=9) given after conditioning (t(17)=0.66,
P>0.1; Fig. 1b).

The effects of systemic SCH 23390 given 30 min before or
immediately after memory reactivation on freezing during re-
activation and during PR-LTM testing the next day are shown
in Fig. 1c, d. There were no differences in freezing during
reactivation or PR-LTM testing between SCH 23390 (n=10)
or vehicle (n=10) given before reactivation (main effect of
treatment: F(1,18)=0.67, P>0.1; treatment×test interaction:
F(1,18)=1.46, P>0.1; Fig. 1c). Similarly, no differences in
freezing during reactivation or PR-LTM testing were observed
between SCH 23390 (n=11) or vehicle (n=11) given imme-
diately after reactivation (main effect of treatment: F(1,20)=
0.002, P>0.1; treatment× test interaction: F(1,20)=2.82,
P>0.1; Fig. 1d).

The lack of effect of SCH 23390, given before or after
reactivation, on freezing at PR-LTM test suggests that SCH
23390 did not affect memory reconsolidation. Various bound-
ary conditions, such as memory strength and reactivation du-
ration, are important in determining if a memory can undergo
reconsolidation after its retrieval (Lee 2009). To test if the
conditioning and reactivation parameters used allowed for
memory reconsolidation to occur, we examined the effects
of MK-801 given 30 min before reactivation on freezing dur-
ing PR-LTM testing. Compared to vehicle (n=9), MK-801
(n=9) significantly decreased freezing at PR-LTM test
(t(16)=2.13, P<0.05; Fig. 1e). This result suggests that MK-
801 impaired memory reconsolidation, in agreement with oth-
er studies (Lee et al. 2006; Milton et al. 2008; Flavell and Lee
2013). It also suggests that the lack of effect of SCH 23390 on
reconsolidation was unlikely due to any boundary conditions
associated with the parameters used.

Systemic SCH 23390 effects on locomotor activity and shock
sensitivity

The finding that SCH 23390, given before conditioning, re-
duced freezing at LTM test suggests that SCH 23390 impaired
contextual fear conditioning. However, it is possible that SCH
23390 affected nociception during conditioning. Another pos-
sibility is that SCH 23390 had non-specific locomotor effects
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that endured until LTM testing the next day; similarly, the lack
of effect of SCH 23390 given before reactivation on freezing
at PR-LTM test the next day could also have been due to
lasting drug effects on locomotor activity. We addressed these
issues by examining the effects of systemic SCH 23390 on
locomotor activity and shock sensitivity.

The effects of SCH 23390 given 30 min before open field
testing are presented in Fig. 2a. Compared to vehicle (n=9),
SCH 23390 (n=11) significantly decreased locomotor activity
(t(18)=3.69, P<0.01). The effects of SCH 23390 given 24 h
before open field testing are shown in Fig. 2b. In contrast to
the effects of treatment 30min before testing, no differences in
locomotor activity were observed between SCH 23390 (n=9)
or vehicle (n=9) when testing occurred 24 h after treatment
(t(16)=0.27, P>0.1). The effects of SCH 23390 given 30 min
before shock sensitivity testing are depicted in Fig. 2c. There
were no differences between SCH 23390 (n=10) or vehicle
(n=10) treatment in the threshold current eliciting flinch or
vocalization responses (main effect of treatment: F(1,18)=
0.015, P>0.1; treatment×response interaction: F(1,18)=
0.023, P>0.1). These results likely rule out the possibility that
SCH 23390 given before conditioning reduced freezing at
LTM test due to non-specific drug effects on locomotion or
nociception, which generally agrees with previous findings
(Bruhwyler et al. 1991; Inoue et al. 2000).

Central SCH 23390 effects on contextual fear conditioning
and locomotor activity

To determine if SCH 23390 acts in DH and/or BLA in medi-
ating its effects on contextual fear conditioning, we examined
the effects of local drug infusion into these regions. Only data
from animals with histologically confirmed cannulae place-
ments in DH or BLA (i.e. lateral or basal amygdaloid nuclei)
were included in the analysis (Fig. 3). The effects of infusing
SCH 23390 into DH 10 min before contextual fear condition-
ing on freezing during LTM testing the next day are presented
in Fig. 4a. Compared to vehicle (n=10), infusion of SCH
23390 (n=12) into DH before conditioning significantly de-
creased freezing at LTM test (t(20)=2.44, P<0.05). The effects
of intra-BLA infusion of SCH 23390 10 min before

conditioning on freezing during later LTM testing are shown
in Fig. 4b. Freezing was markedly decreased in animals with
BLA cannulae, possibly due to partial BLA damage caused by
the implants which has been reported previously (Fendt
2001). Nevertheless, compared to vehicle (n=10), SCH
23390 (n=12) infused into BLA before conditioning also sig-
nificantly decreased freezing at LTM test (t(20)=2.10,
P<0.05). These results suggest that SCH 23390 impairs con-
textual fear conditioning, at least in part, by acting in DH and
BLA.

We also examined the effects of infusing SCH 23390 into
DH or BLA on locomotor activity to determine if the acute
effects of systemic administration reported above (see Fig. 2a)
involve these regions. The effects of SCH 23390 infusion into
DH 10 min before open field testing are presented in Fig. 4c.
Compared to vehicle (n=10), intra-DH infusion of SCH
23390 (n=12) significantly decreased locomotor activity
(t(20)=3.08, P<0.01). The effects of BLA SCH 23390 infu-
sion 10 min before the open field test are shown in Fig. 4d.
Compared to vehicle (n=9), intra-BLA SCH 23390 (n=14)
resulted in a small but significant decrease in locomotor activ-
ity (t(21)=2.22, P<0.05). These results suggest that DH and
BLA are sites of action for the inhibitory effects of SCH
23390 on locomotor activity, broadly confirming previous
findings (McGregor and Roberts 1993; Pezze and Bast 2012).

Discussion

This study investigated the effects of the dopamine D1/D5
receptor antagonist SCH 23390 on contextual fear memory
processing. We found that SCH 23390 impaired the acquisi-
tion, but not the consolidation, retrieval or reconsolidation, of
contextual fear memory. The lack of effect of SCH 23390 on
reconsolidation was unlikely due to any boundary conditions
associated with the behavioural parameters used, given that
the NMDA receptor antagonist MK-801 was found to impair
memory reconsolidation using these parameters. We found
that SCH 23390 decreased locomotor activity when given
30 min, but not 24 h, after administration and that it had no
effect on shock sensitivity. This indicates that the acquisition

Fig. 2 a Systemic SCH 23390 administration 30 min before open field
testing decreased the distance moved during the test (**P<0.01). b SCH
23390 given 24 h before the open field test had no effect on the distance

moved during testing. c SCH 23390 had no effect on the threshold current
required to elicit flinch or vocalization responses during shock sensitivity
testing
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impairment caused by SCH 23390 was unlikely due to non-
specific drug effects on nociception during conditioning or on
locomotion during memory testing the next day. SCH 23390
infused locally into DH or BLA also impaired conditioning
and decreased locomotor activity, indicating that it mediates
its effects, at least in part, by acting in these regions.

The finding that systemic SCH 23390 administration im-
paired contextual fear conditioning, but not memory consoli-
dation or retrieval, is congruent with a previous report (Inoue
et al. 2000). It is possible that we would have observed a drug
effect on memory consolidation if a longer-duration LTM test
had been used. However, Inoue et al. (2000) reported a similar
negative finding of SCH 23390 on consolidation using a lon-
ger duration LTM test. Moreover, we did observe a drug effect
on acquisition using the same brief duration LTM test that we
used in the consolidation experiments. The lack of effect of
SCH 23390 on shock sensitivity has been shown previously
(Inoue et al. 2000) and suggests that it did not affect somato-
sensory perception of the US during conditioning. The acute
locomotor effect of SCH 23390 agrees with previous findings

(Bruhwyler et al. 1991), and its lack of effect 24 h after ad-
ministration is in keeping with the brief (~25 min) half-life of
this drug in rats (Bourne 2001). This suggests that SCH 23390
given before conditioning did not have non-specific locomo-
tor effects duringmemory testing the next day. Taken together,
these findings suggest that D1-like receptor signalling at the
time of conditioning is involved in encoding contextual fear.

It is worth noting that SCH 23390 can modulate the con-
solidation of contextual fear memory under certain conditions.
Intra-DH infusion of SCH 23390 after conditioning attenuates
the facilitatory effects of corticosterone on contextual fear
encoding (Liao et al. 2013). Male rats exposed to females after
conditioning show impaired contextual fear retention, and this
effect is blocked by infusion of SCH 23390 into DH post-
conditioning (Bai et al. 2009). However, in both of these stud-
ies, SCH 23390 had no effect in the respective control condi-
tions, suggesting that D1/D5 receptor signalling in DH is not
necessary for contextual fear memory consolidation. The lack
of effect of systemic SCH 23390 administration on the retriev-
al of contextual fear memory is more difficult to interpret
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given its acute locomotor effects. It is possible that SCH
23390 impaired retrieval, which would have reduced freezing,
but that this effect was masked by the locomotor activity
impairing effects of the drug, which might have resembled
enhanced freezing. In contrast, central infusion studies have
shown a role for D1-like receptor signalling in learned fear
retrieval. Intra-BLA infusion of SCH 23390 impairs the re-
trieval of fear-potentiated startle and second-order auditory
fear memory (Lamont and Kokkinidis 1998; Nader and
LeDoux 1999), whereas infusion into nucleus accumbens
shell enhances contextual fear retrieval (Albrechet-Souza
et al. 2013). Therefore, studies investigating the effects of
central SCH 23390 infusions on the retrieval of contextual
fear memory might be warranted.

Contrary to the present results, previous studies have
shown that SCH 23390 disrupts memory reconsolidation in
other paradigms. SCH 23390 impairs the reconsolidation of
passive avoidance memory (Sherry et al. 2005), albeit at a
greater dose (0.5 mg/kg) than the one used here. Therefore,
it is possible that we may have observed an effect had we used
a greater dose of drug. However, SCH 23390 given at a similar
dose (0.08 mg/kg) to that used in the present study has been
found to disrupt cocaine-associated memory reconsolidation
(Yan et al. 2014). Another possibility is that certain boundary
conditions related to the behavioural parameters used here did
not allow for the impairment of memory reconsolidation by

SCH 23390. For example, previous studies have shown that
using strong conditioning or brief reactivation parameters can
result in resistance to the pharmacological disruption of mem-
ory reconsolidation (Bustos et al. 2009; Lee and Flavell 2014).
Memory updating during the reconsolidation process is
thought to involve a prediction error signal to incorporate
new information into the existing memory (Lee 2009). Thus,
it is possible that the reactivation duration used in the present
study was too brief to engage prediction error signalling and
render the memory amenable to disruption. To address this
issue, we also examined the effects of MK-801 on memory
reconsolidation using the same testing parameters that were
used in the SCH 23390 experiments. We found that MK-801
impairedmemory reconsolidation, confirming previous results
(Lee et al. 2006; Milton et al. 2008; Flavell and Lee 2013).
This indicates that the lack of effect of SCH 23390 on the
reconsolidation of contextual fear memory was unlikely due
to any boundary conditions surrounding the parameters used.

Another possibility is that D1-like receptor signalling is in-
volved in the destabilization of contextual fear memory. During
retrieval, memory can become labile by undergoing destabili-
zation before later becoming restabilized through
reconsolidation. This process is thought to play an important
role in maintaining memory persistence and relevance follow-
ing memory updating (Lee 2009). Evidence indicates that
memory retrieval and destabilization are dissociable processes
(BenMamou et al. 2006; Milton et al. 2013), therefore, the lack
of effect of SCH 23390 on retrieval reported here does not
preclude a role for D1 receptor signalling in mediating destabi-
lization. Recent studies have shown that dopamine transmission
is involved in memory destabilization. Inhibition of dopamine
cell activity in the VTA before appetitive memory retrieval
prevents the disruptive effects of post-retrieval MK-801 on
reconsolidation (Reichelt et al. 2013). SCH 23390 infused into
DH before the retrieval of object recognition memory also mit-
igates the reconsolidation impairing effects of anisomycin infu-
sion after retrieval (Rossato et al. 2014). These results suggest
that memory updating through prediction error signalling, dur-
ing which dopamine transmission plays a crucial role (Schultz
2013), involves the initial destabilization process. Furthermore,
D1-like receptor signalling might also be involved in the desta-
bilization of contextual fear memory.

We found that infusing SCH 23390 into DH or BLA im-
paired contextual fear conditioning. To our knowledge, this
has not been shown previously. However, this result broadly
agrees with other findings showing that D1-like receptor sig-
nalling in these regions is involved in synaptic plasticity and,
more specifically, plays a role in aversive learning involving
contextual cues. SCH 23390 impairs long-term potentiation in
DH and BLA (Otmakhova and Lisman 1996; Huang and
Kandel 1995, 2007). Mice lacking D1 receptors in dentate
gyrus granule cells show impaired contextual fear conditioning
(Sariñana et al. 2014). These mice also exhibit similar fear

Fig. 4 a Infusing SCH 23390 into DH 10 min before contextual fear
conditioning decreased freezing during LTM testing the next day
(*P<0.05). b SCH 23390 infusion into BLA 10 min prior to
conditioning also decreased freezing at LTM test (*P<0.05). c Intra-DH
infusion of SCH 23390 10 min before testing decreased the distance
moved in the open field (**P<0.01). d Intra-BLA SCH 23390 infusion
10 min before the test also decreased the distance moved in the open field
(*P<0.05)
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levels in the conditioning context and another separate context
after learning, suggesting that they show generalization of con-
textual fear. In the present study, we did not examine the effects
of SCH 23390 on contextual fear generalization, although this
could be investigated in the future. Intra-BLA infusion of SCH
23390 impairs conditioned place avoidance learning (Macedo
et al. 2007). Infusing SCH 23390 into the central nucleus of the
amygdala (CE) before auditory fear conditioning results in re-
duced freezing at memory test, in response to tones and during
the interval between tone presentations, indicating impaired
conditioning to auditory and background contextual cues
(Guarraci et al. 1999). Interestingly, D1-like receptor expres-
sion in CE is low relative to the adjacent BLA (Scibilia et al.
1992), suggesting that the effects of intra-CE infusion of SCH
23390 reported by Guarraci et al. (1999) might instead be me-
diated by BLA. Indeed, infusion of a D1/D5 receptor agonist
into BLA enhances contextual fear conditioning under certain
conditions (Biedenkapp and Rudy 2008).

How exactly D1-like receptor signalling in DH and BLA is
involved in encoding contextual fear memory remains to be
determined. During contextual fear conditioning, a spatial rep-
resentation of the context is encoded and this representation
becomes associated with the US (Anagnostaras et al. 2001).
Previous studies have shown that intra-DH infusion of SCH
23390 impairs spatial learning (O’Carroll et al. 2006; Pezze
and Bast 2012). This raises the possibility that SCH 23390
infused into DH may impair contextual fear conditioning by
interfering with the encoding of the spatial representation of
the context. For example, D1-like receptor signalling might be
involved in encoding the various contextual elements into a
distinct configural representation of the context (Rudy and
Sutherland 1995). Although a previous study found that am-
phetamine did not impair configural associations during appe-
titive learning (Blackburn and Hevenor 1996), this issue has
received little scrutiny to date and future studies could inves-
tigate the effects of SCH 23390 on configural learning.
Another possibility is that SCH 23390 disrupts attentional
mechanisms involved in contextual encoding by DH, and ev-
idence from studies on spatial and appetitive learning supports
this idea (Muzzio et al. 2009). Alternatively, evidence also
indicates a role for DH in associating the context and US
during contextual fear learning (Chang et al. 2008; Lee
2010), and D1-like receptor signalling could be involved in
this process. Similarly, intra-BLA SCH 23390 infusion may
disrupt contextual fear conditioning by interfering with
encoding the context-US association. Previous studies show-
ing that amygdala SCH 23390 infusion impairs aversive learn-
ing lend support to this idea (Guarraci et al. 1999; Greba and
Kokkinidis 2000). Further work is needed to determine the
respective roles of DH and BLA D1-like receptor signalling
in modulating contextual fear conditioning.

In summary, we have confirmed previous findings demon-
strating that SCH 23390 impairs the acquisition of contextual

fear and extended them by showing that this effect is mediated
partly by DH and BLA. However, we cannot rule out the
involvement of other regions in mediating the effects of
SCH 23390 on contextual fear conditioning. Through their
inter-connections with DH and BLA, corticostriatal areas such
as the medial prefrontal cortex, dorsal striatum and nucleus
accumbens form part of a wider neural circuit involved in
contextual fear processing (Haralambous and Westbrook
1999; Levita et al. 2002; White and Salinas 2003; Rozeske
et al. 2014). These areas receive dopamine input from VTA
(Lammel et al. 2014), and recent evidence indicates that D1
receptor signalling in these regions regulates contextual fear
conditioning (Ikegami et al. 2014). Our results add to a grow-
ing body of evidence indicating that contextual fear process-
ing is modulated by both D1- and D2-like receptor signalling
(Biojone et al. 2011; de Souza Caetano et al. 2013; Colombo
et al. 2013; Wen et al. 2014).
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