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ABSTRACT

Recently we proposed a mechanism for sequestering the Standard Model vacuum energy that
predicts that the universe will collapse. Here we present a simple mechanism for bringing
about this collapse, employing a scalar field whose potential is linear and becomes negative,
providing the negative energy density required to end the expansion. The slope of the
potential is chosen to allow for the expansion to last until the current Hubble time, about
1010 years, to accommodate our universe. Crucially, this choice is technically natural due
to a shift symmetry. Moreover, vacuum energy sequestering selects radiatively stable initial
conditions for the collapse, which guarantee that immediately before the turnaround the
universe is dominated by the linear potential which drives an epoch of accelerated expansion
for at least an efold. Thus a single, technically natural choice for the slope ensures that the
collapse is imminent and is preceded by the current stage of cosmic acceleration, giving a
new answer to the ‘Why Now?’ problem.
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In [1, 2] we proposed a mechanism for sequestering the matter sector vacuum energy from
gravity. The idea is that all the matter sector scales are functions of the 4-volume element
of the universe

∫
d4x
√
g. Picking the specific functional dependence on

∫
d4x
√
g, reflecting

the scaling of dimensional quantities, ensures that the vacuum energy contributions are
invisible to gravity at any and all orders of the loop expansion in the matter sector. While
this ‘cancellation’ of the vacuum energy does not directly protect from graviton loops, it is
radiatively stable to matter corrections, evading the Weinberg no-go theorem [3] (see also [4]).
As a bonus, the mechanism renders the contributions from phase transitions automatically
small at late times. Since our mechanism is locally Poincaré invariant and diffeomorphism
invariant, it does not introduce any new local degrees of freedom, representing a minimal
modification of General Relativity by adding two global constraints.

For the matter sector scales to be nonzero, the universe should be finite in spacetime,
collapsing in the future. This requires dynamics which can turn expansion into contraction in
an FRW geometry. A simple possibility is to have a field with a potential that is not bounded
from below, or at least is ‘sufficiently negative’ (see, e.g. [5, 6] for earlier considerations).
If the negative potentials compensate the positive energy density of the rest, the collapse
will occur, and the field theory will not be scale-invariant but will have a nonzero mass gap.
Having a negative potential that can destabilize the universe seems to be physically feasible.
After all, the Standard Model Higgs appears to be an example of a field with such a potential
[7], albeit with a very delayed instability [8].

After vacuum energy cancellation there remains a residual, radiatively stable cosmological
constant whose value must be smaller than the value of the turnaround potential if collapse
is to occur. By taking the turnaround potential to be a linear function, it too is radiatively
stable. This is because a linear potential is exactly shift symmetric in our framework,
sufficing not only to protect its form but also the numerical value of its slope. Once set, to
the leading order this potential remains the same to all orders in the loop expansion in the
matter sector. This is crucial since it allows us to make a technically natural choice of the
slope, m3

slope ' MPlH
2
0 ' 10−39(eV)3, that ensures that collapse will occur after a present

Hubble epoch. Further, the vacuum energy sequestering dynamically selects radiatively
stable initial conditions that guarantee this turnaround will be preceded by a period of
accelerated expansion at the observed scale of dark energy, lasting for at least an efold. This
is a new solution to the ‘Why Now?’ problem1 [9]. It also confirms that wDE ' −1 is a
transient, as we claimed in [1, 2], and may be observable, along the lines of [6].

As defined in [1, 2], we start with the theory given by

S =

∫
d4x
√
g

[
M2

Pl

2
R− Λ− λ4L(λ−2gµν ,Φ)

]
+ σ

(
Λ

λ4µ4

)
. (1)

where all “protected” matter couples minimally to the rescaled metric g̃µν = λ2gµν , and as
before λ sets the hierarchy between the matter scales and the Planck scale, sincemphys/MPl ∝
λm/MPl, where mphys is the physical mass scale and m is the bare mass in the Lagrangian.
The parameters Λ and λ are global Lagrange multipliers, constants in space and time that

1Although the linear potential has been discussed before in GR to address the coincidence problem [10],
there the radiative corrections to Λ require fine tunings, unlike in our proposal, as we will discuss below.
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should be varied over to minimise the action, yielding global constraints

σ′

λ4µ4
=

∫
d4x
√
g , 4Λ

σ′

λ4µ4
=

∫
d4x
√
g T µµ , (2)

where Tµν = 2λ4
√
g̃

δ
δg̃µν

∫
d4x
√
g̃L(g̃µν ,Φ) is the conserved stress-energy in the ‘physical’ frame,

where the matter sector is canonically normalized, and σ′ = dσ(z)
dz
6= 0 Thus the function

σ fixes the matter scales as functions of
∫
d4x
√
g. Phenomenological arguments favor odd

functions which are exponential for large arguments in order to desensitize low energy particle
physics from dependence on cosmological initial conditions, while the scale µ is a fixed
external scale determined by same [1, 2]. The full protected matter Lagrangian

λ4L(λ−2gµν ,Φ) = λ4L̂(λ−2gµν ,Φ) +
λ2

2
(∂ϕ)2 + λ4V (ϕ) (3)

includes the Standard Model fields (along with possible extensions) in L̂, and a scalar field
ϕ which is the collapse ‘trigger’ controlling the turnover of cosmic expansion. The vacuum
energy cancellation2 to all orders in the protected matter sector loop expansion follows from
diffeomorphism invariance of the theory, since the full effective Lagrangian computed from√
gλ4L(λ−2gµν ,Φ) =

√
g̃L(g̃µν ,Φ), still couples to g̃µν [12].

Integrating out the global variables Λ and λ, the field equations become [1, 2]

M2
PlG

µ
ν = T µν −

1

4
δµν〈Tαα〉 . (4)

where the historic average is denoted 〈Q〉 =
∫
d4x
√
g Q/

∫
d4x
√
g. If we take the effective

matter Lagrangian Leff calculated to any order in loops, and split it into the renormalised
vacuum energy (classical and quantum) Ṽvac = 〈0|Leff|0〉, and local excitations ∆Leff, we can
write T µν = −Vvacδµν + τµν , where Vvac = λ4Ṽvac and τµν = 2√

g
δ

δgµν

∫
d4x
√
gλ4∆Leff(λ−2gµν ,Φ).

The vacuum energy completely drops out of the field equations, leaving us with

M2
PlG

µ
ν = τµν −

1

4
δµν〈ταα〉 . (5)

A residual cosmological constant Λeff = 1
4
〈ταα〉 remains, and corresponds to a radiatively

stable renormalized cosmological constant operator, after subtracting the divergent part. It
must be measured as in the case of any divergent quantities in quantum field theory. Our
procedure amounts to enforcing the result of the measurement by using the whole universe
as the detector [2]. It is protected by approximate scaling and shift symmetries of the theory
that control the cancellation [1, 2].

Because λ controls the physical scales in L, mphys = λm, it must be nonzero. By the
first of Eqs. (2),

∫
d4x
√
g must also be finite [1, 2]. For this to happen the cosmic expansion

must be halted, and contraction must begin. This is the job for the collapse trigger ϕ in

2Even if we ignore graviton loops, the Weinberg no-go theorem [3] precludes vacuum energy adjustment
in a standard EFT. It is important that the QFT regulator must also couple minimally to g̃µν to ensure the
cancellation of λ in loop logarithms [1, 2].
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(3). Its potential V (ϕ) must be negative for at least some range of ϕ to halt the expansion
[6, 11]. It cannot be constant: if so it would have been cancelled along with the rest of
the vacuum energy in (1). An arbitrary potential would be subject to radiative corrections,
which change both its form and the numerical values of its scales. Dealing with this would
restore some of the tunings of the vacuum energy sector which we are striving to evade.

In the case of a linear potential V (ϕ) = m3
∗ϕ+V0, however, there is a powerful protection

mechanism from radiative corrections. It is the approximate scaling and shift symmetries of
(1) that ensure the cancellations of the vacuum energy in the first place [1, 2]. Indeed, the
shift ϕ→ ϕ+C changes the full matter Lagrangian by L → L+m3

∗C. This can be absorbed
by the shift of the global variable Λ→ Λ−λ4m3

∗C so that the bulk action in (1) is invariant.

The global term changes by σ → σ +
∑∞

n=1
(−1)n

n!
σ(n)|C=0

(m3
∗C
µ4

)n
, but this has no effect on

the scales in the bulk terms in perturbation theory such as m∗. The only effect arises from a
variation of λ induced by a change of the constraint equations (2), renormalizing the physical

scales by the λ variation. Whenever m3
∗C
µ4 � 1, these variations are small, as generically occurs

for small scales m∗ and large cutoffs µ ∼ MPl. Hence, not only is the linear form of V (ϕ)
protected, but its physical slope m3

slope = λ3m3
∗ is perturbatively stable too. We can choose

it to be whatever we like because its small values are technically natural. As we will see, a
solution to the “Why now?” problem follows from the choice m3

slope 'MPlH
2
0 .

Let us now study the dynamics of the linear potential in the sequestering framework.
Note that now the residual cosmological constant, Λeff = 1

4
〈ταα〉, is irrelevant by itself, since

it can be ‘gauged away’ by a shift3 of ϕ. To see this explicitly we write τµν = τ̂µν+∂µϕ∂νϕ−
1
2
δµν(∂ϕ)2 − δµνm3

slopeϕ, where τ̂µν is the stress-energy of all protected matter sector fields

other than ϕ, contained in L̂. It follows that 〈τµµ〉 = 〈τ̂µµ〉 − 〈(∂ϕ)2〉 − 4m3
slope〈ϕ〉, and so

the RHS of Eq. 5 is given by

τµν−
1

4
δµν〈ταα〉 = τ̂µν−

1

4
δµν〈τ̂αα〉+∂µϕ∂νϕ−

1

4
δµν

(
2(∂ϕ)2−〈(∂ϕ)2〉

)
−δµνm3

slope(ϕ−〈ϕ〉) .
(6)

This stress-energy tensor is manifestly invariant under ϕ→ ϕ+ C. In contrast, the residual
cosmological constant is not invariant. It transforms as

〈τµµ〉 → 〈τµµ〉 − 4m3
slopeC . (7)

Shifting the origin of the ϕ direction we can set 〈ταα〉 to any arbitrary value, and in particular,
we can choose it to vanish4.

We now turn to cosmological mechanics and take spatially closed FRW, ds2 = −dt2 +
a2(t)dΩ3 as the background geometry, describing a compact universe that underwent a stage
of rapid inflation [1, 2]. As noted above, we will take the ϕ gauge such that the potential is
m3
slopeϕ, with the initial value of ϕ to be determined aposterior to satisfy the gauge constraint

3By a shift of ϕ, we can also remove V0 from all local equations; it will appear in the constraints (2), but
for asymptotically exponential σ, its effects are negligible.

4The scalar kinetic energy dominates near the big crunch [13] and so 〈τµ
µ〉 diverges logarithmically.

So does the curvature. Hence one must terminate the geometry at Planckian densities, which renders the
contributions from the singularity small in big universes [2].
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〈ταα〉 = 0 [1, 2]. With H = ȧ/a, the field equations (5) reduce to

3M2
Pl

(
H2 + 1

a2

)
= ρ+ ϕ̇2

2
+m3

slopeϕ, 3M2
Pl

(
Ḣ − 1

a2

)
= −3

2
(ρ+ p)− 3

2
ϕ̇2,

ϕ̈+ 3Hϕ̇+m3
slope = 0. (8)

The energy density ρ of the protected sector matter other than ϕ obeys ρ̇+ 3H(ρ+ p) = 0,
where p 6= −ρ: it is not vacuum energy, which completely cancels from the source. The
gauge constraint 〈ταα〉 = 0 yields

〈ϕ̇2〉 − 4m3
slope〈ϕ〉+ 〈3p− ρ〉 = 0 . (9)

and will play a crucial role in what follows. As stressed above, we have canonically normalized
all modes, absorbing λ into the dimensionful quantities in L.

Starting with (8) we first prove that the linear potential forces an expanding universe
to eventually collapse. We do so by contradiction: suppose collapse does not happen, then
at late times the scale factor a must be strictly positive. If it were also finite, we could
have written it asymptotically as a = aend + f(1/t) for some suitable5 function f obeying
f(0) = 0. Then

H → −g(1/t)

t aend
, Ḣ → g(1/t) + h(1/t)

t2 aend
, (10)

with g(x) = xf ′(x) and h(x) = xg′(x). So asymptotically Ḣ → 0, implying that ϕ̇ →
constant, and so ϕ̈→ 0. It also follows that H → 0, which is in contradiction with the last
equation in (8) when mslope 6= 0. If, on the other hand, aend diverges, we again infer that
H → 0, and by the Friedmann equation in (8), also 1

2
ϕ̇2 +m3

slopeϕ→ 0. From the vanishing

of Ḣ we again infer ϕ̇ → 0 and so we must also have ϕ → 0. We now arrive at our final
contradiction because the last equation of (8) implies ϕ̈→ −m3

slope 6= 0, which is impossible
by analyticity when ϕ, ϕ̇→ 0. Hence the universe must collapse.

Can the collapse driven by a linear potential be delayed for long enough to approximate
our universe? This requires initial values of ϕin for which V (ϕin) > 0, and a potential slope
gradual enough such that the epoch of V (φ) > 0 is sufficiently long. Since the slope is
technically natural, its chosen value will be stable. If we choose it to be m3

slope 'MPlH
2
0 , the

ensuing universe will expand until a time ∼ H−1
0 , and undergo a short stage of accelerated

expansion just before the collapse. In contrast to GR where other possibilities can be realized,
the vacuum energy sequestering dynamically predicts this outcome via the gauge constraint
(9), which pick the special, radiatively stable initial conditions for the scalar field ϕ.

Now we prove this. For m3
slope small, unless the trigger field ϕ is initially many orders of

magnitude larger than MPl, its energy density will be subleading to other matter sources.
Ignoring its contributions to the gravitational equations in (8), in an expanding power law
FRW background (a ∼ tp for p > 0), at large wavelengths the field equations give ϕ̇ =

5The function should be continuous in a neighbourhood of the origin. It should also be twice differentiable
there, except possibly at the origin itself.
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ϕ1

t3p
− m3

slopet

3p+1
and ϕ = ϕ0 + ϕ1

(1−3p)t3p−1 −
m3
slopet

2

2(3p+1)
. The attractor values of ϕ, ϕ̇ are

ϕ = ϕ0 −
m3
slopet

2

2(3p+ 1)
= ϕ0 −

m3
slope

2(3p+ 1)

( p
H

)2

, ϕ̇ = −
m3
slopet

3p+ 1
= −

m3
slope

3p+ 1

p

H
. (11)

So ϕ is speeding up towards more negative values. It will inevitably begin to dominate the
dynamics triggering collapse. Suppose that it begins to dominate while ϕ > 0 at a scale H†,

where ϕ† = ϕ0 −
m3
slope

2(3p+1)

(
p
H†

)2

and ϕ̇† = −m3
slope

3p+1
p
H†

. Until such time, its total variation is

ϕ† − ϕin
MPl

=

∫ t†

tin

dt

MPl

ϕ̇ ' −O(1)
m3
slopeMPl

M2
PlH

2
†

. (12)

Since we chose m3
slope ' MPlH

2
0 , where H0

<∼ H†, the field displacement is sub-Planckian
during the whole past history of the universe up until ϕ domination, ϕin − ϕ† < MPl.

Further, at the onset of ϕ domination, 3M2
PlH

2
† ' ρ†(ϕ) ≡ ϕ̇2

†
2

+ m3
slopeϕ†. Our choice of

small m3
slope 'MPlH

2
0 sets the ratio of kinetic to total energy of ϕ to be

1
2
ϕ̇2
†

ρ†(ϕ)
= O(1)

m6
slope

M2
PlH

4
†
<

1. So the energy density is dominated by its potential energy, and m3
slopeϕ† ' 3M2

PlH
2
† , or

equivalently ϕ† '
MPlH

2
†

m3
slope

MPl > MPl. Similarly, the ratio of kinetic and potential energy in

ϕ is
ϕ̇2
†/2

m3
slopeϕ†

' O(1)
m6
slope

M2
PlH

4
†
< 1, and since ϕ† > MPl, we conclude that the trigger field is

automatically in slow roll once it begins to dominate! Indeed, the slow roll parameters for
the linear potential are

ε =
ϕ̇2
†

2m3
slopeϕ†

< 1 , η =
ϕ̈†
H†ϕ̇†

' 1

2

M2
Pl

ϕ2
†
< 1 , (13)

by our choice of mslope.
The evolution outlined above is generic provided ϕin > MPl thanks to the sub-Planckian

field displacements leading up to ϕ domination. The gradual change of the linear potential
guarantees that the collapse will be delayed to very late times, t > H−1

0 , by the fact that
the field ϕ is in slow roll. What is more, before the collapse, the universe undergoes a
stage of accelerated expansion. This essentially lasts until the turnover, which occurs when
m3
slopeϕ ' −1

2
ϕ̇2. We can estimate the scale at which this happens by using the slow roll

description of ϕ evolution,

3M2
PlH

2 = m3
slopeϕ , − 3Hϕ̇+m3

slope = 0 , (14)

yielding 2
3
ϕ3/2 = −

√
m3
slope

3
MPl(t − t†) + 2

3
ϕ

3/2
† . Slow roll approximation breaks down when

ϕ <∼MPl, i.e. when t− t† ' O(1)
√
MPl/m3

slope. After that, the field quickly runs to negative

values to bring about the turnover. To a good approximation, the turnover occurs at a time
tturnover ∼ 1/Hage where

1

Hage

' 1

H†
+O(1)

√
MPl

m3
slope

>∼
1

H0

, (15)
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which gives the number of efolds of acceleration preceding the collapse to be N ∼ H†/H0.
The total variation of ϕ throughout the expanding phase can be estimated an extension of
Eq. (12) which gives

ϕturnover − ϕin
MPl

' −O(1)
m3
slopeMPl

M2
PlH

2
age

' −O(1)
H2

0

H2
age

. (16)

Clearly ϕin−ϕturnover >∼ MPl, and so most of that variation accumulated near the turnover.
In standard GR, the evolution we have just described arises from a small subset of possible

initial conditions. There are many more reasonable initial conditions and they lead to very
different cosmic eschatology. However, our framework is far more restrictive than standard
GR. In our case the only permissible initial conditions are those that guarantee the evolution
along the lines described above. Indeed, recall the constraint (9) that restricts the initial
conditions. Since the universe is spatially compact, and collapses, the right-hand side is
dominated by the contributions from near the turning point. By arguments similar to those
explained in [2], it follows that 〈ϕ̇2〉 − 4m3

slope〈ϕ〉 ' ρturnover(φ) ' −O(1)m3
slopeϕturnover and

〈3p− ρ〉 ' −O(1)M2
PlH

2
age, so the constraint (9) gives

ϕturnover
MPl

' −O(1)
MPlH

2
age

m3
slope

' −O(1)
H2
age

H2
0

>∼ − 1 . (17)

This and Eq. (12) force the initial value of ϕ to be trans-Planckian:

ϕin '
(
O(1)

H2
0

H2
age

+O(1)
H2
age

H2
0

)
MPl

>∼ MPl . (18)

This is precisely the initial condition that leads to cosmological collapse in the imminent
future, preceded by a period of slow roll and accelerated expansion. Other initial values
of ϕin that could have led to different cosmic evolutions are excluded in our setup. They
are dynamically impossible. Thus in our framework a collapsing universe, with the collapse
triggered by a field with a linear potential, must undergo a stage of accelerated expansion
prior to collapse, and after the onset of scalar field domination.

Let us summarize. Here we have presented a mechanism to trigger cosmological collapse
in the framework for vacuum energy sequestering recently proposed in [1, 2]. It is a field
theory with a linear potential, whose form and slope are protected by a shift symmetry, and
so are technically natural. To delay the collapse the slope must be very gradual. Collapse
cannot occur in at least the first 10 billion years, and ensuring this amounts to picking the
slope such that m3

slope
<∼ MPlH

2
0 ' 10−39 eV. If, thanks to technical naturalness, we saturate

this bound, the universe is on the brink of collapse today.
Once this is arranged, a remarkable consequence is that at some time prior to collapse

the trigger field will dominate the evolution and inevitably lead to a stage of accelerated
expansion of the universe. This gives a natural and immediate realization of one of the
first ever models of quintessence [14] but without any direct fine tunings just to yield late
acceleration alone. The scale of the accelerated expansion is controlled by the slope of
the potential alone, because the global constraints (2) constrain the initial value of the
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trigger field ϕin to be moderately trans-Planckian. Moreover, the prediction is robust in
the sense that the initial condition is insensitive to radiative corrections. Thus the scale of
accelerated expansion is automatically comparable to the scale controlling the age of the
universe, and for our choice of mslope it is precisely now. This gives a new solution of the
‘Why Now?’ problem. In short, if we see signs of cosmological collapse, we see acceleration.
Conversely, the present epoch of acceleration may be evidence of impending doom. The
duration of this accelerated expansion is not very long, lasting possibly only O(1) efolds.
This is seen from the effective dark energy equation of state, which by (13) during this

epoch is wDE + 1 ' 2ε ' O(1)
m6
slope

M2
PlH

4
†
' O(1)

H4
0

H4
†
. Taking H† to be the Hubble scale at dark

energy-matter equality, wDE can be measurably different from −1. Note also that since the
universe is large, it should be spatially positively curved [2], with Ωk < 0. A detailed analysis
to better quantify these predictions is certainly warranted.
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