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Abstract This paper introduces a solution for gain sharing in consortia of logistic
providers where joint planning of truckload deliveries enables the reduction of empty
kilometers. The highly competitive nature of freight transport markets necessitates
solutions that distinguish among the logistics providers based on their characteristics,
even in situations with two players only. We introduce desirable properties in these
situations and propose a solution that satisfies such properties. By comparing the
existing solutions against the introduced properties we demonstrate the advantages of
our proposed solution.

Keywords Transportation and logistics · Supply chain management ·
Cooperative game theory · Gain sharing

1 Introduction

Road freight constitutes the most dominant form of transportation. However, the
industry suffers from significant inefficiencies. In 2012, more than 24 % of all the
distance driven by commercial vehicles in European Union was empty (Eurostat
2012). This paper is motivated by a project initiated by two major European logistics
providers to create a consortium for cooperative planning of truckload delivery require-
ments of joining companies to, among others, reduce the costs of empty kilometers.
Cruijssen et al. (2007) discuss the other benefits that logistics providers could achieve
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by cooperation. We address the important issue of sharing the gains obtained from
joint planning.

Cooperative truckload delivery (CTLD) situations comprise a number of logistics
providers, their resources (e.g., depots, trucks, drivers, equipments, etc.), and their
delivery requirements. A delivery requirement can simply be considered as an order
for picking up cargo at some location and transporting it to another location. But it
may actually involve delivery time windows, special equipments and personnel, and
other practical constraints. The delivery requirements must be fulfilled by vehicles in
feasible trips. The feasibility of a trip depends on the number and type of deliveries it
fulfills, specific depots and equipment that must be employed, and other details.

The optimal delivery plans of individual companies in most cases include a signifi-
cant amount of unavoidable repositioning movements, i.e., empty kilometers, among
their depots and various pickup/delivery locations. By taking advantage of the synergy
in aggregated networks of depots and delivery requirements, cooperating companies
can decrease their overall empty kilometers. As the cooperating companies are usually
in direct competition with each other, it is absolutely critical for them to understand
how the cooperation would benefit them as well as their competitors. Thus, the exis-
tence of formal models that unambiguously determine allocations of gains and justify
their fairness and/or competitiveness in these situations are imperative to success of
such consortia.

There are many simple ways to divide the savings among cooperating logistics
providers. Such simple ways often divide the savings proportional to some measure
defined harmoniously for all players, e.g., number and/or amount of exchanged deliv-
eries, additional costs incurred, empty kilometers avoided, or contributions to total
savings. However, despite their practical appeal, simple solutions often fail to produce
outcomes which are desirable in terms of fairness/competitiveness in these situations.
But what constitutes a desirable allocation in these situations? In this paper, we intro-
duce a set of formal properties that have the ability to capture the notions of fairness
and/or competitiveness with regard to allocations in CTLD situations.

The gain-sharing problems in the literature are often approached via the well-known
solutions developed in cooperative game theory. By abstracting a cooperative situation
into a cooperative game, consisting of a player set and a function that determines the
amount of gains attainable by different groups of players, cooperative game theory
studies allocations that satisfy collections of logically desirable properties expressed in
relation to such an abstraction. In some situations, however, the properties expressible
in relation to their associated cooperative games are insufficient to capture all desirable
requirements of allocations. Therefore, by disregarding the information contained in
the underlying cooperative situation, indispensable properties in some cooperative
situations will be impossible to formalize. The cooperative organizations of logistics
providers assessed in this paper are instances of such cooperative situations. In this
paper, we allow solutions to draw upon the cooperative situations to determine the
allocations of savings.

The highly competitive nature of logistics markets as well as the limited number of
potential participants necessitate solutions that are capable of incorporating the notion
of competitiveness to distinguish among the logistics providers. Such a requirement
implores solutions that could potentially distinguish among the logistics providers who
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are identical in terms of their contribution to the obtained savings. A typical example
of the latter case is situations with two players only. Most of the well-known solutions
in cooperative game theory, e.g., Shapley value and nucleolus, are incapable of dif-
ferentiating among the allocations in two-player situations. Nevertheless, a number
of papers in the OR/OM literature introduce alternative solutions to tackle the latter
drawback, e.g., Frisk et al. (2010). However, we show that the available solutions in the
literature do not satisfy the properties that are desirable in CTLD situations introduced
in this paper.

A part of the desirable properties of solutions in CTLD situations can be expressed
in relation to cooperative games associated with those situations. The nonemptiness
property demands at least one allocation in every situation. The uniqueness property
distinguishes solutions that upon nonemptiness, yield a single allocation in every
situation. This property is needed so that no further negotiations would be required
to choose among multiple possible allocations. Finally, the least-instability property
prescribes allocations that minimize the incentives for groups of players to organize
cooperation within themselves. In addition to these rather standard properties, we
introduce two new properties which are specific to CTLD situations.

The first desirable property defined specifically for CTLD situations is the indepen-
dence of irrelevant deliveries property (IID) which states that the allocated savings to
the players must be insensitive to parts of their networks which could not have any
possible contribution to the savings obtained from cooperation. In this regard, this
property defines a boundary for the relevant scope of operation for every logistics
provider such that anything beyond this scope should be ignored in allocation of sav-
ings. If a solution for CTLD situations does not satisfy this property, then the logistics
providers could find it beneficial to inflate their announced delivery requirements in a
cooperative organization and small companies with high contribution to the savings
could be discriminated against the large companies which may not have significant
contributions.

The last property introduced in this paper addresses the ability of solutions to
consider the competitive positions of cooperating logistics providers. Although there
is no standard measure of competitive positions in logistics markets, we draw upon the
notation of average cost of fulfillment to define one. The average cost of fulfillment
of a set of delivery requirements is the minimum cost of its fulfillment divided by
the amount of full kilometers involved. The motivation for using the average cost of
fulfillment as a measure of competitiveness is its pricing implications. Suppose that a
company has to announce a fixed price for a unit distance of its delivery services. The
average cost of fulfillment then represents the lowest unit price at which a logistics
provider neither makes profit nor incurs loss. Thus, if the average cost of fulfillment
of the logistics provider i is lower than that of j , i would be able to announce a lower
unit price for its delivery services while making a profit. We take this as an indication
that prior to cooperation i is in a better competitive position. An allocation of savings
to players could alter the average costs of fulfillment after cooperation. Under certain
conditions, the restricted competitiveness property requires that solutions equalize
the ratio of average costs of fulfillment across players before and after cooperation.
In this regard, the appropriate solutions in CTLD situations preserve the competitive
positions of logistics providers.
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We propose a solution that satisfies the listed properties in all CTLD situations. In
doing so, we first introduce the essential deliveries of a player as subsets of delivery
requirements of the player which are necessary and sufficient in bringing about its
contribution to cost savings in the grand coalition. When the optimal delivery plan
of the grand coalition is unique, the essential deliveries correspond to the deliveries
whose fulfillment trips in the grand coalition involve some other players. Therefore, the
deliveries which are not essential can be fulfilled independently by their corresponding
players as efficiently as in the grand coalition. A preliminary version of our proposed
solution equalizes the average cost of fulfillments of essential deliveries of the players
before and after cooperation. Although this solution can be easily implemented in such
situations, it does not necessarily produce stable outcomes. Our final solution yields
a unique point in the core (Gillies 1959), or when the latter is empty, in the least-core
(Maschler et al. 1979) which has the shortest distance to the aforementioned allocation.

The rest of this paper is organized as following. In Sect. 2, we discuss the literature
on allocation problems with special focus on logistics and transportation context.
In Sect. 2, we model a general class of truckload delivery problems and in Sect. 4
we introduce the cooperative version of such situations. The desirable properties in
CTLD situations are defined in Sect. 5. In Sect. 6, we develop our proposed solution for
CTLD situations. Specifically, Sect. 6.2 outlines the formula for the proposed solution
and shows that it satisfies all the listed properties. Section 7 discusses some of the
known solutions in the literature in line with the properties introduced in this paper.
Section 8 concludes the paper.

2 Literature review

There is an extensive literature on allocation problems arising in cooperative opera-
tions. Tijs and Driessen (1986) provide a structured view of general cost allocation
methods along with references to early adoption of such methods in practice. The
literature on cooperative logistics operations, on the other hand, is relatively recent—
mainly due to the industry’s shrinking margins and advances in information technology
which motivate and facilitate cooperation.

To deal with allocation problems in logistics and transportation context, many
authors have proposed the adoption of well-known solutions of cooperative game the-
ory. Krajewska et al. (2007) discuss the implementation of the Shapley value (Shapley
1953b) as the solution in cooperative organizations of logistics providers. Özener
and Ergun (2008) study CTLD situations where all logistics providers have available
depots at every location and show that the core (Gillies 1959) of games associated with
these situations are always non-empty and dual solutions provide allocations in their
core. Hezarkhani et al. (2014) further delineate the possibilities and impossibilities for
a complete characterization of the core of these games via dual solutions. In coopera-
tive vehicle routing situations, where the core could be empty or it may include many
elements, Göthe-Lundgren et al. (1996) and Engevall et al. (2004) elaborate on the
implementation of the nucleolus (Schmeidler 1969) as the solution of choice.

Several papers in the recent literature investigate solutions that incorporate some
proportional measures defined on specific features of underlying situations to divide the
savings/costs among the logistics providers. Frisk et al. (2010) propose a solution that
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draws upon the stand-alone costs of individual companies. Their suggested solution,
i.e., the equal profit method (EPM), chooses allocations in the core, or in the least-
core (Maschler et al. 1979) when the core is empty, such that the spread of ratios of
allocated savings to stand-alone costs across all players is minimized. A similar method
is proposed independently by Drechsel and Kimms (2010). Multiple extensions of
this solution have been proposed ever since. Audy et al. (2010) extend the EPM by
including additional constraints that ensure a minimum allocation of savings for all
logistics providers. Liu et al. (2010) directly incorporate the marginal contributions of
players as weights into the EPM formulation. Dai and Chen (2012) draw attention to
allocations in the core with the property that the greatest deviation from the Shapley
value is minimum. Finally, Vanovermeire et al. (2013) and Lozano et al. (2013) discuss
the different outcomes of various solutions in transportation contexts via numerical
examples. What seems to be lacking in this stream of research is the formal definition
of situation-specific properties that solutions are expected to satisfy.

Another stream of research investigate the special structures in cooperative games
associated with simplified delivery problems. Hamers (1997) analyzes the cooperative
Chinese postman games and Hamers et al. (1999) discuss the cost allocation problem
in these situations. Granot et al. (1999) investigate the special classes of single-depot
delivery games whose cores are always non-empty. Platz and Hamers (2013) charac-
terize the graphs whose induced multi-depot Chinese postman games have non-empty
cores. We refer the reader to Curiel (2008) for an overview of cooperative games asso-
ciated with logistics/transportation situations. Nevertheless, the complexity of games
associated with combinatorial situations have given rise to new research frontiers
that seek reasonable theoretical compromises in finding good solutions (Caprara and
Letchford 2010).

3 Stand-alone truckload delivery situations

Stand-alone truckload delivery situations, hereafter STLD situations, reflect the key
features of centralized planning in road freight sector. Let V be a set of nodes cor-
responding to spatial locations and w : V × V → R

+ be a distance function which
satisfies triangular inequalities. A set of m delivery requirements D = {d1, . . . , dm}
is given. A delivery requirement dk ∈ D is a pair (ak, bk) ∈ V × V consisting of
the corresponding pickup location ak and delivery location bk . The fulfillment of the
delivery requirement dk corresponds to a single traverse of the arc (ak, bk) for k, i.e.,
two delivery requirements with identical pickup and delivery locations correspond
to two non-identical fulfillments. We assume that the distance between the pickup
and delivery locations of every trip is positive. A non-empty set of available depots
O = {o1, . . . , oh} ⊆ V stations vehicles that fulfill the delivery requirements. We
assume that the fleet of vehicles is homogeneous and a vehicle has enough capacity
to handle every single delivery requirement.

Delivery requirements must be fulfilled in trips. A trip is a sequence of deliveries
that starts and ends at a particular depot. The truckload feature of the problem reflects
the assumption that for any two delivery requirements, their corresponding cargo
cannot be picked up sequentially in a trip without delivering the first-picked cargo.
Formally, a trip l is a tuple (ol , Dl , σ l) where ol ∈ O is the origin/destination, Dl is
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a subset of deliveries in D that are fulfilled in l, and σ l is an ordering of deliveries in
Dl which represents the sequence of fulfillments in trip l. Let L be the set of all such
trips. To incorporate the practical constraints that could render some trips infeasible—
e.g., delivery time windows, number of possible trips per day, traffic network—we
introduce the feasible trip set L ⊆ L. A sub-trip of l is a trip which has the same
origin as l and a subset of l’s deliveries whose sequence of fulfillments are consistent
with ordering of deliveries in l. We assume that if l is within the feasible trip set, its
sub-trips are also in the feasible set. Let L(O, D) = {l ∈ L|ol ∈ O, Dl ⊆ D} be the
set of all feasible trips that can be used to satisfy deliveries in D ⊆ D from depots in
O ⊆ O, O �= ∅. Note that L(O, D) = L . The feasible trip sets are assumed to be rich
enough to enable the fulfillment of all delivery requirements. Formally, we assume
that for every dk ∈ D ⊆ D and O ⊆ O, O �= ∅, there exists l ∈ L(O, D) such that
dk ∈ Dl . Due to homogeneity of the fleet, the feasible trip sets are independent of the
choice of vehicle. A truckload delivery situation is characterized by a tuple

� = (V, w, D, O, L).

We assume that cost and distance of travel are linearly proportional and without
loss of generality normalize the proportion to one. The cost of the feasible trip l,
Dl �= ∅, is comprised of two parts. The first part is the cost associated with the
distance traveled between the pickup and delivery locations. The full kilometers cost
of a trip is independent of both the choice of the trip’s depot and the sequence of
fulfillments:

cl
F =

∑

k : dk∈Dl

w
(

ak, bk
)
. (1)

The second part of a trip’s cost, i.e., empty kilometers cost, is the cost associated with
the distance traveled from/to the depot and among different fulfillments:

cl
E = w

(
ol , aσ

l
1

)
+

|Dl |−1∑

j=1

w
(

bσ
l
j , aσ

l
j+1

)
+ w

(
b
σ l

|Dl | , ol
)
, (2)

where the shorthand notation σ l
j represents the index of the delivery requirement that

is fulfilled after all the j − 1 deliveries preceding it in σ l are fulfilled. By |Dl | we
denote the number of deliveries in Dl . The cost of trip l is defined by cl = cl

F + cl
E .

A fulfillment plan P , hereafter a plan, from O to D is a collection of feasible
trips in L(O, D) that fulfills all deliveries in D exactly once. The assumptions on the
richness of feasible trip sets and the feasibility of sub-trips discussed earlier ensure
that for every D ⊆ D and every O ⊆ O, O �= ∅, a fulfillment plan exists. The
deliveries fulfilled in the trips of the plan P partition the corresponding set of delivery
requirements, i.e.,

⋃
l∈P Dl = D and Dl ∩ Dk = ∅ for all k, l ∈ P with l �= k. The

cost of the plan P is the total cost of its trips, i.e., c(P) = ∑
l∈P cl . Accordingly, c(P)

is decomposable into full and empty parts:

c(P) = cF (P)+ cE (P), (3)
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where cF (P) = ∑
l∈P cl

F and cE (P) = ∑
l∈P cl

E are the total costs of full and empty
kilometers of P , respectively.

Let P(O, D) denote the set of all possible fulfillment plans from O to D. We call
P ∈ P(O, D) an optimal plan from O to D if

c(P) ≤ c(P ′) for all P ′ ∈ P(O, D). (4)

The set of all optimal plans from O to D is denoted by P∗(O, D). If there are multiple
optimal plans from O to D, their costs are equal. We denote the minimum cost of
delivery from O to D with c∗(O, D), and the full kilometers cost of D, which is
independent of the choice of depots, with cF (D). For the purpose of this paper, we
hereafter assume that the optimization problems of aforementioned sorts can be readily
solved.

We provide some observations which will be used in the rest of the paper.

Lemma 1 Let � be an STLD situation. Then,

(i) c∗(O, D) ≥ c∗(O, D′) for all ∅ �= O ⊆ O and D′ ⊂ D ⊆ D,
(ii) c∗(O, D) ≤ c∗(O ′, D) for all O ′ ⊂ O ⊆ O and D ⊆ D,

(iii) c∗(O, D) + c∗(O, D′) ≥ c∗(O, D ∪ D′) for all ∅ �= O ⊆ O and D, D′ ⊆ D
with D ∩ D′ = ∅.

Proof (i) Let D′ ⊂ D ⊆ D and define D′′ = D\D′. Let P ∈ P∗(O, D) be an
optimal plan from O to D. For every l ∈ P construct its sub-trip l ′ with Dl ′ =
Dl\D′′. By the assumption on the feasibility of sub-trips, the plan P ′ obtained in
this manner is a feasible plan from O to D′. As the triangular inequalities hold we
have cl ′ ≤ cl for every l ∈ P . Since the cost of a plan is the total sum of the costs
of its trips we have c(P ′) ≤ c(P) = c∗(O, D). Considering that any optimal
plan from O to D′ is at most as costly as c(P ′) we have c∗(O, D′) ≤ c∗(O, D).

(ii) Let O ′ ⊂ O ⊆ O and suppose P ′ ∈ P∗(O ′, D) is an optimal plan from O ′ to D.
Note that P ′ is a feasible plan from O to D as well since for any trip l ∈ P ′ we have
ol ∈ O . By definition of optimal plans it must be that c∗(O, D) ≤ c∗(O ′, D).

(iii) Let D, D′ ⊆ D be such that D ∩ D′ = ∅. Let P ∈ P∗(O, D) and P ′ ∈
P∗(O, D′). Note that P ∩ P ′ = ∅ and P ∪ P ′ is a feasible plan from O to
D ∪ D′. Furthermore,

c(P ∪ P ′) =
∑

l∈P∪P ′
cl =

∑

l∈P

cl +
∑

l∈P ′
cl = c∗(O, D)+ c∗(O, D′).

By definition of optimal plans we have c∗(O, D)+c∗(O, D′) ≥ c∗(O, D ∪ D′).
��

Part (i) of Lemma 1 shows that shrinking the set of delivery requirements cannot
increase the minimum cost of delivery. A reverse effect is shown in part (ii) for the
depots, that is, augmenting the set of depots cannot increase the minimum cost of deliv-
ery. Finally, part (iii) demonstrates the subadditive effect with regard to the minimum
costs of fulfillment that results from aggregated planning of delivery requirements.
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d1

d2o1 o2

Fig. 1 An STLD situation

We define the average cost of fulfillment from O to D �= ∅ as

z(O, D) = c∗(O, D)

cF (D)
. (5)

The average cost of fulfillment z(O, D) represents the cost for fulfilling a unit distance
of delivery on average.1 If one were supposed to determine a fixed price for every
unit distance of delivery services, the average cost of fulfillment would represent the
minimum price at which no loss is incurred. Note that the full kilometer cost of a non-
empty delivery set is strictly positive by assumption. For D = ∅, we let z(O,∅) = 0.

Example 1 Figure 1 depicts an STLD situation with two locations, two depots and
two delivery requirements. The distance between the two locations is one and the trip
which fulfills both deliveries is feasible. We have c∗(O, D) = 2 and z(O, D) = 1. �

The last lemma in this section establishes the connection between the separability
of optimal delivery plans and the additivity of their costs.

Lemma 2 Let� be an STLD situation. Let ∅ �= O ′ ⊆ O ⊆ O and D′ ⊆ D ⊆ D. We
have c∗(O ′, D′)+c∗(O, D\D′) = c∗(O, D) if and only if for every P ′ ∈ P∗(O ′, D′)
and P ∈ P∗(O, D\D′), it holds that P ∪ P ′ ∈ P∗(O, D).

Proof (If) Let P ′ ∈ P∗(O ′, D′) and P ∈ P∗(O, D\D′) and assume that P ∪ P ′ ∈
P∗(O, D). By definition of minimum cost of delivery we have

c∗(O, D) =
∑

l∈P ′∪P

cl =
∑

l∈P ′
cl +

∑

l∈P

cl = c∗(O ′, D′)+ c∗(O, D\D′).

(Only if) Assume that c∗(O ′, D′)+c∗(O, D\D′) = c∗(O, D). Let P ′ ∈ P(O ′, D′)
and P ∈ P(O, D\D′). Note that P ∪ P ′ is a feasible delivery plan from O to D.
We have

c(P ′ ∪ P) =
∑

l∈P ′∪P

cl = c∗(O ′, D′)+ c∗(O, D\D′) = c∗(O, D)

where the last equality follows by assumption. Hence, P ′ ∪ P ∈ P∗(O, D). ��

1 The equivalence of cost and distance of travel assumed in this paper is for simplifying the notation.
When this assumption is relaxed, the denominator in Eq. (5) must be replaced with the total distance of full
kilometers in D.
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d1
1

d1
2

o1
1 o1

2

Fig. 2 A CTLD situation

4 CTLD situations and games

This section introduces the cooperative versions of truckload delivery situations
wherein a number of logistics service providers, hereafter players, have the option to
jointly optimize their fulfillment plans. While these situations reflect the key features
of decentralized road freight markets, their associated cooperative games formalize
the underlying gain-sharing problems.

CTLD situations are extensions of STLD situations. Let � = (V, w, D, O, L) be
an STLD situation. Consider a non-empty set N = {1, . . . , n} of players. Each player
i ∈ N possesses a set of delivery requirements Di ⊆ D and a non-empty set of depots
Oi ⊆ O such that ∪i∈N Di = D and ∪i∈N Oi = O. The fleets of players’ vehicles
are homogeneous and capacious enough to handle the cargo corresponding to every
single delivery requirement.

A coalition is a subset of players. Let OS = ∪i∈S Oi and DS = ∪i∈S Di denote
the combined set of depots and delivery requirements of players in coalition S ⊆ N .
The set L(OS, DS) contains all feasible trips that coalition S ⊆ N can use to fulfill its
combined delivery requirements. Note that L(ON , DN ) = L . By the assumption on
the richness of feasible trip sets, any coalition of players is able to fulfill its deliveries.
A CTLD situation is a tuple:

� = (N , V, w, (Di )i∈N , (Oi )i∈N , L)

with all elements being as described previously. We denote the set of all possible
CTLD situations with T .

By joint planning of fulfillments, a coalition in a CTLD situation could reduce
the cost of its empty kilometers and thus obtain savings. The savings generated by a
coalition can be due to utilization of a larger pool of depots for constructing trips or
combining fulfillments together more efficiently in trips, or both.

The cost savings obtained by a coalition S ⊆ N in � is

∑

i∈S

c∗(Oi , Di )− c∗(OS, DS).

Recall that c∗(OS, DS) is the cost of an optimal plan from OS to DS in the STLD
situation corresponding to �.

Example 2 Figure 2 depicts a CTLD situation � with two players, N = {1, 2}, each
having a single depot o1

1 and o1
2, and a single delivery requirement d1

1 and d1
2 , respec-

tively. The pickup location of each player’s delivery requirement is its depot and the
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delivery location coincides with the other player’s depot. Assuming that the distance
between the two locations is one kilometer, we have c∗(O1, D1) = c∗(O2, D2) =
c∗(ON , DN ) = 2. The cost saving obtained by the grand coalition is 2. �

The cooperative CTLD game associated with the situation � ∈ T with player set
N is the pair (N , v�) where for every S ⊆ N :

v�(S) =
∑

i∈S

c∗(Oi , Di )− c∗(OS, DS). (6)

The cooperative game (N , v�) is superadditive if for all S, T ⊆ N such that
S ∩ T = ∅ it holds that v�(S ∪ T ) ≥ v�(S) + v�(T ). If the game is superadditive,
then the savings obtained in the grand coalition N is never less than the total savings
obtained by any other partitioning of players into coalitions. The following theorem
states that games associated with CTLD situations are generally superadditive.

Theorem 1 For every CTLD situation � ∈ T with player set N , the associated
cooperative game (N , v�) is superadditive.

Proof Let � ∈ T be a CTLD situation with player set N . Let S, T ⊆ N such that
S ∩ T = ∅. Then,

v�(S ∪ T ) =
∑

i∈S∪T

c∗(Oi , Di )− c∗(OS∪T , DS∪T )

≥
∑

i∈S∪T

c∗(Oi , Di )− c∗(OS∪T , DS)− c∗(OS∪T , DT )

≥
∑

i∈S∪T

c∗(Oi , Di )− c∗(OS, DS)− c(OT , DT )

=
∑

i∈S

c∗(Oi , Di )− c∗(OS, DS)+
∑

i∈T

c∗(Oi , Di )− c(OT , DT )

= v�(S)+ v�(T ).

The first inequality follows from part (iii) of Lemma 1 and the second inequality from
part (ii) of the same lemma. Thus, v�(S ∪ T ) ≥ v�(S)+ v�(T ). ��

As the coalition functions of CTLD games yield the savings comparing the indi-
vidual and aggregated costs, they are zero-normalized, that is for every � ∈ T and
every i ∈ N it holds that v�({i}) = 0. We discuss other properties of CTLD games in
Sect. 7.

5 CTLD solutions and their properties

A CTLD allocation for a player set N is a |N |-dimensional vector α = (αi )i∈N with
αi being the allocation to player i . A CTLD solution is a set-valued function A which
for every CTLD situation � ∈ T with player set N determines a set of allocations
A(�) ⊆ R

N .
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This definition of solution is innocuously different than the standard definition
of solutions in cooperative game theory as our definition draws upon the situation
rather than the game. Note that different situations with identical player sets can
correspond to the same cooperative game. Thus, our definition of solution allows one
to utilize information other than the savings obtained by different coalitions to devise
allocations. The rest of this section is devoted to introducing desirable properties of
CTLD solutions.

We start with properties which can also be expressed in relation to the cooperative
games associated with CTLD situations. Perhaps the most intuitive desirable property
of solutions in any cooperative situation is the efficiency property which requires
that all the savings obtained in the grand coalition be completely divided among the
players.

Property 1 A CTLD solution A satisfies the efficiency property if for every � ∈ T
with player set N and every α ∈ A(�) it holds that

∑
i∈N αi = v�(N ).

The nonemptiness property defined below reflects the ability of a solution to produce
at least one allocation in every given CTLD situation.

Property 2 A CTLD solution A satisfies the nonemptiness property (NE) if for every
� ∈ T , A(�) is non-empty.

A solution is inconclusive if it yields more than one allocation, if it could suggest
any allocation at all. The uniqueness property addresses this issue.

Property 3 A CTLD solution A satisfies the uniqueness property (UQ) if for every
� ∈ T such that A(�) �= ∅, it holds that |A(�)| = 1.

The notion of stability is a critical concept in many cooperative situations, including
CTLD situations. Given a CTLD situation � ∈ T with player set N and ε ∈ R, an
allocation α is called ε-stable if (a) α is efficient, i.e.,

∑
i∈N αi = v�(N ), and (b) for

all S ⊂ N , it holds that
∑

i∈S αi + ε ≥ v�(S). The set of all ε-stable allocations of
the game associated with a situation comprises the ε-core (Shapley and Shubik 1966).
An ε-stable allocation provides sufficient incentives for all players not to break apart
from the grand coalition if reorganizing cooperation in a sub-coalition entails a cost of
ε (or a bonus of −ε if ε < 0). The case of negative ε is of little practical importance in
this paper since formation of cooperative organizations usually requires investment by
the logistics providers. Thus, ideally a 0-stable (or simply stable) allocation provides
sufficient incentives for all players to remain in the grand coalition even if separating
from the grand coalition is free. We will give an example in Sect. 7 to show that it may
be impossible to find stable allocations in CTLD situations. The following property
reflects the need for solutions that either produce stable allocations, or, when the latter
cannot be achieved, obtain allocations that are as stable as possible.

Property 4 A CTLD solution A satisfies the least-instability property (LU) if for every
� ∈ T with player set N and every α ∈ A(�), α is ε∗-stable where

ε∗ = min

{
ε ≥ 0

∣∣∣∣∣
∑

i∈S

αi + ε ≥ v�(S) for all S ⊂ N ,
∑

i∈N

αi = v�(N )

}
. (7)

123



B. Hezarkhani et al.

d1
1

d4
1

d2
1 d3

1

d1
2

o2
1 o1

2o1
1

Fig. 3 Separable and irrelevant deliveries

The two properties introduced in the remainder of this section are specific to CTLD
situations and address issues concerning the competitive positions of the players and
the scope beyond which the network of deliveries of a player should be ignored by
the solution. We start by introducing two special classes of delivery requirements in
CTLD situations.

Definition 1 Let� ∈ T be a CTLD situation with player set N . D ⊆ Di is a separable
delivery set (SDS) of player i if

c∗(Oi , D)+ c∗(ON , DN \D) = c∗(ON , DN ). (8)

Let SDSi (�) be the set of SDSs of i .

The stand-alone cost of fulfilling a SDS of a player is additive to the cost of fulfilling
the remaining deliveries in the grand coalition. Therefore, a player can individually
fulfill a SDS of itself without disrupting the optimality of delivery plans in the grand
coalition.

Example 3 Figure 3 depicts a CTLD situation � with two players N = {1, 2}. It is
easy to see that player 1 can individually fulfill the delivery requirement {d1

1 }. Also,
player 1 can take out either {d2

1 , d3
1 } or {d4

1 } (but not both!) from the grand coalition’s
delivery requirements and fulfill them separately such that the total cost of fulfillment
does not increase. Thus, we have

SDS1(�) =
{{

d1
1

}
,
{

d2
1 , d3

1

}
,
{

d4
1

}
,
{

d1
1 , d2

1 , d3
1

}
,
{

d1
1 , d4

1

}}
. �

The previous example shows two different types of SDSs in CTLD situations.
While some SDSs of a player can be substituted with each other, there might exist
SDSs which are separable in all scenarios. Therefore, among the SDSs of a player, we
distinguish delivery sets which do not have any possible internal or external relevance
to the rest of deliveries in any coalition.

Definition 2 Let � ∈ T be a CTLD situation with player set N . D ⊆ Di is an
irrelevant delivery set (IDS) of i if for all D′ ⊆ D, all S ⊆ N with i ∈ S, and all
D′′ ⊆ DS\D it holds that

123



A competitive solution for CTLD

c∗ (
Oi , D′) + c∗ (

OS, D′′) = c∗ (
OS, D′ ∪ D′′) . (9)

Let IDSi (�) be the set of IDSs of i .

The cost of fulfilling any subsets of irrelevant deliveries of a player is additive to any
subset of the set of remaining deliveries in any coalition that includes that player, so
the player can fulfill such deliveries separately in any possible combination with other
deliveries. In Example 2, {d1

1 } is the only IDS of player 1. Note that neither {d2
1 , d3

1 }
nor {d4

1 } remains separable if player 1 removes the other set and plan its delivery by
himself. This example clarifies that every IDS is also separable, but the reverse does
not hold necessarily.

We are ready to present the first property in this section which specifies a scope of
consideration for CTLD situations where the delivery requirements beyond this scope
should be ignored in the calculation of allocations. We define the IID property as the
insensitivity of a solution to the exclusion of irrelevant deliveries of the players. Given
D′

i ⊆ Di , let �\D′
i be a CTLD situation that coincides with � except for the delivery

set of i which is replaced by Di\D′
i .

Property 5 A CTLD solution A satisfies the IID property if for every � ∈ T with
player set N , any i ∈ N, and every D ∈ IDSi (�) it holds that A(�) = A(�\D).

The final property in this section addresses the competitive aspect of solutions in
CTLD situations. Considering the limited number of players in consortia of logistics
providers and the competitive nature of transportation markets, a key requirement for
solutions in CTLD situations is their ability to maintain the competitive positions of
the players in dividing the savings obtained by cooperation.

Recall from Sect. 3 that the average cost of fulfillment represents the lowest price
that i can charge for every unit distance of its delivery services. In this regard, the
average cost of fulfillment provides a basis for calculating unit delivery prices in
logistics markets. However, it can also be utilized as a measure of comparison among
the players. This idea is motivated by the observation that a lower average cost of
fulfillment of a logistics player compared to that of another logistics player allows the
former to charge a lower unit price for its delivery services while remaining profitable.
Therefore, if for two players i and j it holds that z(Oi , Di ) < z(O j , D j ), it can
be stated that prior to cooperation, i is in a better competitive position than j . The
definition of average cost of fulfillment can be naturally extended to incorporate the
savings allocated to the players after the cooperation. Given an allocation α and player
i ∈ N , Di �= ∅, define the average cost of fulfillment of a player i under α as

zαi (Oi , Di ) = c∗(Oi , Di )− αi

cF (Di )
. (10)

Note that the cost of full kilometers of any non-empty set of delivery requirements
is strictly positive. The notion of competitiveness in this paper is motivated by the
observation that non-competitive allocations eliminate the advantage of a player over
other players in terms of its competitive position before and after cooperation. We
elaborate with the help of an example.
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Fig. 4 A CTLD situation where players have different competitive positions

Example 4 Figure 4 represents a CTLD situation with two players N = {1, 2}.
Assuming that the distance between any two locations is 1, we get z(O1, D1) = 1.5
and z(O2, D2) = 2. The cooperation in this case results in two units of savings,
i.e., v�(N ) = 2. Observe that the equal allocation α = (1, 1) results in having
zα1 (O1, D1) = zα2 (O2, D2) = 1. Thus, the equal allocation eliminates player 1’s
advantage over player 2 with regard to their competitive positions prior to the coop-
eration. �

We are now ready to introduce a competitiveness property defined over a restricted
set of CTLD situations. Let T̂ be the set of every CTLD situation � ∈ T with player
set N such that SDSi (�) = {∅} for all i ∈ N .

Property 6 A CTLD solution satisfies the restricted competitiveness property (RC) if
for every situation � ∈ T̂ with player set N = {1, 2} and any α ∈ A(�) it holds that

zα1 (O1, D1)z(O2, D2) = zα2 (O2, D2)z(O1, D1). (11)

If the set of delivery requirements of every player is non-empty, then (11) boils
down to z(O1, D1)/zα1 (O1, D1) = z(O2, D2)/zα2 (O2, D2). In this respect, the RC
property prescribes allocations that preserve the competitive positions of the players,
that is, an allocation satisfying the RC property equalizes the ratio of average costs
of fulfillments of the players before and after cooperation in two-player reductions
of the original situations. Note that the latter can also be expressed in terms of the
stand-alone costs of the players, i.e., for players with non-empty delivery sets (11)
simplifies to α1/c∗(O1, D1) = α2/c∗(O2, D2).

The RC property is defined in terms of situations wherein the SDSs of all players
are empty, i.e., no player has any separable delivery requirements. This allows us
to postpone the treatment of SDSs until the introduction of our proposed solution.
One can extend the definition of property 6 to situations with any number of players.
However, to avoid impossibility issues regarding the preservation of all properties
simultaneously, we stated the competitiveness property in a restricted manner and in
terms of two-player situations. In Example 4, the allocation α = (1.2, 0.8) preserves
the competitive positions of players 1 and 2 before and after the cooperation, resulting
in zα1 (O1, D1) = 0.9 and zα2 (O2, D2) = 1.2.
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6 A solution for CTLD situations

In this section, we introduce a CTLD solution that satisfies all the properties men-
tioned above. Our solution draws upon essential delivery sets, i.e., particular subsets
of deliveries of a player which are necessary and sufficient in creating its contribution
to the grand coalition.

6.1 Essential delivery sets

Definition 3 Let � ∈ T be a CTLD situation with player set N . D ⊆ Di is an
essential delivery set (EDS) of player i if

c∗(Oi , Di\D)+ c∗(ON , DN\i ∪ D) = c∗(ON , DN ). (12)

and for every D′ ⊂ D, D �= ∅:

c∗ (
Oi , Di\D′) + c∗ (

ON , DN\i ∪ D′) > c∗(ON , DN ). (13)

Let EDSi (�) be the set of all essential delivery sets of i .

An essential delivery set of a player i meets two conditions. First, the complement of
this set comprises a SDS of player i , that is, an essential delivery set is sufficient for
creating the cost savings of players in the grand coalition. Second, one cannot expand
the complement of this set to obtain a larger SDS for player i . In fact, an essential
delivery set is necessary for creating a player’s contribution to the grand coalition in
the sense that the situation obtained by excluding its complement delivery set contains
no SDSs. The following lemma formalizes this.

Lemma 3 Let � ∈ T be a CTLD situation with player set N . Let i ∈ N, D ∈
EDSi (�), and �′ = �\(Di\D). We have SDSi (�

′) = ∅.

Proof It suffices to show that for any D∗ ⊆ D it holds that

c∗ (
Oi , D∗) + c∗ (

ON , DN\i ∪ (D\D∗)
)
> c∗(ON , DN\i ∪ D). (14)

For any D∗ ⊆ D we have

c∗ (
Oi , D∗) + c∗ (

ON , DN\i ∪ (D\D∗)
)

= c∗ (
Oi , D∗) + c∗ (

ON , DN\i ∪ (D\D∗)
) + c∗(Oi , Di\D)− c∗(Oi , Di\D)

≥ c∗ (
Oi , Di\(D\D∗)

) + c∗ (
ON , DN\i ∪ (D\D∗)

) − c∗(Oi , Di\D)

> c∗(ON , DN )− c∗(Oi , Di\D)

= c∗(ON , DN\i ∪ D).

where the first inequality follows from part (i) of Lemma 1, the second inequality
follows from the second condition of EDS in (13) for D′ = D\D∗, and the last
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equality follows from the first condition of EDS in (12). Therefore, Eq. (14) holds for
any D∗ ⊆ D. ��

In Example 3 (Fig. 3), player 1 has two sets of essential delivery sets {d2
1 , d3

1 }
and {d4

1 }. This demonstrates that a player in a CTLD situation might have multiple
essential delivery sets.

The next lemma elaborates on the relation between the essential and the IDSs.

Lemma 4 Let � ∈ T be a CTLD situation with player set N . Let i ∈ N and Dr
i ∈

IDSi (�). Then

(i) for every D ∈ EDSi (�), D ∩ Dr
i = ∅,

(ii) for every j ∈ N, EDS j (�) = EDS j (�\Dr
i ).

Proof (i) Suppose the contrary, that is D∩Dr
i �= ∅. Let D′ = D∩Dr

i , hence D′ ⊆ D.
By definition of irrelevant deliveries of player i in � it must be that

c∗ (
Oi , D′) + c∗ (

ON , DN\i ∪ (D\D′)
) = c∗(ON , DN\i ∪ D). (15)

The latter implies that D′ is a SDS of player i in �\(Di\D) which contradicts
Lemma 3. Thus, it must be that D ∩ Dr

i = ∅.
(ii) First we show that for any j ∈ N and every D′ ⊆ DN \Dr

i such that D′ �= ∅ it
holds that

c∗ (
O j , D j\D′) + c∗ (

ON , DN\ j ∪ D′) − c∗(ON , DN )

= c∗ (
O j , D j\D′) + c∗ (

ON , (DN\ j\Dr
i ) ∪ D′) − c∗ (

ON , DN \Dr
i

)
.

(16)

Since Dr
i ∈ IDSi (�), we have

c∗ (
Oi , Dr

i

) + c∗ (
ON , DN \Dr

i

) = c∗(ON , DN ), (17)

and, since (DN\ j\Dr
i ) ∪ D′ ⊂ DN \Dr

i , we have

c∗ (
Oi , Dr

i

) + c∗ (
ON , (DN\ j\Dr

i ) ∪ D′) = c∗ (
ON , DN\ j ∪ D′) . (18)

By (17) and (18) we get

c∗ (
ON , DN\ j ∪ D′) − c∗(ON , DN ) = c∗ (

ON , (DN\ j\Dr
i ) ∪ D′)

−c∗ (
ON , DN \Dr

i

)
. (19)

Adding c∗(O j , D j\D′) to both sides of the Eq. (19) obtains Eq. (16).

Suppose that D ∈ EDS j (�). For j �= i it holds that D ⊆ D j , and for j = i
part (i) of this lemma indicates that D ⊆ Di\Dr

i . Therefore, for j ∈ N we have
D ⊆ DN \Dr

i . By definition of EDS it must be that

c∗(O j , D j\D)+ c∗(ON , DN\ j ∪ D) = c∗(ON , DN ) (20)
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and for every D′′ ⊂ D, D′′ �= ∅,

c∗ (
O j , D j\D′′) + c∗ (

ON , DN\ j ∪ D′′) > c∗(ON , DN ). (21)

However, due to (16), equality in (20) implies that

c∗ (
O j , D j\D

) + c∗ (
ON ,

(
DN\ j\Dr

i

) ∪ D
) = c∗ (

ON , DN \Dr
i

)
(22)

and, due to (16), inequality in (21) implies that

c∗ (
O j , D j\D′′) + c∗ (

ON ,
(
DN\ j\Dr

i

) ∪ D′′) > c∗ (
ON , DN \Dr

i

)
(23)

for every D′′ ⊂ D, D′′ �= ∅. The conditions in (22) and (23) indicate that
D ∈ EDS j (�\Dr

i ).
Suppose that D ∈ EDS j (�\Dr

i ). For j �= i it holds that D ⊆ D j , and for j = i
it is the case that D ⊆ Di\Dr

i . Therefore, for j ∈ N we have D ⊆ DN \Dr
i .

By definition of EDS equality (22) as well as inequality (23) for every D′′ ⊂ D,
D′′ �= ∅, hold. As direct results of (16), equality (20) as well as inequality (21)
for every D′′ ⊂ D, D′′ �= ∅, must also hold. We conclude that D ∈ EDS j (�).��

Part (i) of Lemma 4 asserts that the essential delivery sets never include any irrele-
vant deliveries. Part (ii) shows that the exclusion of irrelevant deliveries of any player
from the entire delivery set of the grand coalition does not affect the sets of essential
delivery sets of any player.

The last lemma in this section shows that for finding essential delivery sets, it is
sufficient to compare the optimal individual plans and those of the grand coalition.
Given an optimal plan of a player i and an optimal plan for the grand coalition, an
essential delivery set of i comprises the delivery requirements whose fulfillment in
the grand coalition involve other players, i.e., they are either fulfilled from depots of
other players or in trips which contain delivery requirements of players other than i .

Lemma 5 Let � ∈ T be a CTLD situation with player set N . Let i ∈ N and D ∈
EDSi (�). There exists P ∈ P∗(ON , DN ) such that D = ⋃

l∈P\L(Oi ,Di )
Dl.

Proof Let P ′ ∈ P∗(Oi , Di\D), P ′′ ∈ P∗(ON , DN\i ∪ D), and P = P ′ ∪ P ′′. By first
condition of EDS in (12) we have c∗(Oi , Di\D)+c∗(ON , DN\i ∪D) = c∗(ON , DN ).
By Lemma 2, we have P ∈ P∗(ON , DN ). Note that P ′ ⊆ L(Oi , Di ). To complete the
proof it suffices to show that P ′′ ∩ L(Oi , Di ) = ∅. Suppose the contrary. Then there
must exist trip l such that l ∈ P ′′ ∩ L(Oi , Di ) which requires that Dl ⊂ D ⊆ Di . As
the cost of delivery plan P ′′ is the sum of its individual trips, it must be that

cl + c∗ (
ON , DN\i ∪ (D\Dl)

)
= c∗(ON , DN\i ∪ D).

Since l ∈ L(Oi , Di ), we have cl = c∗(Oi , Dl). Then it must be that

c∗ (
Oi , Dl

)
+ c∗ (

ON , DN\i ∪ (D\Dl)
)

= c∗(ON , DN\i ∪ D).
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The latter implies that Dl is a SDS of i in (�\Di ) ∪ D which contradicts Lemma 3.
Thus, given D, any optimal fulfillment plan of the form P = P ′ ∪ P ′′ has the feature
that D = ⋃

l∈P\L(Oi ,Di )
Dl . ��

In light of the previous lemma, the following procedure obtains the essential delivery
sets of a player i . Given the CTLD situation, suppose that the set of optimal plans are
available. Choose an optimal plan and find every trip whose deliveries as well as its
depot entirely belong to i . An essential delivery set of i is obtained by excluding the
deliveries in latter trips from i’s delivery set for this plan. By repeating this procedure
for all optimal plans the set of essential delivery sets of i is identified.

Given the favorable features of essential delivery sets, we concentrate on them when
determining players allocations in CTLD situations. However, as seen in Example
3, the essential delivery sets of a player can be multiple. In those cases, we focus
on essential delivery sets which have the lowest costs when fulfilled individually.
In this way, we make sure that players fulfill the most costly parts of their delivery
requirements by themselves. We introduce the minimal essential delivery sets (MEDS)
as the essential delivery sets with minimum stand-alone cost.

Definition 4 Let � ∈ T be a CTLD situation with player set N . D ⊆ Di is a MEDS
of i if D ∈ EDSi (�) and

c∗(Oi , D) ≤ c∗ (
Oi , D′) for all D′ ∈ EDSi (�). (24)

Let MEDSi (�) be the set of MEDSs of i .

Note that even if the set of MEDSs has multiple elements, the stand-alone costs of
fulfillment for its elements are equal.

The set of MEDSs of a player i can be obtained by comparing among its essential
delivery sets to find the essential delivery sets that have the minimum costs of delivery
when fulfilled separately from the depots of i .

6.2 The proposed solution

Our proposed CTLD solution is introduced in two steps. In the first step, we introduce
a proportional CTLD solution, AP , which incorporates the notions of competitive-
ness and scope defined in the previous section. In the second step, we use the latter
proportional allocation to construct a least-unstable solution, AE .

Fix �, let Dm
i ∈ MEDSi (�), and define AP (�) = {

αP (�)
}

such that

αP
i (�) =

⎧
⎨

⎩

c∗(Oi ,Dm
i )∑

j∈N c∗
(

O j ,Dm
j

)v�(N ) if
∑

j∈N c∗
(

O j , Dm
j

)
�= 0

1
n v
�(N ) otherwise.

(25)

When there exists at least one player with a non-empty essential delivery set, the
solution AP obtains a unique efficient allocation that divides the savings obtained
in the grand coalition of CTLD situation � among players with non-empty essential
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Fig. 5 A CTLD situation with empty EDS for all players

delivery sets proportional to the stand-alone cost of their minimal essential deliveries.
The CTLD solution AP completely preserves the competitive positions of the players
with regard to their MEDSs. This means that for every pair of players i, j ∈ N with
non-empty essential delivery sets we have αP

i (�)/c
∗(Oi , Dm

i ) = αP
j (�)/c

∗(O j , Dm
j )

which implies that

zi
(
Oi , Dm

i

)

zα
P (�)

i

(
Oi , Dm

i

) =
z j

(
O j , Dm

j

)

zα
P (�)

j

(
O j , Dm

j

) .

If the set of essential delivery sets of every player is empty, which results in having∑
j∈N c∗(O j , Dm

j ) = 0, then AP allocates the savings among the players equally.
This situation could happen when the delivery requirements of players that generate
the savings in the grand coalition are completely substitutable with deliveries of some
other players. The following example presents such a situation.

Example 5 Consider the CTLD situation � depicted in Fig. 5. There are three players
N = {1, 2, 3} each having a depot and a delivery requirement. The distance between
the pickup and delivery locations for all delivery requirements is two and the distance
from the depots to any pickup/delivery point is one. The set of feasible trips includes all
trips which fulfill no more than two delivery requirements, i.e., L = {

l ∈ L
∣∣|Dl | ≤ 2

}

(only two deliveries can be fulfilled sequentially during a day). The savings obtained
in the grand coalition are only as much as that in any two-player coalition thus the
inclusion of the third player, arbitrarily chosen among the three, does not add to the
total savings. Therefore, we have EDS1(�) = EDS2(�) = EDS3(�) = {∅}. �

The solution AP does not necessarily obtain an ε∗-stable allocation. To achieve
this, we present the stable CTLD solution AE . Define AE (�) such that

AE (�) = arg min
α∈RN

∑

i∈N

(
αP

i (�)− αi

)2
(26)

s.t.
∑

i∈S

αi + ε∗ ≥ v�(S) ∀S ⊂ N (27)

∑

i∈N

αi = v�(N ) (28)

123



B. Hezarkhani et al.

where ε∗ is defined in (7). Given the situation�, the solution AE (�) gives the set of all
ε∗-stable allocations that have the shortest distance from the proportional allocation
αP

i (�).

Theorem 2 The solution AE satisfies the nonemptiness, uniqueness, and least-
instability properties.

Proof Let � ∈ T be a CTLD situation with player set N . We proceed in order.

NE By the definition of feasible trip sets, v� is well defined. From (25) it
is clear that αP (�) always exists since either

∑
j∈N c∗(O j , Dm

j ) �= 0 or∑
j∈N c∗(O j , Dm

j ) = 0. Also, definition of ε∗ guarantees the existence of α

that satisfies (27) and (28) (Maschler et al. 1979). Therefore, AE (�) �= ∅. We
conclude that AE satisfies the nonemptiness property.

UQ The allocations contained in AE (�) minimize the Euclidean distance between
αP (�) and the set of ε∗-stable allocations defined via (27) and (28). Note that
the region defined via (27) and (28), which is essentially an ε-core, is a compact
convex polytope (Maschler et al. 1979). The convex projection theorem (David-
son and Donsig 2010) asserts that there exists a unique point in every non-empty
closed and convex set having the minimum Euclidean distance from any given
point. Therefore, |AE (�)| = 1 which implies that AE satisfies the uniqueness
property.

LU The unique allocation obtained by AE (�) satisfies the constraints in (27) and
(28). By definition of ε∗-stability in (7), this allocation is an ε∗-stable allocation
as well. It follows that the solution AE satisfies the LU property. ��

Since the allocation AE satisfies the UQ property, in any CTLD situation� it results
in a single allocation. We denote this single allocation with αE (�), i.e., AE (�) =
{αE (�)}.

Before providing the results regarding the ability of AE to satisfy IID and RC
properties, we show that the coalition functions in CTLD situations remain intact if
IDSs of the players are excluded from the situation.

Lemma 6 Let � ∈ T be a CTLD situation with player set N . Let i ∈ N and D ∈
IDSi (�). We have v�(S) = v�\D(S) for every S ⊆ N.

Proof From the definition of IDSs we know that

c∗(Oi , D)+ c∗(Oi , Di\D) = c∗(Oi , Di )

and for S ⊆ N , i ∈ S,

c∗(Oi , D)+ c∗(OS, DS\D) = c∗(OS, DS).

By definition of v� it then follows that

v�(S) =
∑

j∈S\i

c∗(O j , D j )+ c∗(Oi , Di )− c∗(OS, DS)
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=
∑

j∈S\i

c∗(O j , D j )+ c∗(Oi , Di\D)− c∗(OS, DS\D)

= v�\D(S).

��

In light of the previous lemma, it can be inferred that the CTLD game associated
with a CTLD situation remains the same after excluding the IDSs of players.

Next theorem asserts that AE also satisfies the remaining two properties defined
specifically for CTLD situations.

Theorem 3 The solution AE satisfies the IID and restricted competitiveness proper-
ties.

Proof Let � ∈ T be a CTLD situation with player set N .

IID Let Dr
i ∈ IDSi (�). By Lemma 6, we have v�(S) = v�\Dr

i (S) for all S ⊆ N .
Thus, the constraints in (27) and (28) would not be affected by exclusion of
the irrelevant deliveries. It remains to show that αP

j (�) = αP
j (�\Dr

i ) for every
j ∈ N . By part (ii) of Lemma 4 we know that EDS j (�) = EDS j (�\Dr

i ) for
all j ∈ N . Consequently, MEDS j (�) = MEDS j (�\Dr

i ) for all j ∈ N . From
the definition of αP in (25) in conjunction with Lemma 6 it immediately follows
that αP

j (�) = αP
j (�\Dr

i ) for every j ∈ N . Thus, AE (�) = AE (�\Dr
i ) which

proves that AE satisfies the IID property.
RC Suppose N = {1, 2}. In this case the constraints in (27) and (28) are reduced

to α1 + α2 = v�(N ) and α1, α2 ≥ 0. The allocation αP (�) is within this
region. Hence, αE (�) = αP (�) which results in the objective function value
of zero in (26). Next suppose that SDS1(�) = SDS2(�) = ∅. In this case, we
have MEDSi (�) = EDSi (�) = {Di } for i ∈ N . By definition of αP (�) we
get αP

1 (�)/c
∗(O1, D1) = αP

2 (�)/c
∗(O2, D2) which implies that (11) holds.

Therefore, the solution AE satisfies the RC property. ��

The solution AE incorporates the notions of scope and competitiveness to produce
allocations for CTLD situations. When the proportional solution AP is within the set
of ε∗-stable allocations, defined via (27) and (28), AE coincides with AP . Otherwise,
when the allocation obtained by AP is not an ε∗-stable allocation, AE draws upon a
simple mechanism to single out an allocation in relation to the AP .

Obtaining the solution AE requires solving a quadratic optimization problem to
find the minimum Euclidean norm of a convex polytope. In this context, the early
work of Wolfe (1976) provides several basic results, gives an algorithm based on the
simplicial decomposition of the convex polytope, and proves its convergence. Despite
its fast convergence, it is open to determine whether the Wolfe algorithm runs in
polynomial time in dimension of space (Fujishige and Isotani 2011). Nevertheless,
the limited number of players participating in practical instances of CTLD situations
allows one to rely on generic solvers to calculate the proposed solution.
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Table 1 Comparing different solutions in CTLD situations

Solution RC IID NE UQ LU

AC Core × � × × �
ALC Least-core × � � × �
Aη Nucleolus × � � � �
A� Shapley value × � � � ×
AAC A ACA × � × � ×
Aψ Proportional � × × � ×
AEPM EPM � × × × �
AE Proposed � � � � �
RC restricted competitiveness, IID independence of irrelevant deliveries, NE nonemptiness, UQ uniqueness,
LU least-instability

7 Adopting existing solutions for CTLD situations

This section discusses the adoption of some of the existing solutions for CTLD situa-
tions and compares them with regard to the properties introduced earlier in this paper.
Table 1 at the end of this section exhibits the summary of the results.

One of best-known solutions in cooperative game theory is the core (Gillies 1959).
The core of a cooperative game contains all allocations that are efficient and stable. In
this regard, the core in itself is an ε-core with ε = 0. The core of a CTLD situation �
with player set N can be defined accordingly as a mapping that assign to every CTLD
situation the core of its associated game:

AC(�) =
{
α∈ R

N

∣∣∣∣∣
∑

i∈S

αi ≥ v�(S) for all S ⊂ N , and
∑

i∈N

αi = v�(N )

}
.

The core of CTLD situations does not satisfy the NE property. Example 5 in Sect.
6.2 depicts a CTLD situation where the latter is the case. In that example, for
S ⊆ N we have c∗(OS, DS) = 4 if |S| = 1, c∗(OS, DS) = 6 if |S| = 2, and
c∗(ON , DN ) = 10. This results in v�(S) = 0 when |S| = 1, v�(S) = 2 when
|S| = 2, and v�(N ) = 2. No efficient and stable allocation can be found in this setting
thus the core is empty. Upon existence, the core of a CTLD situation could as well
contain an infinite number of allocations. For example, in every two-player CTLD
situations with v�(N ) > 0, any efficient allocation that gives non-negative allocations
to the players is in the core. Therefore, the core of CTLD situations does not satisfy
the UQ property. On the other hand, the definition of RC property in combination
with the efficiency property necessitates a unique allocation in every two-player sit-
uation. Consequently, the core does not satisfy the RC property either. Since the core
solely draws upon the CTLD game, it follows from Lemma 6 that it satisfies the IID
property.

The intuitive appeal of the stability concept on one side, and the possibility of
having empty cores on the other side motivates alternative solutions that address the
stability issue. The least-core of a game (Maschler et al. 1979) is the intersection of
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all non-empty ε-cores of it. Accordingly, the least-core of a CTLD situation is defined
as a mapping that assigns to every situation � ∈ T with player set N the least-core of
its associated game:

ALC(�)=
{
α∈ R

N

∣∣∣∣∣
∑

i∈S

αi + εmin ≥v�(S) for all S ⊂ N , and
∑

i∈N

αi =v�(N )
}
.

where

εmin = min

{
ε∈ R

∣∣∣∣∣
∑

i∈S

αi + ε ≥ v�(S) for all S ⊂ N ,
∑

i∈N

αi = v�(N )

}
. (29)

Considering the definition of ε-core, one can always find values of ε such that
the ε-core of corresponding CTLD situation is non-empty. Consequently, the least-
core, unlike the core, satisfies the NE property. However, the least-core does not
necessarily results in a unique allocation (see Example 7 below) so it does not satisfy
the UQ property. Since the least-core solely draws upon the CTLD game, it follows
from Lemma 6 that it satisfies the IID property. It is straightforward to verify that in
zero-normalized two-player games, the least-core contains only the allocation which
divides the savings equally between the players which imply that it does not satisfy
the RC property. Note that the definition of least-instability implies that the set of
ε∗-stable allocations for a CTLD situation always contains the corresponding εmin-
stable allocations. This is due to the fact that εmin can take negative values while ε∗
is always non-negative. Therefore, when the core of a CTLD situation is not empty,
the least-unstable allocations are within the core and when the latter is empty, the set
of least-unstable allocations coincide with the least-core. Thus least-core satisfies the
LU property.

The nucleolus (Schmeidler 1969) is another well-studied solution for cooperative
games. As in the case of the core, the nucleolus in CTLD solutions can be defined as a
mapping that assigns to every situation � the nucleolus of its corresponding game. For
a CTLD situation � ∈ T with player set N and an allocation α, define the vector of
excesses θ(α) as a vector in R

2N
whose components are the numbers v�(S)−∑

i∈S αi

arranged non-increasingly. For two vectors x, x ′ ∈ R
m , the lexicographical order

x ≤lex x ′ implies that either x = x ′, or there is 1 ≤ t ≤ m such that xi = x ′
i

for 1 ≤ j < t and xt < x ′
t . Define the imputation set M(�) = {α|∑i∈N αi =

v�(N ) and αi ≥ 0 for all i ∈ N }. The nucleolus of a CTLD situation �, i.e., Aη(�),
is the set of imputations whose associated vectors of excesses are lexicographically
minimal:

Aη(�) = {
α

∣∣θ(α) ≤lex θ(α
′) for all α, α′ ∈ M(�)

}
.

The nucleolus selects the allocations which lexicographically minimize the vector of
objections for all coalitions of players where the objection is defined as the difference
between the savings obtainable by that coalition and the given allocation. For every
cooperative game, the nucleolus always exists, is unique, and is contained in the least-
core (Schmeidler 1969). Therefore, the nucleolus of CTLD situations satisfies the NE,
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Fig. 6 A CTLD situation with three players

UQ, and LU properties. Since the nucleolus solely draws upon the CTLD game, it
follows from Lemma 6 that it satisfies the IID property. However, it does not satisfy
the RC property as in two-player situations it always results in the allocation that
divides the savings equally between the two players (Aumann and Maschler 1985).

The Shapley value (Shapley 1953b) is a classic solution in cooperative game theory.
The Shapley value of a game is a single-valued solution that allocates the savings to
players based on their average contributions to all coalitions. By extending the notion
of Shapley value to CTLD situations, we obtain the solution A� wherein for situation
� with player set N we have A�(�) = {α�(�)}, that is for all i ∈ N :

α�i (�) =
∑

S⊆N\i

|S|!(n − |S| − 1)!
n!

[
v�(S ∪ i)− v�(S)

]
.

For every CTLD situation, the corresponding Shapley value always exists and is
unique. Since the Shapley value solely draws upon the CTLD game, it follows from
Lemma 6 that it satisfies the IID property. Moreover, it always divides the savings
equally in two-player situations (Aumann and Maschler 1985) thus it does not satisfy
the RC property. The following example shows that the Shapley value does not satisfy
the least-instability property.

Example 6 Consider the CTLD situation � depicted in Fig. 6. There are three players
N = {1, 2, 3} each having a depot at the same location and a delivery requirement.
The distance between the pickup and delivery locations for all delivery requirements is
one. The stand-alone cost for all players is 2. Although cooperation between players
1 and 2 does not create any savings, either of them can cooperate with player 3 to
generate 2 units of savings. This results in v�(S) = 0 when |S| = 1, v�({1, 2}) = 0,
v�({1, 3}) = v�({2, 3}) = 2, and v�(N ) = 2. The allocation α = (α1, α2, α3) =
(0, 0, 2) is the unique stable allocation. The Shapley value of the situation is α�(�) =
(1/3, 1/3, 4/3). Thus, the Shapley value is not least-unstable. �

Weighted Shapley values (Shapley 1953a) extend the Shapley value by allowing
unequal allocations of savings in two player situations based on exogenously given
weights. Note that the Shapley value by itself is a weighted Shapley value where all
players have equal weights. The exogenous weights reflect the different bargaining
powers of the players which justifies discrimination among their allocations irrespec-
tive of the characteristics of the situation. In CTLD situations encountered by the
authors, no player has ex ante a higher bargaining power over the others.
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Fig. 7 A CTLD situation with five players

The alternative cost avoided (ACA) method introduced by Tijs and Driessen (1986)
is a solution which draws upon the stand-alone costs of the players. We can adopt the
ACA as a solution for CTLD situations. Let� ∈ T be a CTLD situation with player set
N . Define mi = c∗(ON , DN )− c∗(ON\i , DN\i ). The allocation of savings2 obtained
by solution AAC A in situation � is AAC A(�) = {αAC A(�)} where for all i ∈ N :

αAC A
i (�) = [

c∗(Oi , Di )− mi
]
[

1 −
∑

j∈N m j − c∗(ON , DN )∑
j∈N (m j − c∗(O j , D j ))

]
.

This solution does not satisfy the NE property: in the situation depicted in Fig. 5
(Example 5) we have mi − c∗(Oi , Di ) = 0 for all i ∈ N so AAC A(�) is not well
defined for the situation in this example due to division by zero. Upon existence, AAC A

obtains a single allocation. Definition of alternate cost avoided implies that the cost
of irrelevant deliveries of a player i , i ∈ N , is additive both in c∗(Oi , Di ) and mi so it
cancels out in c∗(Oi , Di )− mi . Therefore, the exclusion of irrelevant deliveries does
not affect AAC A and consequently it satisfies the IID property. It is straightforward to
verify that in situations with two players only, the ACA always results in equal division
of savings. Thus, it does not satisfy the RC property. Finally, the next example shows
that the ACA does not satisfy the LU property.

Example 7 Consider the CTLD situation in Fig. 7 with N = {1, 2, 3, 4, 5}. Players 3,
4, and 5 each have a depot at the same location and a delivery with equal stand-alone
costs of 2 (the distance between the two points at right is 1). Players 1 and 2 each also
have a depot at the same location with a single delivery whose stand-alone costs is 4 (the
distance between the two points at left is 2). The deliveries and depots in the left and
right sides of the figure are distant enough so that no optimal trip can be constructed by
combining the corresponding components. The stand-alone costs are c∗(O1, D1) =
c∗(O2, D2) = 4 and c∗(O3, D3) = c∗(O4, D4) = c∗(O5, D5) = 2. The saving
obtained by coalition {1, 2} is 4, the saving obtained by coalitions {3, 4}, {3, 5}, {4, 5},
and {3, 4, 5} are 0, 2, 2, and 2, respectively. The savings obtained by the grand coalition
is 6. The core of the associated game is non-empty and can be completely characterized
by the allocations α = (α1, α2, α3, α4, α5) = (θ, 4− θ, 0, 0, 2)with 0 ≤ θ ≤ 4. With

2 Note that ACA is originally defined over cooperative cost games. We have modified the original ACA
formula to describe corresponding allocations of savings rather than costs.
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Fig. 8 A CTLD where i has zero stand-alone cost

respect to ACA, we have m1 = m2 = m5 = 0 and m3 = m4 = 2. Consequently, we
get αAC A = (2.4, 2.4, 0, 0, 1.2). So αAC A is not the least-unstable allocation. �

The proportional solution introduced by Ortmann (2000) incorporates proportion-
ality as a measure of fairness in division of savings. To provide the formula for this solu-
tion in CTLD situations, consider the situation � = (N , V, w, (Di )i∈N , (Oi )i∈N , L)
and accordingly define the restricted situation �S = (S, V, w, (Di )i∈S, (Oi )i∈S,

L(OS, DS)) as the situation obtained by ignoring the players not in S. Note that
�N = �. The proportional solution a la Ortmann for CTLD situations is defined via

Aψ(�) =
{(

c∗(Oi , Di )− ψi (�
N )

)

i∈N

}

where for all i ∈ N and S ⊆ N , ψi (�
S) is obtained recursively from3

ψi (�
S) = c∗(OS, DS)

⎡

⎣1 +
∑

j∈S\i

ψ j (�
S\i )

ψi (�S\ j )

⎤

⎦
−1

with ψi (�
i ) = c∗(Oi , Di ). With the above definition, this solution only exists in

situations where for every i ∈ N it holds that c∗(Oi , Di ) �= 0. This is not always the
case in CTLD situations as shown in the next example.

Example 8 Consider the CTLD situation depicted in Fig. 8 with N = {1, 2}. Player 1
has a depot but no deliveries and player 2 has a depot and a delivery which is close to
player 1’s depot. The distance between the adjacent points is 1. Through cooperation
the players can obtain two units of savings, i.e., v�(N ) = 2, we have c∗(O1, D1) = 0.

�
The example above shows that the proportional solution does not satisfy the NE

property. Upon existence, the proportional solution provides a single allocation (Ort-
mann 2000). In CTLD situations with two players, the proportional solution divides
savings in proportion to stand-alone costs of the players. As the result, this solution
satisfies the RC property. However, considering the entire stand-alone cost players
hinders this solution from satisfying the IID property. Looking back at Example 6,
observe that the proportional solution Aψ obtains the allocationαψ = (2/5, 2/5, 6/5).
Given that the only stable allocation in this situation is α = (0, 0, 2), we conclude that
this solution does not satisfy the LU property.

3 Note that the original solution is extended to incorporate proportionality with regard to costs, instead of
savings.
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The equal profit-sharing method proposed by Frisk et al. (2010) addresses the
concerns over stability as well as competitiveness in transportation situations. The
EPM solution chooses allocations in the core, or in the least-core when the core
is empty, which minimize the maximum difference between all pairwise ratios of
allocation to stand-alone cost. In CTLD situations, the EPM solution is defined as
AEPM where for a situation �:

AEPM(�) = arg min
α

f (30)

s.t.
αi

c∗(Oi , Di )
− α j

c∗(O j , D j )
≤ f ∀i, j ∈ N (31)

∑

i∈S

αi + εmin ≥ v�(S) ∀S ⊂ N (32)

∑

i∈N

αi = v�(N ) (33)

with εmin being defined in (29). In CTLD situations with two players, the EPM allocates
savings proportional to stand-alone costs of the players. Thus, AEPM satisfies the RC
property. However, this solution does not satisfy the IID property as it considers the
entire stand-alone costs of the players. Moreover, EPM is not defined for the case
where the stand-alone cost of a player is zero (as in Fig. 8), thus it does not satisfy the
NE property either. We return to Example 7 to show that EPM can produce more than a
single allocation in some situations. With regard to later example, first note that εmin =
0. Now consider the family of allocations (α1, α2, α3, α4, α5) = (θ, 4 − θ, 0, 0, 2)
with 0 ≤ θ ≤ 4. Note that the largest difference between pairwise ratios of allocation
to stand-alone cost in this family is 1. In fact, all allocations in this family are optimal
solutions to the program defined by (30)–(33). We conclude that AEPM does not satisfy
the UQ property.

8 Final remarks and conclusions

In this paper, we proposed a solution for CTLD situations. The proposed solution
satisfies a series of properties which reflect the requirements for fairness and/or com-
petitiveness in these situations. The solution always exists, gives a unique allocation,
and is situated within the core of the cooperative game associated with the situation—
or, if the latter is empty, the solution is within the least-core of the associated game
(Theorem 2). The proposed solution is insensitive to the exclusion of deliveries which
could not play any role in cooperation and satisfies a minimal requirement for com-
petitiveness of allocations (Theorem 3).

Our solution for CTLD situations incorporates the notion of competitiveness in the
sense of proportionality to competitive positions. To do so, the solution draws upon
the average cost of fulfillment for MEDSs of players to define a measure for compet-
itive positions of logistics providers. The minimal essential deliveries are subsets of
delivery requirements of players which are necessary and sufficient in creating their
contributions to the grand coalition and have the minimum stand-alone costs (Defi-
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nition 4). The preservation of competitive positions implies that the ratio of average
cost of fulfillments of the players remain the same before and after cooperation.

To address fairness of the solution, we seek allocations that minimize the dissatis-
faction of sub-coalitions. To do so we restrict our attention to the set of least-unstable
allocations, i.e., the smallest non-empty ε-core of the corresponding cooperative cost
game (ε ≥ 0). The non-negativity of ε reflects the fact that in CTLD situations,
companies must invest to be able to cooperate. The investment includes establishing
standardized information systems, and perhaps employing a transactional intermedi-
ary to ensure privacy of information which is critical in the competitive environment of
logistics sector. Thus, least-unstable allocations render our allocations fair in a coali-
tional sense. Note that choosing among ε-stable allocations with ε < 0 may yield
an allocation further away from the proportional solution AP without meaningfully
improving the stability of the allocation.

Ideally, our solution yields the allocation which equalizes the ratios of average
costs of deliveries before and after cooperation for all players, i.e., the proportional
allocation. However, with more than two players the proportional allocation need
not be situated within the core of the associated cooperative cost game (or within
the least-core when the core is empty). To avoid impossibility results, we defined
the competitive requirements of the solution in a restricted manner and in terms of
two-player situations. In the last step, our solution selects the point in the core of the
associated cooperative game (or the least-core when the latter is empty) that has the
shortest distance from the proportional allocation.

The solution is proposed with special attention to implementability considerations.
The preliminary allocation introduced in this paper, i.e., AP , which draws upon MEDSs
of players, can be calculated by comparing the individual optimal delivery plans of the
logistics providers in stand-alone mode versus those in the grand coalition. This is due
to the fact that the essential delivery sets are detectable from the latter comparison (as
implied by Lemma 5). In practical instances where the multiplicity of optimal delivery
plans are improbable, the essential delivery sets of the players can be obtained by
detecting the deliveries whose fulfillment in the grand coalition involves other players,
that is, the trips including those deliveries are either initiated from another player’s
depot or they include deliveries of others. When the essential delivery sets are multiple,
finding the minimal sets among them requires comparison among their stand-alone
delivery costs.

To the best of our knowledge, this paper is the first to formally incorporate an
endogenous measure of competitiveness in logistics markets. This is done by con-
sidering the lowest possible price that a logistics provider is able to charge for a
unit distance of its delivery services within a specified scope without incurring loss.
Such a measure reflects the internal efficiency of the logistics providers’ operations.
Consequently, our solution takes advantage of information contained in a situation in
addition to the savings generated in all possible coalitions to calculate the allocation.

We argue that in cooperative operations management, investigating the desirable
properties of solutions and their formal definition ex ante obtains more meaningful
results than using generic solutions. Without having a solid ground for comparing
among different solutions, one cannot objectively evaluate the performance of various
available solutions. The definition of desirable properties in CTLD situations in this
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paper allows us to conduct such comparison. The results clarify the advantages of our
proposed solution over some of the existing solutions in the literature which are more
suited to be adopted in these situations.

As a practical advantage of our proposed solution, it can be extended to handle more
realistic CTLD situations. The restrictions for delivery time windows, requirements for
trip lengths, availability of personnel and shifts can all be easily included in the basic
model which obtains costs. Despite possible challenges in solving the optimization
problem, as long as one can identify the best joint plans for fulfilling the delivery
requirements in the grand coalition, our approach in obtaining competitive allocations
remains valid for cooperating logistics players.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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