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Abstract: In the past few years, growing concerns about the climate change have forced 

governments to initiate tighter environmental regulations and tougher emission reduction targets. 

These initiatives have increased the interest on alternative fuels and heightened the public 

awareness on electromobility. To cut their dependency on fossil fuels, logistics operators started 

employing electric vehicles (EVs) in their fleet, which brings in additional challenges to their 

operational planning. In addition, with an ever-growing interest in e-commerce, parcel delivery is 

taking new shapes by offering flexible delivery options to the customers. To mitigate these issues, 

we introduce the Electric Vehicle Routing Problem with Flexible Deliveries (EVRP-FD), where 

the customers are served using a fleet of EVs that can recharge their batteries along their routes. 

In this problem, a customer may specify multiple delivery locations and the delivery can be made 

to one of these locations within its predetermined time window. Our objective is to minimize the 

total distance travelled by using minimum number of vehicles in the fleet. We first formulate the 

mathematical model of the problem. Next, we develop a hybrid Variable Neighborhood Search 

method coupled with Tabu Search by proposing new mechanisms to solve the problem effectively. 

Then, we verify the performance of our algorithm on instances published in the literature. We also 

introduce new instances for the EVRP-FD and perform an extensive computational study to 

investigate the trade-offs associated with different operational factors. Finally, we present a case 

study in Nottingham, UK to provide further insights.  

Keywords: Electric vehicle routing problem, flexible deliveries, variable neighborhood search, 

granular tabu search, recharging.  
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1. Introduction 

The rapid development of e-commerce in recent years stimulates the growth of the logistics 

industry. In 2018, nearly 3 billion people enjoyed online shopping at least once. Furthermore, the 

turnover from e-commerce was estimated to be around 2875 billion dollars, with a growth of 12% 

compared to its previous year (Marco et al., 2020). Online shopping has shown a tremendous 

growth in 2020 globally because of the COVID-19 pandemic. Consumers are likely to continue 

their online consumption habits in the future (UNCTAD, 2020). The significant rise in e-commerce 

results in a considerable challenge in the “last-mile” of the supply chain, which is the final delivery 

of the goods to the consumers. These last-mile challenges are aggravated considering new 

flexibilities that logistic companies are offering to their customers. For example, DHL defines 

logsumers as customers who can individualize their orders by choosing multiple delivery options 

and time windows based on their availability at different locations (Bubner et al., 2014). UPS 

initiated the Alternate Delivery Program in which the package can be delivered to a designated 

UPS location or a participating neighborhood store (e.g. a deli, dry cleaner, coffee shop) rather 

than to the recipient’s primary residence or place of business. Then, the customers can pick up 

their parcels at their convenience (ups.com). In a similar setting, the customers may request their 

packages to be delivered into the trunk of their cars parked at pre-specified locations (Reyes et al., 

2017). On the one hand, logistics companies are encouraged to offer such flexibilities in their last-

mile services together with faster deliveries. On the other hand, environmental concerns regarding 

congestion, noise and air pollution force them to invest in efficient and clean last-mile delivery 

systems.  

The majority of the logistics operators mostly utilize diesel-powered vehicles in their delivery 

services (Lewis et al., 2020). However, due to the negative externalities caused by internal 

combustion engine vehicles (ICEVs) such as carbon  emissions, air pollution, and climate change, 

governments and city municipalities impose more strict regulations to freight transportation with 

these vehicles in cities (Pan et al., 2021b). The European Commission coordinated actions to 

achieve CO2-free urban logistics in major city centers by 2030 (European Commission, 2013). The 

Netherlands and Norway stepped up measures to phase out ICEVs by 2025 and German Federal 

Council passed a resolution that bans the sale of ICEVs from 2030 onward (fuelsave-global.com). 

Recently, UK also declared that the sale of new diesel- and petrol-powered vans and cars would 
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be banned from 2030 (bbc.com). Furthermore, President Joe Biden signed an executive order for 

converting the U.S. government’s fleets, including 225,000 Postal Service vehicles, to electric 

vehicles (reuters.com). These initiatives encourage the shift towards alternative fuel vehicles 

(AFVs), mainly electric vehicles (EVs), for both private and commercial uses. Consequently, 

battery electric vehicles (BEVs) are expected to constitute a large share within the fleets of logistics 

operators. In 2019, Amazon co-founded the Climate Pledge and committed to purchase 100,000 

electric delivery vehicles to zero down their carbon emissions by 2040. The company’s EVs have 

recently started making deliveries in Los Angeles, with an expansion plan across 15 additional 

cities in 2021 (businessinsider.com). 

BEVs are vehicles that are entirely powered by a rechargeable battery. They have zero tailpipe 

emission and are categorized as the cleanest vehicles in transportation (Jaller et al. 2018). The 

structure of the BEVs is simpler than other EV types (EVs) as it uses mono-power from the battery, 

removes the combustion engine, transmission, fuel tank, cooling, and exhaust system. Thus, its 

maintenance service is relatively simpler and cheaper. However, the limited driving range, high 

battery cost, long recharging times, and limited recharging facility infrastructure remain the main 

drawbacks of the BEVs (Giordano et al., 2017). These limitations bring in additional complexities 

for logistics operators in their fleet management and route planning. Hence, the arising 

optimization problems have attracted considerable attention in the Vehicle Routing Problem 

(VRP) literature, and various variants of the Electric Vehicle Routing Problem (EVRP) have been 

introduced and studied over the past decade. In this study, we attack the Electric Vehicle Routing 

Problem with Flexible Deliveries (EVRP-FD), where the customers have the flexibility to request 

their orders to be delivered to one of the alternative delivery locations within the predetermined 

time windows. To the best of our knowledge, this particular problem has not been studied in the 

literature.  

In the EVRP-FD, a homogenous fleet of commercial (battery) EVs are dispatched from a single 

depot. For consistency with the terminology established in the literature, we use the term EV 

referring to a BEV in the rest of the article. The customers are allowed to specify alternative 

delivery locations and time windows for their orders, and the order is delivered to exactly one of 

these locations within the corresponding time window. Since the EVs have limited autonomy, they 

may need to recharge their batteries en-route in order to continue their tour. Our objective is to 

minimize the total distance travelled by using minimum number of vehicles in the fleet. We first 
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present the 0-1 mixed integer linear programming (MILP) model of the problem. Since the 

problem is not tractable for large-size instances, we develop a Variable Neighborhood Search 

(VNS) method that benefits from Tabu Search (TS) in local search. To reduce the computational 

effort, we use Granular TS approach (Toth and Vigo, 2003). Hence, the proposed algorithm is 

referred to as the Variable Neighborhood Search/Granular Tabu Search (VNS/GTS). In both 

shaking and local search phases, we employ several problem-specific neighborhood structures. We 

present an extensive experimental study to investigate the performance of the proposed method 

and provide insights for both researchers and practitioners.  

Our contributions can be summarized as follows: (i) we introduce the EVRP-FD and formulate its 

MILP model; (ii) we develop a hybrid VNS and TS method by proposing several new problem-

specific neighborhood structures; (iii) we introduce new benchmark instances for the EVRP-FD 

and perform extensive computational experiments to assess the performance of the proposed 

method; (iv) we present various trade-off analyses concerning key parameters and provide 

managerial insights; (v) we conduct a case study based on data collected from Nottingham, UK.  

The rest of the paper is structured as follows: In Section 2 we review the relevant literature. In 

Section 3, we describe the EVRP-FD and introduce its mathematical model. The proposed 

VNS/GTS method is presented in Section 4. Section 5 details the experimental study and discusses 

the results. Section 6 presents the case study while Section 7 concludes the paper with final remarks 

and future research directions. 

2. Literature review  

The delivery flexibility was first considered by de Jong et al. (1996) within the context of VRP 

with Multiple Time Windows (VRPMTW). Doerner et al. (2008), Favaretto et al. (2013), Belhaiza 

et al. (2014), and Beheshti et al. (2015) also addressed VRPMTW; however, none of these studies 

allowed customers to select alternative locations for their deliveries. Another vein of literature that 

incorporated flexibility in delivery is the Generalized VRP (GenVRP) introduced in Ghiani and 

Improta (2000). In the GenVRP, customers are grouped into clusters, and it is sufficient if a 

delivery vehicle visits one of the nodes within each cluster. Different from our problem in which 

customers have multiple delivery locations in different time windows, in the GenVRP, multiple 

customers are served by a single visit to the cluster at any time.  
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Reyes et al. (2017) extended the VRPMTW to the Vehicle Routing Problem with Roaming 

Delivery Locations (VRPRDL), where a good may be delivered into the trunk of the customer’s 

car during different time slots throughout the day if the customer is not available for a direct pickup 

at home. In other words, the customer may have multiple delivery options at different time 

intervals. For each of these delivery options, the time windows were assumed to be non-

overlapping. The authors proposed construction and improvement heuristics to solve the 

VRPRDL. Although the VRPRDL does not involve the routing of electric vehicles, it has some 

similarities with our problem with respect to other characteristics. Ozbaygin et al. (2017) also 

tackled the VRPRDL and developed a branch-and-price algorithm to solve it. Using their branch-

and-price algorithm, they also solved a hybrid variation of the VRPRDL in which home delivery 

is possible at any time during the planning horizon.  Ozbaygin et al. (2019) addressed the dynamic 

variant of the VRPRDL where delivery plans may change during the execution of a planned 

schedule. Because of the changes, the planned schedule may become sub-optimal or infeasible. 

So, the authors proposed a branch-and-price algorithm to re-optimize the vehicle routes and 

delivery locations.  

Very recently, Tilk et al. (2021) studied another variant of the VRPRDL in which the goods may 

be delivered to shared locations such as shops and parcel lockers instead of the trunk of the cars 

and shared delivery locations are associated with service capacities. One drawback in this setting 

is that each shared location is associated with a common time window; hence, many deliveries to 

that location may take place earlier than their actual time windows, which may lead to inefficient 

utilization of vehicle as well as location capacities. In a different business model, Pan et al. (2021a) 

used parcel lockers for transferring goods/items between EVs, vans, and bikes within the context 

of Multi-Depot VRP in an attempt to enhance the capability and sustainability of dispatcher 

networks. 

To the best of our knowledge, Conrad and Figliozzi (2011) is the first study that addressed the 

VRP using a fleet of EVs and referred to the problem as the Recharging VRP (RVRP). In this 

problem, the EVs are allowed to recharge at selected customers locations either to full or to 80% 

battery capacity. The recharge duration is assumed constant. Erdoğan and Miller-Hooks (2012) 

generalized this problem and introduced the Green VRP (GVRP) where the fleet consisted of 

AFVs. AFVs can refuel en-route at alternative fueling stations (AFSs) where the fuel tank is filled 

to full capacity in constant time. Schneider et al. (2014) extended it to the Electric Vehicle Routing 
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Problem with Time-Windows (EVRPTW) by also assuming that the EVs are fully charged at 

recharging stations. However, the recharging time is assumed proportional to the energy 

transferred and depends on the battery state of charge (SoC) when the EV arrives at the station. 

The authors adopted a hierarchical objective function that minimizes the number of vehicles first 

and the total distance traveled second, and implemented three different approaches based on VNS 

and TS.   

The full recharge restriction was relaxed by Bruglieri et al. (2015) and Keskin and Çatay (2016) 

who allowed partial recharges. Keskin and Çatay (2016) extended the model of Schneider et al. 

(2014) and developed an ALNS approach to solve it. Bruglieri et al. (2015) considered an objective 

function that includes the travel time, waiting time, recharging time as well as the number of 

vehicles, and used a VNS Branching method to solve small-size instances. Desaulniers et al. (2016) 

studied the EVRPTW with both full and partial recharging cases, and attempted to solve those 

optimally using branch-price-and-cut algorithms. Recently, Duman et al. (2021) developed exact 

and heuristic methods based on branch-and-price-and-cut to sovle the same problem, and presented 

new best solutions. Cortés-Murcia et al. (2019) extended the EVRPTW where the customer can 

be served via alternative transportation methods (walking, bikes, drones, etc.) while the EV is 

being recharged at the station. The authors developed an Iterated Local Search (ILS) method and 

investigated the financial benefits of serving customers while charging.  

Several studies addressed various EVRP extensions with regard to battery charging and 

discharging rates including rapid charging (Felipe et al., 2014; Çatay and Keskin, 2017; Keskin 

and Çatay, 2018), more accurate energy consumption estimation considering external and internal 

factors (Goeke and Schneider, 2015; Rastani et al., 2019; Kancharla and Ramadurai, 2020; Rastani 

et al., 2020; Rastani and Çatay, 2021), and non-linear charging function (Montoya et al., 2017; 

Froger et al., 2019; Kancharla and Ramadurai, 2020). Other extensions include the availability of 

stations and stochastic recharging times (Sweda et al., 2017; Keskin et al., 2019; Kullman et al., 

2019; Keskin et al., 2021), fleet composition (Goeke and Schneider, 2015; Hiermann et al., 2016; 

Mancini, 2017; Sassi and Oulamara, 2017; Macrina et al., 2019; Hiermann et al., 2019), battery 

swapping (Yang et al., 2015, Hof et al., 2017; Wang et al., 2018; Masmoudi et al., 2019; Jie et al., 

2019), and the utilization of hybrid electric vehicles (Zhen et al., 2015). We refer the reader to 

Erdelić and Carić (2019) for an extensive review about the utilization of EVs in goods distribution. 
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3. Problem description and mathematical formulation  

EVRP-FD deals with a homogenous fleet of EVs serving customers with known demands and 

alternative delivery points and time windows. The good is delivered to one of these locations 

within the desired time window. The EVs have limited driving range because of the battery energy 

capacity and may need to recharge en-route in order to continue their tours. Discharging the battery 

completely and recharging it to full capacity shortens its lifespan and can take hours (Sweda et al., 

2017). As Pelletier et al. (2017) highlighted logistics companies often operate within 10-20% to 

80-90% range of battery capacity, which corresponds to the first phase of recharging where the 

charge duration is a linear function of the amount of energy transferred. Therefore, without loss of 

generality we assume that EVs are operated between 10% and 90% of their battery capacity. 

Furthermore, we allow EVs to recharge only at the company-owned depot, which is the practical 

case in real-world logistics operations considering the limited recharging infrastructure in most 

regions. Even though numerous public recharging stations may exist in the region, not all of them 

will be truck friendly  (Baker et al., 2016). In addition, due to the other factors including inefficient 

use of drivers’ time and security concerns related to the cargo onboard many companies using EVs 

prefer recharging the vehicles at their own facilities (Morganti and Browne, 2018). Note that public 

recharging stations can be easily incorporated in our solution methodology and we present a 

detailed numerical analysis of this case in our experimental study.  

 

Fig. 1. An illustrative example  
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Fig. 1 provides an illustrative example that involves 10 customers with 26 delivery locations in 

total. The node numbers represent the customers. The nodes with the same ID number represent 

the alternative delivery locations of a customer. For instance, customer C1 has three alternative 

locations shown as nodes numbered “1” and highlighted in green.  In this example, EV#1 departs 

from the depot, visits customers C1 thru C4, and returns to depot for recharging. After recharging, 

it continues its route by visiting customers C5 and C6, and then returns to depot at the end of its 

tour. EV#2 departs from the depot, serves customers C7 thru C10, completes its tour and returns 

to depot without recharging. 

In the following, we provide the mathematical notation and formulation of the EVRP-FD. Let 𝑉𝑐 

denote the set of all customers and 𝐿𝑐 for 𝑐 ∈ 𝑉𝑐 denote the set of locations selected by customer 

𝑐. Let 𝑉 be the set of all the locations (𝑉 =  ⋃ 𝐿𝑐
𝑐∈𝑉𝑐 ). We denote the depot by 0 and 𝑛 + 1 at the 

beginning and end of a route, respectively. Then, we define sets 𝑉0 = 𝑉 ∪ {0} , 𝑉𝑛+1 = 𝑉 ∪

{𝑛 + 1} , and 𝑉0,𝑛+1 = 𝑉 ∪ {0, 𝑛 + 1} . Each node 𝑖 ∈ 𝑉0,𝑛+1  is associated with time window 

[𝑒𝑖, 𝑙𝑖]. The service time at each node is represented by 𝑠𝑖 , 𝑖 ∈ 𝑉. The recharging rate is denoted by 

𝑔 and the cargo capacity of the vehicle is 𝐶. The parameters 𝑑𝑖𝑗, 𝑡𝑖𝑗, and ℎ𝑖𝑗 represent the distance, 

travel time, and energy consumption from node 𝑖 ∈ 𝑉0 to node 𝑗 ∈ 𝑉𝑛+1, respectively. 

Similar to the approach of Bruglieri et al. (2016), we define 𝑑𝑖𝑗
′ , 𝑡𝑖𝑗

′ , and ℎ𝑖𝑗
′  to denote the 

additional (detouring) distance, travel time and energy consumption, respectively, associated with 

visiting the recharging station on the trip from 𝑖 to 𝑗 as follows: 𝑑𝑖𝑗
′ = 𝑑𝑖0 + 𝑑0𝑗 − 𝑑𝑖𝑗, 𝑡𝑖𝑗

′ = 𝑡𝑖0 +

𝑡0𝑗 − 𝑡𝑖𝑗, and ℎ𝑖𝑗
′ = ℎ0𝑖 + ℎ0𝑗 − ℎ𝑖𝑗. Binary variable 𝑥𝑖𝑗 is equal to 1 if an EV travels from node 𝑖 

to node 𝑗; 0 otherwise; and 𝑧𝑖𝑗 is equal to 1 if a vehicle recharges on its trip from node 𝑖 to node 𝑗; 

0 otherwise. We keep track of the battery state of charge (SoC) in terms of the fraction of the 

battery capacity. The continuous decision variables 𝑦𝑖 and 𝑟𝑖 denote the battery SoC when the EV 

arrives at node 𝑖 and the amount of energy recharged on its way to node 𝑖, respectively. 𝜏𝑖 indicates 

the service start time at node 𝑖 and 𝑢𝑖 shows the remaining cargo on the vehicle upon arrival to 

node 𝑖. The mathematical notation is summarized in Table 1.  
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Table 1. Mathematical notation 

Sets:  

𝑉 Set of all locations 

𝑉𝑐 Set of customers 

𝐿𝑐 Set of locations of customer 𝑐 ∈ 𝑉𝑐 

𝑉0 Set of locations and the depot, 𝑉0 = 𝑉 ∪ {0} 

𝑉𝑛+1 Set of locations and the sink node, 𝑉𝑛+1 = 𝑉 ∪ {𝑛 + 1} 

𝑉0,𝑛+1 Set of locations, the depot and the sink node, 𝑉0,𝑛+1 = 𝑉 ∪ {0, 𝑛 + 1} 

 
Parameters: 

𝑡𝑖𝑗  Travel time from node 𝑖 to node 𝑗 

𝑡𝑖𝑗
′  Detouring time to visit the recharging station on the trip from node 𝑖 to node 𝑗, 𝑡𝑖𝑗

′ = 𝑡𝑖0 +

𝑡0𝑗 − 𝑡𝑖𝑗 

𝑑𝑖𝑗  Distance from node 𝑖 to node 𝑗 

𝑑𝑖𝑗
′  Detouring distance to visit the recharging station on the trip from node 𝑖 to node 𝑗, 𝑑𝑖𝑗

′ =

𝑑𝑖0 + 𝑑0𝑗 − 𝑑𝑖𝑗 

ℎ𝑖𝑗  Energy consumed to traverse arc (𝑖, 𝑗) 

ℎ𝑖𝑗
′  Energy consumed for detouring to visit the recharging station on the trip from node 𝑖 to 

node , ℎ𝑖𝑗
′ = ℎ0𝑖 + ℎ0𝑗 − ℎ𝑖𝑗 

[𝑒𝑖, 𝑙𝑖] Time window associated with node 𝑖 

𝑠𝑖  Service time at node 𝑖 

𝐹 A sufficiently large constant 

𝐶 Cargo capacity of the vehicle 

𝑔 Recharging rate of the charger 

 

Decision variables: 

𝑥𝑖𝑗 1 if arc (𝑖, 𝑗) is traversed by a vehicle; 0 otherwise 

𝑧𝑖𝑗  1 if a vehicle recharges on the trip from node 𝑖 to node 𝑗; 0 otherwise 

𝑟𝑖 Amount of energy recharged when a vehicle travels to node 𝑖, 0 ≤ 𝑟𝑖 ≤ 1 

𝜏𝑖 Service start time of node 𝑖 by one of the vehicles 

𝑦𝑖 Battery SoC at node 𝑖, 0 ≤ 𝑦𝑖 ≤ 1 

𝑢𝑖 Load on the vehicle upon its arrival at node 𝑖 
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Then, the EVRP-FD can be formulated as a MILP model as follows: 

min  (∑ ∑ 𝑑𝑖𝑗𝑥𝑖𝑗𝑖∈𝑉0𝑗∈𝑉𝑛+1∖{𝑖} + ∑ ∑ 𝑑𝑖𝑗
′ 𝑧𝑖𝑗𝑖∈𝑉𝑗∈𝑉∖{𝑖} ) + 𝐹(∑ 𝑥0𝑖𝑖∈𝑉 )   (1) 

subject to:   

 ∑ ∑ 𝑥𝑖𝑗 = 1𝑗∈𝑉𝑛+1∖{𝑖}  𝑖∈𝐿𝑐   𝑐 ∈ 𝑉𝑐 (2) 

 ∑ 𝑥𝑗𝑖𝑗∈𝑉0,𝑗≠𝑖 = ∑ 𝑥𝑖𝑗𝑗∈𝑉𝑛+1,𝑗≠𝑖   𝑖 ∈ 𝑉 (3) 

 𝑧𝑖𝑗 ≤ 𝑥𝑖𝑗     𝑖 ∈ 𝑉 , 𝑗 ∈ 𝑉 ∖ {𝑖} (4) 

 𝑟𝑗 ≤  ∑ 𝑧𝑖𝑗𝑖∈𝑉,𝑖≠𝑗   𝑗 ∈ 𝑉 (5) 

 𝜏𝑖 + (𝑡𝑖𝑗 + 𝑠𝑖) + 𝑡𝑖𝑗
′ 𝑧𝑖𝑗 + 𝑔 × 𝑟𝑗 − 𝑙0(1 − 𝑥𝑖𝑗) ≤ 𝜏𝑗 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1 ∖ {𝑖} (6) 

 𝑒𝑖 ≤ 𝜏𝑖 ≤ 𝑙𝑖 𝑖 ∈ 𝑉0,𝑛+1 (7) 

 0 ≤ 𝑢𝑗 ≤ 𝑢𝑖 − 𝑞𝑖𝑥𝑖𝑗 + 𝐶(1 − 𝑥𝑖𝑗) 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1 ∖ {𝑖} (8) 

 0 ≤ 𝑢0 ≤ 𝐶  (9) 

 𝑦𝑗 ≤ 𝑦𝑖 − ℎ𝑖𝑗 − ℎ𝑖𝑗
′ 𝑧𝑖𝑗 + 𝑟𝑗 + (1 − 𝑥𝑖𝑗) 𝑖 ∈ 𝑉0, 𝑗 ∈ 𝑉𝑛+1 ∖ {𝑖} (10) 

 𝑦0 = 1  (11) 

 𝑦𝑖 ≥ ℎ𝑖0 ∑ 𝑧𝑖𝑗𝑗∈𝑉∖{𝑖}   𝑖 ∈ 𝑉 (12) 

 0 ≤ 𝑦𝑗 ≤ (1 − ℎ0𝑗) + (1 − ∑ 𝑧𝑖𝑗𝑖∈𝑉∖{𝑗} )  𝑗 ∈ 𝑉 (13) 

 0 ≤ 𝑟𝑗 ≤ 1 − (𝑦𝑖 − ℎ𝑖0) + (1 − 𝑧𝑖𝑗)  𝑖 ∈ 𝑉, 𝑗 ∈ 𝑉 ∖ {𝑖} (14) 

 𝑥𝑖𝑗 ∈ {0,1} 𝑖 ∈ 𝑉0 , 𝑗 ∈ 𝑉𝑛+1 ∖ {𝑖} (15) 

 𝑧𝑖𝑗 ∈ {0,1} 𝑖 ∈ 𝑉, 𝑗 ∈ 𝑉 ∖ {𝑖} (16) 

The objective function (1) minimizes the total distance traveled by utilizing minimum number of 

EVs. The latter is achieved with the second term by using a sufficiently large constant 𝐹 that 

represents a fixed cost for the vehicles. Constraints (2)–(3) are the flow balance constraints that 

guarantee that each customer is visited exactly once at one of its predetermined locations. 

Constraints (4) ensure that if an EV recharges its battery on the trip from node 𝑖 to node 𝑗 then it 

serves node j after node i. Constraints (5) allow a positive recharge amount only if the EV recharges 

its battery on its trip from all other nodes to node 𝑗. Constraints (6) keep track of the time at 

customers (and the depot) while constraints (7) establish the service time window restrictions. 

Constraints (8) and (9) ensure that vehicle capacities are not exceeded. Constraints (6)-(9) also 

prevent the formation of subtours. Constraints (10) keep track of the battery SoC at customers (and 
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the depot) and constraints (11) set the SoC of the EVs to full upon their departure from the depot. 

Constraints (12) guarantee that the EV has sufficient energy to reach the station if it recharges its 

battery on the trip from node 𝑖 to node 𝑗. Constraints (13) ensure that the battery is never recharged 

beyond its capacity while constraints (14) make sure the amount of energy recharged does not 

exceed the remaining capacity of the battery. Finally, constraints (15) and (16) define the domain 

of the binary variables  

4. Solution methodology  

In our VNS/GTS the neighborhood structures are systematically changed in the shaking phase of 

the general VNS scheme (Mladenović and Hansen, 1997) and the Granular Tabu Search (GTS) 

algorithm (Toth and Vigo, 2003) is implemented as the local search method. VNS is one of the 

most successful heuristic algorithms for solving hard combinatorial optimization problems despite 

its simple algorithmic structure requiring few parameters. It has been successfully applied to 

various routing problems such as the EVRPTW (Schneider et al. 2014), VRP with two-

dimensional loading constraints (Wei et al., 2015), battery swap station location-routing problem 

(Hof et al., 2017), clustered VRP (Hintsch and Irnich 2018), Dial-a-Ride Problem with EVs 

(Masmoudi et al., 2018), single VRP with deliveries and selective pickups (Coelho et al., 2016), 

profitable heterogeneous VRP with cross-docking (Baniamerian et al., 2019), fleet size and mix 

VRP with electric modular vehicles (Rezgui et al., 2019), and the double VRP with multiple stacks 

(Chagas et al., 2020).  

The recent literature has shown that combining two or more metaheuristic algorithms can enhance 

the performance of the algorithms in terms of the computation time and/or solution quality (Ting 

et al., 2015). VNS has been hybridized with different approaches for solving many combinatorial 

optimization problems including Genetic Algorithm (Paydar et al., 2013, Xia et al., 2016, Li et al., 

2018), Simulated Annealing (Abbasi et al., 2011, Hosseini et al., 2014), Particle Swarm 

Optimization (Marinakis et al. 2017) as well as Integer Linear Programming (Prandtstetter and 

Raidl, 2008). VNS with TS combination was also used to solve VRP variants such as VRP with 

clustered backhauls and 3D loading constraints (Bortfeldt et al., 2015), VRP with drones and en-

route operations (Schermer et al., 2019), multi-depot VRP (Sadati et al., 2020; Sadati et al., 2021), 

and multi-depot green VRP (Sadati and Çatay, 2021). A recent taxonomic review of Elshaer and 
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Awad (2020) indicates that VNS and TS are the two most frequently utilized algorithms in solving 

the VRP and its variants. These successful implementations constitute our main motivation in 

coupling VNS with GTS in this study. 

Algorithm 1. The pseudocode of VNS/GTS 

Notation: 

𝑆0:  Initial solution 

𝑆GTS:  Solution produced by Granular Tabu Search 

𝑆:   Current solution 

𝑆∗:  Incumbent solution 

𝑍(𝑆):  Objective function value of solution 𝑆 

𝑁𝑘(𝑆): 𝑘𝑡ℎ neighborhood of solution 𝑆  

 

1: Construct 𝑆0                                                                   // Construct initial solution  

2: Set 𝑆 = 𝑆∗ = 𝑆0  and  𝑍(𝑆) = 𝑍(𝑆0) = 𝑍(𝑆∗)         

3: Repeat  

4:       𝐅𝐨𝐫 𝑘 = 1 𝒕𝒐 𝑘𝑚𝑎𝑥 do 

5:    Generate random solution 𝑆′ using 𝑁𝑘(𝑆)                // Shaking 

6:    Apply Granular Tabu Search to obtain 𝑆GTS             // Local Search 

7:    Set 𝑆 = 𝑆GTS 

8:    If 𝑆 is feasible  and  𝑍(𝑆) < 𝑍(𝑆∗) 

9:     Update 𝑆∗ = 𝑆 

10:     Set 𝑘 = 1 

11:    Else 

12:     Set 𝑘 = 𝑘 + 1 

13:    End If 

14:     End For 

15:     Set 𝑆 = 𝑆∗ 

16: Until Stopping Condition 

 

 

VNS/GTS starts with an initial solution  𝑆0  constructed using the greedy insertion algorithm. 

Initially, the current solution 𝑆 and the incumbent solution 𝑆∗ are set to 𝑆 = 𝑆∗ = 𝑆0. Then, the 

shaking phase is implemented using a set of neighborhood structures 𝑁𝑘 (𝑘 = 1, . . . , 𝑘𝑚𝑎𝑥). In this 

phase, a random solution 𝑆 ′ is generated by applying the first neighborhood operator 𝑁1 to solution 

𝑆  Next, GTS is performed in the local search phase by applying a pre-determined set of 

neighborhood operators to obtain a new solution 𝑆𝐺𝑇𝑆. We then set the current solution 𝑆 = 𝑆𝐺𝑇𝑆. 

If 𝑆  is feasible and improves the incumbent solution 𝑆∗ , then 𝑆∗  is replaced with 𝑆  and the 

neighborhood counter 𝑘 is reset to 1 (i.e., we return to the first shaking neighborhood structure). 
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Otherwise, 𝑘 is increased by 1 (𝑘 = 𝑘 + 1) and VNS/GTS continues by applying another shaking 

move on 𝑆. In the subsequent iteration of shaking solution 𝑆 will be considered, regardless of 

whether it is feasible or not. If all neighborhood structures are explored (𝑘 = 𝑘𝑚𝑎𝑥), the algorithm 

restarts from the best solution found so far 𝑆∗ and neighborhood structure index 𝑘 is re-initialized 

to 1. This procedure is repeated until a termination condition is satisfied. The algorithm terminates 

if the solution is not improved for a pre-determined number of iterations (𝐼𝑡𝑒𝑟𝑁𝑜𝑛𝐼𝑚𝑝) or reaches 

a pre-determined number of iterations (𝐼𝑡𝑒𝑟𝑇𝑜𝑡𝑎𝑙). The pseudocode of the VNS/GTS is presented 

in Algorithm 1. 

4.1. Initial solution construction 

To construct an initial feasible solution for the EVRP-FD we apply a greedy insertion heuristic.  

First, we determine the nearest delivery location of each customer to the depot. Among them, the 

farthest location is selected and the route is initialized by serving the corresponding customer at 

the selected location and returning to the depot. Then, the cheapest insertion rule is used to add the 

remaining customers to the route. For all unvisited customers, we consider all their alternative 

delivery locations, determine the feasible location and position pair that increases the objective 

function value the least, and perform the insertion. If we cannot insert any customers feasibly, then 

we close the current route and initialize a new route. We repeat this procedure until all customers 

have been served.  

4.2. Shaking 

In the shaking phase of VNS/GTS, a random solution is constructed using three types of problem-

specific neighborhood structures: 𝜆 -SwitchLocation, 𝜅 -MoveCustomer, and Merge. The 𝜆 -

SwitchLocation neighborhood operator switches the delivery location of 𝜆 customers with their 

alternative delivery locations in 𝜆 routes (one switch in each selected route). If a customer has two 

or more alternative delivery locations, one is selected randomly. In this study, we use three types 

of 𝜆-SwitchLocation moves and refer to them as 1-SwitchLocation, 2-SwitchLocation, and 3-

SwitchLocation. These moves are illustrated in Fig. 2. 
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(a) 1-SwitchLocation operator 

 

  

(b) 2-SwitchLocation operator 

 

  

(c) 3-SwitchLocation operator 

Fig. 2. 𝜆-SwitchLocation shaking operators 

The 𝜅-MoveCustomer is applied to the routes of two vehicles. In this neighborhood structure, the 

first 𝜅 customers from the second route are removed and appended to the end of the first route by 

inserting a recharge visit.  Since the first route will start by serving 𝜅 more customers, this operator 

may cause time-window violations for the customers moved. However, we observed that it may 

help the algorithm reach an improved feasible solution in the subsequent local search phase or in 
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the following iterations. We employ 1-MoveCustomer, 2-MoveCustomer and 3-MoveCustomer in 

our implementation as shown in Fig. 3. 

 

  

(a) 1-MoveCustomer operator 

 

  

(b) 2-MoveCustomer operator 

 

  

 (c) 3-MoveCustomer operator 

 

Fig. 3. 𝜅-MoveCustomer shaking operators 

 

The Merge move merges two routes by appending one to the end of the other while keeping the 

direction of the journey. It is implemented in two ways by traveling from the last location in the 

first route to the first location in the second route directly (Fig. 4.a) or via recharging station (Fig. 
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4.b). This operator aims at reducing the fleet size but it also helps decreasing the total distance 

traveled according to the triangular inequality property. On the other hand, the resulting merged 

route can be infeasible with respect to the driving range and time window constraints, and similar 

to previous neighborhood operator this infeasibility may allow the algorithm reach an improved 

feasible solution in the subsequent local search phase. All neighborhood structures of the shaking 

phase are investigated in cyclic order starting from 1-SwitchLocation and ending with Merge. 

 
 

 (a) Merge (directly) operator 

 

 
 

 (b) Merge (via recharging station) operator 

 

Fig. 4. Merge shaking operators 

4.3. Strategic oscillation for handling infeasible solutions 

VNS/GTS is equipped with strategic oscillation for allowing infeasible solutions (Cordeau et al., 

1997). If a neighborhood operator fails to generate a feasible solution, this infeasible solution is 

accepted by penalizing its objective function value using a multiplier proportional to the amount 

of infeasibility as follows: 

𝑍′(𝑆) = 𝑍(𝑆) + 𝛼𝐷(𝑆) + 𝛽𝑊(𝑆) + 𝛾𝐶(𝑆)  (17) 

where  
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𝐷(𝑆) = ∑ ∑ [𝑦𝑗 − 𝑦𝑖 + ℎ𝑖𝑗 + ℎ𝑖𝑗
′ 𝑧𝑖𝑗 − 𝑟𝑗 − (1 − 𝑥𝑖𝑗)]

+
 𝑗∈{𝑉𝑛+1∖𝑖}𝑖∈𝑉0

  (18) 

𝑊(𝑆) = ∑ [𝜏𝑖 − 𝑙𝑖]
+

𝑖∈𝑉0
  (19) 

𝐶(𝑆) = ∑ ∑ [𝑢𝑗 − 𝑢𝑖 + 𝑞𝑖𝑥𝑖𝑗 − 𝐶(1 − 𝑥𝑖𝑗)]
+

 𝑗∈{𝑉𝑛+1∖𝑖}𝑖∈𝑉0
  (20) 

In Equation (17), 𝑍(𝑆) refers to the objective function value defined in (1) which is associated 

with solution S, and 𝐷(𝑆), 𝑊(𝑆) and 𝐶(𝑆) indicate the violations in driving range, time windows 

and vehicle cargo capacity, respectively. Note that [∎]+ = max {0, ∎}. The parameters 𝛼, 𝛽, and 

𝛾 are positive constants to penalize the infeasibilities 𝐷(𝑆), W(𝑆), and 𝐶(𝑆), respectively. We 

update the penalty parameters at each iteration of the GTS to obtain feasible and infeasible 

solutions with approximately the same frequency. If the driving range of a solution 𝑆 is feasible, 

then its corresponding penalty parameter will be updated as 𝛼 = 𝛼/(1 + 𝛿); otherwise, it will be 

updated as  𝛼 = 𝛼(1 + 𝛿). The same procedure is employed to 𝛽  and 𝛾  as well. The 𝛿  is the 

parameter used to update 𝛼, 𝛽, and 𝛾. 

4.4. Granular tabu search 

After shaking the solution, TS is employed in an attempt to improve the current best (incumbent) 

solution using five neighborhood operators. Since evaluating all possible neighborhoods may be 

computationally expensive, we employ the granular search approach of Toth and Vigo (2003) to 

reduce the run time. Each neighborhood is associated with a tabu condition that prevents returning 

to the previously explored solutions. For each neighborhood, we revoke the tabu condition at the 

end of the tabu duration 𝜂 or if the aspiration criterion is met, i.e. if a new best solution is obtained. 

GTS is performed for a pre-determined number of iterations 𝐼𝑡𝑒𝑟𝐺𝑇𝑆.  

The neighborhood operators consist of the following six moves: 1-0 Move, 1-1 Exchange, 2-Opt, 

2-Opt*, 1-AddRecharge, and 1-DropRecharge. The first four moves are well-known operators in 

the literature and the last two are problem-specific operators inspired from Schneider et al. (2014). 

In 1-0 Move a customer node is removed from its position and inserted in another position while 

in 1-1 Exchange the positions of two customer nodes are swapped. Both moves are applied using 

both intra-route and inter-route schemes. 2-Opt prevents the formation of crisscross arcs in a route 

by breaking two arcs and reconnecting the break points with two new arcs while reversing the 

sequence of the nodes visited in between (Fig. 5.a).  
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 (a) 2-Opt operator 

  

 (b) 2-Opt* operator 

  

(c) 1-AddRecharge operator 

  

(d) 1-DropRecharge operator 

Fig. 5. Local search operators 
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2-Opt* is an inter-route move adapted from 2-Opt (Potvin and Rousseau, 1995). It breaks two arcs 

belonging to two different routes and reconnects the first segment of the first route with the second 

segment of the second route and vice versa without reversing the sequence of the nodes (Fig. 5.b). 

Note that these operators are applied to the locations of the customers visited by the existing routes 

and the alternative locations are not considered. The 1-AddRecharge move inserts a recharging 

visit in the best position along the route. Since the chargers are only available in the depot, this 

move returns the vehicle to the depot for recharging (Fig. 5.c). The 1-DropRecharge move 

removes the visit for recharging from the route, if any exists (Fig. 5.d). If the vehicle recharges 

multiple times, it removes the one that decreases the current distance the most. All neighborhood 

operators are explored granularly and the best most is performed. 

The tabu condition for each of the neighborhood operators is defined to prevent returning to 

previously explored solutions. In 1-0 Move, 2-Opt, and 1-1 Exchange moves if the position(s) of 

customer node (nodes) is (are) changed (swapped), it then cannot be changed (re-swapped) again 

by the same operator. In the 1-AddRecharge (1-DropRecharge) move, the inserted (removed) 

recharging cannot be removed (inserted) from (into) the route. 

To reduce the computational effort, we employ GTS that evaluates promising moves only and 

omits a significant number of unpromising ones. This approach considers an arc or a node in a 

move if its cost does not exceed the granularity threshold defined as 𝜑 =
𝑍

𝑛+v
 , where 𝑍 represents 

the objective function value of the initial solution, 𝑛 and 𝑣 are the numbers of customers and routes 

in the solution, respectively. The granularity threshold is updated after every  𝐼𝑡𝑒𝑟𝐺 iterations by  

setting  the threshold to 𝜑′ =
𝑍′

(𝑛′+𝑣′)
, where 𝑍′, 𝑣 ′ and 𝑛′ denote the objective function value, number 

of routes, and number of customers of the best solution obtained by GVNS/GTS, respectively. 

GTS is supported by an intensification strategy to improve the new incumbent solution (Hirsch 

and Gronalt, 2007; Aras et al., 2011). When we find a new incumbent solution, we apply 3-Opt as 

a local post-optimization procedure in an attempt to further improve it. 3-Opt breaks three arcs and 

replaces them with other three within a route. 

5. Experimental study 

In this section, we first describe the benchmark data sets that we used in our experiments and 

present the parameter tuning procedure based on a subset of VRPRDL instances from Ozbaygin 
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et al. (2017) and newly generated EVRP-FD instances. Next, we assess the performance of 

VNS/GTS using the VRPRDL instances by comparing its results with the branch-and-price 

algorithm of Ozbaygin et al. (2017). Then, we solve EVRP-FD instances with the VNS/GTS. For 

small-size instances, we use Gurobi for solving the mathematical model given in Section 3 and 

confirm the performance of the VNS/GTS by comparing its results with the ones obtained by the 

Gurobi solver. For medium and larger instances, we summarize our best solutions as benchmarks 

for future study.  Finally, we perform a trade-off analysis concerning some parameters of the 

problem. All experiments were conducted on a computer outfitted with Intel Core i7-8700 3.2 GHz 

CPU and 32 GB DDR4 RAM. VNS/GTS was implemented in C# in Microsoft® Visual Studio 

2019. 

5.1. Data generation 

We carry out our experiments using two sets of VRPRDL test problems employed by Ozbaygin et 

al. (2017). VRPRDL considers traditional vehicles with unlimited driving range. The first set 

includes 40 instances generated by Reyes et al. (2017) and modified by Ozbaygin et al. (2017). 

These instances involve 15 to 120 customers where customers have up to five roaming delivery 

locations. The second set includes 20 medium-size instances introduced in Ozbaygin et al. (2017) 

and involves 40 customers with up to five delivery locations. In all the instances, the X-Y 

coordinates of the customer locations were generated randomly in a square-shaped area lying 

within [-200, 200]. 

To determine the EV-related parameters, we consider the electric Fiat Ducato (eDucato) in our 

computational study. Equipped with a 62 kWh battery the eDucato has a factory published driving 

range of 200 km (bedeo.co.uk). The driving range and battery performance can be affected by 

several factors such as temperature, cargo weight, road gradient, etc. (Rastani et al., 2020). So, we 

assume an actual driving range of 130 km. Since the EVs operate within 10%-90% of their battery 

capacity, the operational battery capacity is set to 62×0.8≈50 kWh. Hence, the operational driving 

range is equal to 130×0.8≈100 km, which translates into a discharge rate of 0.5 kWh/km. We 

assume fast chargers with 50 kW power. 

Note that for a given driving range (100 km) some customers in the VRPRDL instances cannot be 

served, making those particular instances infeasible. To make them feasible, we had to modify the 
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coordinates of the customers' locations in the original VRPRDL instances in such a way that at 

least one of the delivery locations of each customer is located within the feasible driving range. In 

order to achieve the feasibility, we divided all the coordinates in the original data by four, which 

is the minimum integer value that makes all customers reachable. Ozbaygin et al. (2017) assumed 

a planning horizon of 12 hours and vehicle capacity of 750. However, the shortened distances 

created an imbalance between the tour duration and cargo capacity in our case, resulting in with 

many EVs returning to depot too early because of the tight capacity (or large cargo sizes). So, we 

kept the planning horizon same but set the EV capacity to 1500.  

Table 2. Parameter tuning 

 
Parameter 

Values  
(Δ%) 

𝜂 
5 

(0.14) 
10  

(0.06) 
15 

(0.02) 
20 

(0.00) 
25 

(0.00) 
30 

(0.00) 

𝛼 
0.1  

(0.04) 
0.2 

(0.01) 
0.5 

(0.00) 
1 

(0.00) 
1.5 

(0.00) 
- 

𝛽 
0.1 

(0.03) 
0.2 

(0.01) 
0.5 

(0.00) 
1 

(0.00) 
1.5 

(0.00) 
- 

𝛾 
0.1 

(0.04) 
0.2 

(0.02) 
0.5 

(0.00) 
1 

(0.00) 
1.5 

(0.00) 
- 

𝛿 
0.1 

(0.03) 
0.25 

(0.00) 
0.5 

(0.00) 
0.75 

(0.00) 
- - 

 𝐼𝑡𝑒𝑟𝐺𝑇𝑆 
20 

(0.05) 
50 

(0.00) 
100 

(0.00) 
150 

(0.00) 
- - 

𝐼𝑡𝑒𝑟𝐺 
𝑛 

(0.09) 
2𝑛 

(0.05) 
3𝒏 

(0.00) 
4𝑛 

(0.00) 
5𝑛 

(0.00) 
- 

𝐼𝑡𝑒𝑟𝑁𝑜𝑛𝐼𝑚𝑝 
100 

(0.12) 
300 

(0.08) 
500 

(0.00) 
1000 
(0.00) 

1500 
(0.00) 

- 

𝐼𝑡𝑒𝑟𝑇𝑜𝑡𝑎𝑙 
1000 
(0.13) 

2000 
(0.06) 

5000 
(0.00) 

10000 
(0.00) 

15000 
(0.00) 

- 

5.2. Parameter tuning 

VNS/GTS employs nine parameters including tabu duration (𝜂), three penalty parameters for 

constraint violations (𝛼, 𝛽, 𝛾), an auxiliary parameter to update these penalties (𝛿), iteration counter 

for applying GTS ( 𝐼𝑡𝑒𝑟𝐺𝑇𝑆), iteration counter for updating granularity threshold (𝐼𝑡𝑒𝑟𝐺), number 

of non-improving iterations (𝐼𝑡𝑒𝑟𝑁𝑜𝑛𝐼𝑚𝑝), and the total number of iterations (𝐼𝑡𝑒𝑟𝑇𝑜𝑡𝑎𝑙). To tune 

these parameters, we selected instances 4, 10, 20, 30, and 35 from the VRPRDL data set and 6, 15, 

25, 30, and 35 from the newly generated EVRP-FD data set. Our aim was to include instances with 
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different sizes. The number of customers in these instances varies between 15 and 120. The 

parameters were tuned in the sequence above from 𝜂 to 𝐼𝑡𝑒𝑟𝑇𝑜𝑡𝑎𝑙. 

All parameters were initially set to the lowest values given in Table 2. We first considered six 

different 𝜂 values, performed 10 runs for each instance, and calculated the average percentage 

deviation from the best solution (Δ%). Then, the parameter was fixed to the value that produced 

the smallest Δ% (e.g. 𝜂 is set to 20). We repeated this procedure for the remaining parameters until 

all of them had been tuned. If two parameter values produced the same Δ%, the smaller value was 

selected. Table 2 provides the obtained Δ% for each of the corresponding parameter values. The 

selected parameter values are shown in bold. Note that in row 𝐼𝑡𝑒𝑟𝐺 ,  𝑛 indicates the number of 

customers. 

5.3. Computational results for the VRPRDL instances 

In this section, we evaluate the performance of VNS/GTS on the VRPRDL instances of Ozbaygin 

et al. (2017). We modified our algorithm to solve the VRPRDL by removing the driving range 

feasibility check and recharge-related operators. Basically, we employed 𝜆-SwitchLocation and 

Merge operators in shaking and 1-0 Move, 1-1 Exchange, 2-Opt, and 2-Opt* operators in GTS. We 

also set 𝐹 = 0 to only minimize the total distance travelled, as is the case in the VRPRDL. 

Table 3. Average results for the VRPRDL instances 

     VNS/GTS 

n Avg #Loc Avg Optimal  Best Avg  Best Δ% Avg Δ% Avg t(s) 

≤30 3.57 1575.75  1575.75 1576.50  0.00 0.04 27.92 
40 3.93 2585.05  2587.35 2589.10  0.09 0.16 133.36 
60 3.74 3721.30  3724.80 3728.70  0.10 0.21 280.95 

120 3.73 5373.80  5403.00 5406.00  0.56 0.61 1163.54 

Average  3313.98  3322.73 3325.08  0.19 0.26 401.44 

Table 3 presents the average results for the 60 VRPRDL instances, in comparison with the optimal 

solutions obtained by the branch-price-and-cut algorithm of Tilk et al. (2021). In this table, the 

first two columns denoted by “𝑛” and “ Avg #Loc” indicate the number of customers and the 

average number of customer delivery locations, respectively. The third column “Avg Optimal” 

reports the optimal solutions obtained by the branch-price-and-cut algorithm of Tilk et al. (2021). 

The remaining five columns under “VNS/GTS” present our solutions, where “Best” and “Avg.” 
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refer to the averages of the best and average objective function values (OFVs) over 10 runs, 

respectively. “Best Δ%” and “Avg. Δ%” represent the average percentage deviations of the best 

and average OFVs from the optimal solution with respect to number of customers, respectively. 

Finally, the last column provides the average CPU time in seconds. 

VNS/GTS can find the optimal solution in 34 out of 60 instances in this data set. Note that 

VNS/GTS was able to find the optimal solutions in all the small-size instances involving 15 to 30 

customers. For the instances with n ≤ 30, the average deviations of the best and average solutions 

from optimal solutions are 0.00% and 0.04%, respectively. The average deviations of the best 

solutions from optimal solutions for the instances with n = 40, 60, and 120 are 0.09%, 0.10%, and 

0.56%, respectively while the average deviations of the average solutions are 0.16%, 0.21% and 

0.61%, respectively. These deviations reflect the good performance and robustness of our proposed 

method. Regarding the computational effort, we notes that our average CPU times for the instances 

with n ≤ 30 is 27.92  seconds,  whereas for the instances with n = 40, 60, and 120 the CPU times 

are 133.36, 280.95, and 1163.54 seconds, on average, respectively. Overall, our results show that 

VNS/GTS is capable of finding high-quality solutions within reasonable computation times. The 

detailed results for the whole dataset of VRPRDL instances are provided in Appendix A. 

5.4.  Computational results for EVRP-FD instances 

To further assess the performance of VNS/GTS, we solved the small-size EVRP-FD instances 

using Gurobi 9.1 with a two-hour time limit and compared the results in Table 4. In this table, 

“#Veh” represents the number of vehicles and columns “UB”, “Gap%”, and “t(s)” under “Gurobi” 

report the upper bound, percentage optimality gap (“Gap%”), and run time in seconds, 

respectively. If Gurobi terminates within the 2-hour time limit, then the upper bound is optimal. 

The columns “Best”, “t(s)”, and “Best Δ%” under VNS/GTS show the best OFV over 10 runs, the 

percentage gap between our best OFV and upper bound given by Gurobi, and average CPU time 

in seconds, respectively. As in Table 4, the optimal solutions are indicated in bold and the 

VNS/GTS solutions that are better than the upper bounds are highlighted in bold and underlined. 
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Table 4. Results for small-size EVRP-FD instances 

    Gurobi  VNS/GTS 

Instance 𝑛 Avg #Loc #Veh UB  Gap% t(s)  #Veh Best t(s) Best Δ% 

1 15 4.07 1 194.13  0.00 89  1 194.13 6.68 0.00 

2 15 3.73 1 237.18  0.00 2572  1 237.18 4.98 0.00 

3 15 3.40 1 224.68  0.00 5047  1 224.68 5.95 0.00 

4 15 3.27 1 209.38  0.00 284  1 209.38 2.62 0.00 

5 15 3.40 2 338.63  47.50 7200  2 338.63 8.04 0.00 

6 20 3.25 2 279.20  48.58 7200  2 250.55 6.27 -10.26 

7 20 3.35 2 238.63  48.73 7200  2 238.63 5.72 0.00 

8 20 3.95 2 250.25  48.04 7200  2 250.25 6.62 0.00 

9 20 3.75 2 255.63  47.82 7200  2 248.00 12.62 -2.98 

10 20 3.10 2 277.33  48.31 7200  2 261.78 8.77 -5.61 

11 30 3.40 3 429.33  65.34 7200  3 401.43 24.21 -6.50 

12 30 3.73 3 421.40  65.18 7200  3 362.25 30.33 -14.04 

13 30 3.90 3 315.83  32.67 7200  2 355.33 23.71 -  

14 30 3.53 3 377.42  65.55 7200  3 274.48 26.37 -27.28 

15 30 4.10 3 327.03  32.95 7200  3 320.83 27.53 -1.90 

16 30 3.93 2 343.13  48.80 7200  2 343.13 25.18 0.00 

17 30 4.30 3 419.97  65.04 7200  3 382.60 36.53 -8.90 

18 30 3.50 3 428.33  33.23 7200  3 405.58 20.99 -5.31 

19 30 3.23 3 320.33  65.01 7200  3 319.78 16.24 -0.17 

20 30 2.47 2 439.23  48.98 7200  2 389.15 13.34 -11.40 

Average      40.59 6160    15.64 -4.97 

In Table 4, we observe that Gurobi solved only four instances out of 20 to optimality within two 

hours and its average run time on these four instances is 1998 seconds. Given the fact that Gurobi 

is a general-purpose solver, this is an expected result considering the complexity of the problem. 

VNS/GTS matched the optimal solution in those four instances and produced better solutions in 

remaining 16 with an average gap of –4.97%. Note that in instance “13”, VNS/GTS was able to 

find a solution with a smaller fleet size compared to the solution of Gurobi. Note also that the 

average CPU time of the VNS/GTS is only 16 seconds. The results of 20 medium-size and 20 

large-size EVRP-FD instances are presented in Table 5. The average CPU time is 54 seconds and 

the average gap between the average and best solutions is 0.15% for medium-size instances 

whereas for large-size instances they are 402 seconds and 0.19%, respectively. In total, for 

medium- and large-size EVRP-FD instances, the average CPU time is 228 seconds and the average 

gap is 0.17%. The small gap values reflect the robustness of the proposed VNS/GTS. 
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Table 5. Results for medium- and large-size EVRP-FD instances 

Instance 𝑛 Avg loc. #Veh Best Avg t(s) Δ%  Instance 𝑛 Avg loc. #Veh Best Avg t(s) Δ% 

41_v1 40 3.98 3 605.40 605.67 50.23 0.04  21 60 3.73 6 634.10 635.36 133.99 0.20 

42_v1 40 3.93 3 531.10 531.76 52.55 0.12  22 60 3.53 4 466.48 466.58 90.84 0.02 

43_v1 40 4.05 2 453.53 454.15 48.12 0.14  23 60 3.90 6 607.45 609.51 170.79 0.34 

44_v1 40 3.53 2 446.22 446.97 28.79 0.17  24 60 3.80 4 618.30 619.60 105.37 0.21 

45_v1 40 3.60 4 554.93 556.05 46.35 0.20  25 60 3.88 5 530.90 530.94 91.63 0.01 

46_v1 40 4.33 4 606.65 606.80 69.55 0.02  26 60 3.73 6 599.30 599.63 94.93 0.05 

47_v1 40 4.18 4 555.93 556.76 58.45 0.15  27 60 3.45 5 571.62 573.21 102.36 0.28 

48_v1 40 3.83 4 682.70 683.02 77.61 0.05  28 60 3.63 5 527.35 528.91 113.28 0.30 

49_v1 40 3.80 3 709.60 711.52 86.93 0.27  29 60 3.75 5 558.33 559.68 173.72 0.24 

50_v1 40 4.03 3 487.83 488.86 38.13 0.21  30 60 3.95 6 615.13 616.29 97.00 0.19 

41_v2 40 3.98 4 483.50 484.96 73.61 0.30  31 120 3.83 8 740.30 742.99 485.06 0.36 

42_v2 40 3.93 3 397.30 397.52 45.37 0.06  32 120 3.67 8 807.80 807.90 735.58 0.01 

43_v2 40 4.05 3 411.60 411.63 55.12 0.01  33 120 3.92 7 766.65 770.53 835.75 0.51 

44_v2 40 3.53 3 336.85 337.75 31.42 0.27  34 120 3.78 8 877.60 879.97 610.70 0.27 

45_v2 40 3.60 3 430.33 431.70 53.94 0.32  35 120 3.75 7 722.90 725.12 518.50 0.31 

46_v2 40 4.33 4 430.93 432.08 52.95 0.27  36 120 3.51 8 932.33 935.28 698.21 0.32 

47_v2 40 4.18 3 421.90 422.50 44.40 0.14  37 120 3.88 8 754.97 755.77 689.45 0.11 

48_v2 40 3.83 3 557.63 558.16 54.11 0.10  38 120 3.51 7 921.73 921.96 647.84 0.03 

49_v2 40 3.80 4 527.67 527.87 52.39 0.04  39 120 3.56 9 865.93 866.75 815.05 0.10 

50_v2 40 4.03 4 416.41 507.70 55.10 0.13  40 120 3.84 8 744.55 744.96 828.17 0.06 

Average      53.76 0.15  Average      401.91 0.19 
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5.5. Effect of hybridizing VNS and GTS  

In the local search phase of VNS/GTS, we allow non-improving moves using the TS mechanism 

in an attempt to enhance the performance of the VNS algorithm. To investigate the contribution of 

this hybrid approach on the algorithmic performance, we also implemented the pure VNS and GTS 

versions by prohibiting the non-improving moves during the local search and by removing the 

shaking mechanisms, respectively. We selected a subset of ten large-size EVRP-FD instances 

(instances 21, 23, 25, 27 and 29 with 60 customers and instances 31, 33, 35, 37 and 39 with 120 

customers), repeated our experiments using these two methods, and compared the results. In order 

to ensure a fair comparison with respect to the computational effort, we removed the limit on the 

number of iterations in VNS and GTS, and stopped them when the run times of VNS/GTS reported 

in Table 5 had been reached. 

Table 6. Comparison of results obtained by using VNS/GTS, GTS and VNS 

  VNS/GTS  GTS  VNS 

Instance #Veh Best  #Veh Best  #Veh Best 

21 6 634.10  5 672.32  6 654.56 

23 6 607.45  6 660.88  7 641.47 

25 5 530.90  5 533.31  6 585.20 

27 5 571.62  6 572.92  6 571.03 

29 5 558.32  6 586.93  5 584.34 

31 8 740.30  9 796.22  8 738.23 

33 7 766.65  9 757.06  8 707.53 

35 7 722.90  8 769.89  9 746.81 

37 8 754.97  9 836.57  9 813.03 

39 9 865.92  10 897.56  10 875.99 

Average 6.6    7.3    7.4   

 

The results are provided in Table 6. Since the primary objective is to minimize the number of 

vehicles, we report smaller fleet sizes in bold and underlined, whereas the best OFVs corresponding 

to the solutions with smallest fleet sizes are shown in bold. The results show that VNS/GTS 

outperforms both VNS and GTS in eight instances by producing solutions that require minimum 

number of vehicles. Furthermore, in all these eight instances, the total travel distances are shorter 

than those of VNS and/or GTS. In only one instance, GTS achieved a fleet with one vehicle less. 

This may be due to the better exploitation of the solution space through a longer local search 
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procedure. Furthermore, in another instance VNS found a solution with shorter total distance but 

the difference is only 0.28%. Overall, we can conclude that VNS/GTS algorithm benefits from the 

implementation of TS mechanism within the VNS procedure in producing high-quality solutions. 

5.6. Trade-off analysis  

This section provides the trade-off analysis concerning key parameters of  the EVRP-FD including 

the fixed cost incorporated in the objective function to reduce the fleet size, vehicle cargo capacity, 

recharging rate, and the battery capacity. Furthermore, we provide a comparison of the multiple 

delivery locations against a single delivery location case to observe the benefits of flexible 

deliveries. We also investigate the availability of multiple (public) recharging stations on the 

delivery plans. These analyses are based on the same large-size instances used in Section 5.5. Our 

analyses throughout this subsection mainly focus on the trade-offs associated with fleet size 

(#Veh), total number of recharges performed en-route (#Rech), and total distance travelled (TD). 

All results are based on the best solutions obtained after performing 10 runs. 

5.6.1. Influence of fixed cost 

We associated each vehicle with a sufficiently large constant (fixed cost) 𝐹  in the objective 

function (1) to reduce the fleet size. Removing the fixed cost from the objective function minimizes 

the total distance travelled independently from the number of vehicles. So, we set 𝐹 = 0 and solved 

a subset of instances again to compare the route plans generated for the two objectives. Our 

preliminary results showed that the algorithm may suffer from the removal of the fixed cost. We 

observed this particularly when the two objectives do not conflict, i.e. shorter distances are 

achieved with smaller-size fleets. The reason is because the penalties associated with the violations 

of the constraints may be compensated by a decrease in the fleet size, allowing the algorithm to 

better exploit the infeasible regions of the search space when 𝐹 > 0. Therefore, we decided to 

initiate the algorithm with 𝐹 > 0 in an attempt to find a good solution with minimum number of 

vehicles, and then set 𝐹 = 0 to minimize the total distance. This strategy enhanced the performance 

of the algorithm because it is equipped with neighborhood structures that can increase the fleet size 

in order to reduce the total distance in the case of conflicting objectives.  
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Table 7. Comparison of results obtained with and without fixed cost 

Instance 𝑛 

𝐹 > 0  𝐹 = 0 

#Veh #Rech TD  Δ #Veh Δ #Rech Δ TD (%) 

21 60 6 2 634.10  1  ↗ 2 ↘ 8.45 ↘ 
23 60 6 2 607.45  1  ↗ 2 ↘ 1.09 ↘ 
25 60 5 2 530.90  1  ↗ 2 ↘ 5.87 ↘ 
27 60 5 2 571.62  1  ↗ 2 ↘ 4.76 ↘ 
29 60 5 2 558.32  1  ↗ 2 ↘ 2.44 ↘ 
31 120 8 1 740.30  ─ ─ ─ 
33 120 7 4 766.65  1  ↗ 4 ↘ 5.36 ↘ 
35 120 7 3 722.90  ─ ─ ─ 
37 120 8 1 754.97  1  ↗ 1 ↘ 3.17 ↘ 
39 120 9 2 865.92  1  ↗ 2 ↘ 0.44 ↘ 

Average  6.6 2.1 675.32  0.8  ↗ 1.7 ↘ 2.98 ↘ 

The results are summarized in Table 7. Although the solution of problems “31” and “35” did not 

change the removal of the fixed cost lead to increased fleet size in most of the instances, which in 

turn resulted in a major reduction in the recharges. We observe that in most of the instances, the 

vehicles do not recharge en-route. This is an expected outcome because, in a larger fleet, vehicles 

serve fewer customers on average and travel shorter distances. In addition, dispatching more 

vehicles brings no additional cost when = 0 , whereas detours for recharging may increase the tour 

lengths significantly. Overall, the total distance are reduced by almost 3%, on average, when the 

costs of the vehicles are omitted. On the other hand, the fleet size increases by 13%, on average, 

and the average number of recharges reduces by 81%. So, the savings in distance can be associated 

with the need for less frequent recharges. 

Table 8. Comparison of results with respect to different cargo capacities 

Instance 
𝐶 = 1000  𝐶 = 2000 

Δ #Veh Δ #Rech Δ TD (%)  Δ #Veh Δ #Rech Δ TD (%) 

21 ─ ─ 2.23 ↗  ─ ─ ─ 
23 ─ ─ 10.95 ↗  ─ ─ ─ 
25 ─ 1 ↗ 23.91 ↗  ─ ─ ─ 
27 1 ↗ 1 ↘ 0.62 ↘  ─ ─ ─ 
29 ─ 1 ↘ 1.06 ↘  ─ ─ 0.90 ↘ 
31 1 ↗ 1 ↘ 7.25 ↗  ─ ─  0.68 ↘ 
33 1 ↗ 4 ↘ 10.35 ↘  ─ ─ 0.98 ↘ 
35 ─ 1 ↘ 4.80 ↗  ─ ─ ─ 
37 ─ 1 ↗ 11.94 ↗  ─ ─ ─ 
39 ─ 1 ↘ 4.69 ↗  ─ ─ ─ 

Average 0.3 ↗ 0.7 ↘ 5.00 ↗  ─ ─ 0.26 ↘ 
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5.6.2. Influence of vehicle cargo capacity 

The vehicle cargo capacity was set to 𝐶 =1500 in the experimental study. We repeated our 

experiments by cosidering 𝐶 = 1000 and 𝐶 = 2000 to investigate the impact of using smaller and 

larger vehicles on the routing decisions. The results are presented in Table 8. We observe that 

increasing the capacity has almost no influence on the solutions: the fleet compositions and the 

recharging decisions remained same and the total distance improved only by 0.26% on average. 

These results show that the length of the planning horizon poses a more restrictive limitation in the 

problem. On the other hand, reducing the capacity increases either the fleet size or total distance in 

all the instances except for “29”. In addition, the average increases in the number of vehicles and 

total distance are 4.55% and 5.00%, respectively. We also see that the average number of recharges 

decreases by 33% due to the utilization of a larger fleet. 

5.6.3. Influence of charger type 

In our experiments, we considered fast chargers with power rate of 50 kW. To investigate the 

effects of different charger types on the delivery plans, we repeated our experiments by utilizing a 

slower charger with 22 kW power as well as a super-fast charger with 150 kW power, which 

correspond to 130 and 20 minutes of recharge duration, respectively, from an empty battery to full 

capacity for the eDucato considered in this study. 

Table 9. Comparison of results with respect to different charger types 

Instance 

22 kW  150 kW 

Δ #Veh Δ #Rech Δ TD (%)  Δ #Veh Δ #Rech Δ TD (%) 

21 ─ 1 ↘ 4.84 ↗  1 ↘ 1 ↗ 9.43 ↘ 
23 1 ↗ 1 ↘ 32.68 ↗  1 ↘ 1 ↗ 8.95 ↗ 
25 1 ↗ 1 ↘ 29.16 ↗  ─ ─ 1.09 ↘ 
27 1 ↗ 1 ↘ 3.33 ↗  1 ↘ ─ 3.77 ↘ 
29 ─ 1 ↘ 20.06 ↗  ─ ─ 0.55 ↘ 
31 1 ↗ 1 ↘ 0.80 ↗  1 ↘ 1 ↗ 4.48 ↗ 
33 1 ↗ 2 ↘ 3.30 ↘  ─ 1 ↗ 0.74 ↘ 
35 1 ↗ 1 ↘ 4.05 ↗  ─ ─ 1.51 ↘ 
37 ─ ─ 1.93 ↗  1 ↘ 1 ↗ 3.26 ↗ 
39 1 ↗ 2 ↘ 2.25 ↗  1 ↘ 1 ↗ 3.10 ↗ 

Average 0.7 ↗ 1.1 ↘ 8.28 ↗  0.6 ↘ 0.6 ↗ 0.48  ↗ 
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Table 9 depicts the results. As expected, when the recharges are faster a smaller fleet is operated 

with more frequent recharges en-route whereas the opposite is observed with slower chargers. In 

the case of super-fast chargers, the fleet size decreases by 9.09% on average while the number of 

recharges and total distance increase by 28.57% and 0.48%, respectively. Note that decreasing the 

fleet size can result in increasing the total distance in some instances. On the other hand, when 

slower chargers are available, the fleet size and total distance go up, on average, by 10.61% and 

8.28%, respectively, whereas the number of recharges go down by 52.38%.  

5.6.4. Influence of vehicle battery capacity 

Our experiments were based on eDucato EVs equipped with a 62 kWh battery. To investigate the 

impact of the battery size on the solutions, we performed further experiments by considering EVs 

with 80 and 100 kWh batteries. The comparative results are provided in Table 10. Increasing the 

battery capacity leads to the utilization of a smaller fleet. This is an expected result since larger 

battery means extended driving range, which, in turn, allows the EVs visit more customers along 

their routes. Consequently, the total distances also decrease significantly in many instances. An 80 

kWh battery reduces the fleet size and total distance, on average, by 12.12% and 6.93%, 

respectively, whereas the decreases are 24.24% and 9.16%, respectively, when the EVs have a 100 

kWh battery. We observe that the number of recharges en-route decrease as well, by 85.71% and 

95.24% in the case of 80 and 100 kWh EVs, respectively. It is also worth noting that when the EVs 

are equipped with a 100 kWh battery, none of the vehicles needed recharging in nine instances. 

Table 10. Comparison of results with respect to different battery sizes 

Instance 

80 kWh  100 kWh 

Δ #Veh Δ #Rech Δ TD (%)  Δ #Veh Δ #Rech Δ TD (%) 

21 1 ↘ 2 ↘ 16.58 ↘  2 ↘ 2 ↘ 21.94 ↘ 
23 1 ↘ 2 ↘ 11.56 ↘  2 ↘ 2 ↘ 14.57 ↘ 
25 1 ↘ 1 ↘ 4.32 ↗  1 ↘ 2 ↘ 12.38 ↘ 
27 ─ 2 ↘ 18.12 ↘  1 ↘ 2 ↘ 19.25 ↘ 
29 ─ 2 ↘ 1.67 ↘  ─ 2 ↘ 5.58 ↘ 
31 1 ↘ 1 ↘ 4.43 ↘  3 ↘ ─ 1.53 ↗ 
33 1 ↘ 3 ↘ 7.53 ↘  1 ↘ 4 ↘ 10.77 ↘ 
35 ─ 3 ↘ 3.82 ↘  1 ↘ 3 ↘ 1.01 ↘ 
37 1 ↘ 1 ↘ 1.99 ↘  2 ↘ 1 ↘ 1.90 ↗ 
39 2 ↘ 1 ↘ 8.00 ↘  3 ↘ 2 ↘ 13.79 ↘ 

Average 0.8 ↘ 1.8 ↘ 6.93 ↘  1.6 ↘ 2 ↘ 9.16 ↘ 
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5.6.5. Multiple delivery locations vs. single delivery location 

In the EVRP-FD the customers have the flexibility to have their orders delivered at pre-determined 

alternative locations and times throughout the day. To investigate the benefits of flexible deliveries 

to route planning we solved the selected instances in the single delivery case again by considering 

two scenarios. In the first scenario, we randomly selected one location along with the associated 

time window among the alternative locations. In the second scenario, we selected the home location 

(first location) of each customer by assuming a time window [0, 𝑙0], where 𝑙0 is the closing time 

of the depot (i.e. the delivery can be performed any time during the day).  

Table 11.  Comparison of results with respect to delivery options 

Instance 

Randomly Selected Location  Home Location 

Δ #Veh Δ #Rech Δ TD (%)  Δ #Veh Δ #Rech Δ TD (%) 

21 1 ↗ ─ 20.36 ↗  3 ↘ 2 ↗ 1.10 ↗ 
23 3 ↗ 1 ↘ 44.45 ↗  3 ↘ 3 ↗ 19.54 ↗ 
25 2 ↗ ─ 36.61 ↗  2 ↘ 2 ↗ 11.79 ↗ 
27 3 ↗ 2 ↘ 23.92 ↗  2 ↘ 1 ↗ 7.81 ↗ 
29 3 ↗ ─ 58.22 ↗  2 ↘ 4 ↗ 37.7 ↗ 
31 4 ↗ 1 ↗ 72.17 ↗  4 ↘ 4 ↗ 26.07 ↗ 
33 4 ↗ 1 ↘ 43.77 ↗  2 ↘ ─ 6.82 ↗ 
35 4 ↗ 1 ↘ 44.95 ↗  3 ↘ 1 ↗ 7.48 ↗ 
37 5 ↗ 1 ↗ 74.36 ↗  4 ↘ 4 ↗ 26.38 ↗ 
39 4 ↗ ─ 60.59 ↗  5 ↘ 5 ↗ 19.46 ↗ 

Average 3.3 ↗ 0.3 ↘ 49.40 ↗  3 ↘ 2.6 ↗ 16.44 ↗ 

The results summarized in Table 11 show that the single delivery location option increases the total 

distance in both scenarios as expected; however, the increase is dramatic in the first scenario with 

49.40%, on average, whereas it is 16.44%, on average, in the second scenario. This significant 

difference is due to the wide time windows allowed for home deliveries, which provides 

considerable flexibility to the delivery company at the expense of increased customer 

dissatisfaction. Note that the time window flexibility in the second scenario also allows major 

reduction in the fleet size. While the number of EVs decreases by 45% on average in the second 

scenario, a 50% larger fleet, on average, is needed in the first scenario. In sum, we can conclude 

that flexible deliveries can improve overall customer satisfaction from the service offered and bring 

significant cost savings to the logistics operator. 
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5.6.6. Multiple recharging stations vs. recharging only at depot  

We assumed that the EVs are recharged only at the depot because of various operational limitations. 

In this section, we relax this assumption and investigate the effect of allowing recharges in public 

stations. To do this, we considered two cases involving five and 10 recharging stations, all with 50 

kW power. We determined the station locations randomly by dividing the delivery area into four 

equal-size zones to make sure that they are geographically dispersed. The station locations 

remained same in the instances with same size. 

Table 12. Comparison of results with respect to different recharging policies 

Instance 

5 stations  10 stations 

Δ #Veh Δ #Rech Δ TD (%)  Δ #Veh Δ #Rech Δ TD (%) 

21 1 ↘ 1 ↗ 13.67 ↘  1 ↘ 3 ↗ 14.17 ↘ 
23 ─ ─ 1.59 ↘  2 ↘ 1 ↗ 11.28 ↘ 
25 ─ 1 ↗ 1.81 ↘  1 ↘ 2 ↗ 3.51 ↘ 
27 ─ 2 ↗ 5.38 ↘  1 ↘ 2 ↗ 6.49 ↘ 
29 ─ 2 ↗ 1.51 ↘  1 ↘ 3 ↗ 5.02 ↘ 
31 1 ↘ 2 ↗ 2.61 ↘  2 ↘ 2 ↗ 3.31 ↘ 
33 ─ ─ 4.10 ↘  1 ↘ 1 ↗ 7.50 ↘ 
35 ─ ─ 1.61 ↘  1 ↘ 1 ↗ 2.63 ↘ 
37 1 ↘ 2 ↗ 2.10 ↘  2 ↘ 2 ↗ 7.26 ↘ 
39 1 ↘ ─ 3.02 ↘  1 ↘ 1 ↗ 4.05 ↘ 

Average 0.4 ↘ 1 ↗ 3.70 ↘  1.3 ↘ 1.8 ↗ 6.41 ↘ 

Table 12 summarizes the results. As expected, the availability of public recharging stations 

improves the solutions both in terms of the distance travelled and fleet size. Although the fleet sizes 

do not change in six instances and the average reduction is only 6.06% in the case of five stations, 

we observe substantial savings in fleet size in all 10-station instances with an average downsizing 

of 19.70%. On the other hand, the average decreases in total distance are 3.70% and 6.41% for the 

cases of 5- and 10-stations, respectively. These results reveal that the logistics companies can 

benefit from the availability of recharging at public stations located in their delivery area. To this 

end, they can determine the most frequently used station locations and negotiate a contract-based 

plan with the station operators for long-term relationship. Note that we also considered 20 stations 

but the results did not show much improvement compared to the 10-station case (on average, 0.1% 

in fleet size and 0.4% in total distance). So, we did not report them. 
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6. Case study 

In this section, we present a case study based on Argos, a U.K. multi-channel retailer that offers 

more than 50,000 products with over 123 million transactions per year using catalogues and digital 

platforms. We consider Argos Bulwell depot located in the East Midlands area and determine 40 

customers at randomly selected locations in Nottinghamshire, Derbyshire, Lincolnshire, and 

Loughborough counties. The sizes of the customer orders are uniformly distributed between 1 and 

5 cubic feet. In the current practice, Argos delivers to a single location offering three alternative 

time slots of 7 AM−1 PM, 2 PM−6 PM, and 7 PM−11 PM. So, we randomly selected one of these 

slots to set the customer time windows. The data including the customer order sizes, location 

coordinates, and the delivery time windows are given in Table B.1 provided in the Appendix B. 

We assumed a delivery fleet consisting of eDucato EVs with a 62 kWh battery capacity and 530 

cubic feet (15 m3) cargo cabin. The distances were calculated using the VRP Solver of Erdoğan 

(2017) based on the Bing Maps road network.  

 

Fig. 6. Visualization of the routes in the current single delivery location setting 

First, we determined the delivery plans for the current setting by solving the routing problem using 

VNS/GTS. The routes are illustrated in Fig. 6 and the detailed route plans are provided in Table 

C.1 provided in Appendix C. We see that five vehicles are employed to serve the customers while 

two need recharging to continue their routes. The total distance traveled is 583.22 km. 
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Fig. 7. The geographical locations of the depot and each customer alternative locations 

To investigate the effect of flexible delivery service, we assigned alternative delivery locations to 

the majority of the customers by keeping their existing locations in the list. So, we randomly 

determined 55 additional delivery locations in the area where 15 customers were associated with 

two locations, 20 customers with three locations while the remaining five customers maintained 

their existing location preferences. To improve the customer satisfaction, we decided to set the 

delivery times between 9 AM and 9 PM since 7 AM−9 AM and 9 PM−11 PM deliveries tend to be 

uncomfortable for most people. So, we employed 3-hour delivery time slots: 9 AM−12 PM, 12 

PM−3 PM, 3 PM−6 PM, and 6 PM−9 PM. For consistency, we ensured that the existing delivery 

time preferences overlap with one of these time windows. All locations are illustrated in Fig. 7 and 

the detailed data are provided in Table B.2 in Appendix B. 

The solution for the flexible delivery case is depicted in Fig. 8 and the route plans are given in 

Table C.1 in Appendix C. The yellows nodes on the figure show the delivery locations whereas the 

green ones are the unvisited alternative locations. The results show that flexible deliveries save one 

EV in the fleet size compared to current practice. Furthermore, the total distance traveled decreases 

by 23%, which indicates a substantial reduction in fuel costs.  
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Fig. 8. Visualization of the solution obtained by VNS/GTS 

We also considered 1- and 2-hour time window cases in an attempt to improve the customer 

satisfaction through reduced delivery time variability. We observed that the fleet size remains same 

with five EVs while the total distance decreases by 17% in the case of 2-hour delivery time slots. 

With 1-hour delivery time slots, one additional EV is needed in the fleet whereas the total distance 

reduces by 3%. From these results, we can conclude that 1-hour time slot option may not pay off 

the effort and can be operationally demanding. On the other hand, 1-hour time slot option may 

offer a good compromise to enhance the service quality and deserve further investigation. 

 

 

Fig. 9. Visualization of the routes for recharging in public stations 
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Finally, we investigated the impact of recharging at public stations on the route plans by 

considering 3-hour time windows with flexible deliveries. To this end, among the charging stations 

available in this area we randomly selected four stations equipped with 50 kW chargers. Their 

coordinates are provided in Table B.3 in Appendix B. The results are reported in Table C.1 in 

Appendix C and the routes are illustrated in Fig. 9. As opposed to the results reported in Section 

5.5.6, we observe that the availability of public station charging has a tremendous effect on the 

total distance traveled, hence the fuel cost, pointing out a reduction of 49%. In addition, the fleet 

size reduces from four EVs to three. These results re-emphasize the importance of collaboration 

between the logistics operators and energy providers for their mutual benefits.  

7. Concluding remarks and future research directions 

In this study, we introduced the Electric Vehicle Routing Problem with Flexible Deliveries (EVRP-

FD) as a variant of the well-known Electric Vehicle Routing Problem with Time Windows. In this 

problem, a homogenous fleet of commercial EVs dispatched from a single depot serves a set of 

customers with alternative delivery locations and time windows. The vehicles are allowed to 

recharge their batteries en-route. We formulated the mathematical programming model of the 

problem and developed a hybrid Variable Neighborhood Search method coupled with Tabu Search 

to solve it. We verified the performance of our method using benchmark instances of a similar 

problem from the literature. We also generated new EVRP-FD instances and performed numerical 

experiments to see the impact of problem parameters such as fixed vehicle acquisition cost, cargo 

capacity, recharging rate, and battery size on the route plans. In addition, we investigated the 

benefits of flexible deliveries and availability of public recharging stations to operational 

efficiency. We can summarize our findings as follows: (i) omitting vehicle acquisition cost has 

minor effect on the travel distances but leads to increased fleet size, which in turn allows fewer 

recharges en-route; (ii) the solutions are insensitive to the vehicle cargo capacity, i.e., the planning 

horizon is a more restrictive constraint; (iii) as expected, a smaller fleet is needed if the battery size 

is larger and/or fast chargers are available; (iv) offering flexible delivery service reduces both the 

fleet size and total distance travelled; and (vi) despite the operational limitations, the utilization of 

public recharging stations can be cost effective. 
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We presented a case study based on a major U.K. retailer using a data set from the East Midlands 

area as well. The results of this study supported our findings from the experimental study. We 

observed that flexible deliveries reduced the fleet size by 20% and fuel cost by 23%. We also 

revisited the availability of recharging at public stations located in the area. The results exhibited 

25% reduction in fleet size and 49% reduction in fuel cost, and revealed that the operational costs 

can be cut down substantially if the logistics operators collaborate with energy companies. 

Future research on this topic may address other EVRP variants by considering other flexible 

delivery options. For instance, a practical problem can incentivize alternative locations nominated 

by the company through various rewarding schemes to the consumers, e.g. allowing collections 

from dedicated collection points at reduced delivery rates. In addition, the customer satisfaction 

may be considered as a criterion and the trade-offs associated with delivery service quality and 

delivery location/time window options may be investigated. Most, if not all, of the studies on EVRP 

assume that the vehicle departs from the depot loaded with the entire cargo of all the customers 

assigned to its route. However, when an EVs returns to the depot for recharging, the demands of 

the remaining customers on its route can be loaded while the vehicle is charging, if time permits. 

This may be particularly important when the cargo weight is taken into account in the energy 

consumption and it may show significant differences in route plans and the related costs in the case 

delivering heavy goods.  

If the problem involves a large fleet, the recharges at the depot may overlap. Then, the problem 

may be extended to incorporate the scheduling/queueing of the vehicles if the chargers are limited 

in quantity and/or power rate. Within this context, recharging at public recharging stations may be 

considered as well. 
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List of Figures   

Fig. 1. An illustrative example 

Fig. 1. Alt Text: In this figure, we present an illustrative example that involves 10 customers 

(shown in different colors) and 26 delivery locations. The nodes with the same ID number represent 

the alternative delivery locations of a customer (e.g. customer C1 has three alternative locations 

shown as nodes numbered “1” and highlighted in green). Two EVs depart from the depot for 

service. EV#1 returns to the depot for recharging in the midst of its tour while EV#2 completes its 

tour and returns to the depot without recharging. 

Fig. 2. 𝜆-SwitchLocation shaking operators 

Fig. 2. Alt Text: Figure 2 illustrates the working mechanism of the SwitchLocation neighborhood 

operators. The illustrations on the left and on the right show the routes before and after the operator 

has been applied, respectively. Fig. 2(a) illustrates the 1-SwitchLocation move,  Fig. 2(b) shows 

the 2-SwitchLocation move, and Fig. 2 (c) depicts the 3-SwitchLocation move. 

Fig. 3. 𝜅-MoveCustomer shaking operators 

Fig. 3. Alt Text: Figure 3 illustrates the working mechanism of the MoveCustomer neighborhood 

operators. The illustrations on the left and on the right show the routes before and after the operator 

has been applied, respectively. Fig. 3(a) illustrates the 1-MoveCustomer move, Fig. 3(b) shows the 

2-MoveCustomer move, and  Fig. 3(c) depicts the 3-MoveCustomer move. 

Fig. 4. Merge shaking operators 

Fig. 4. Alt Text: Figure 4 illustrates the working mechanism of the Merge neighborhood operators. 

The illustrations on the left and on the right show the routes before and after the operator has been 

applied, respectively. Fig. 4 (a) shows the move where the first route is appended to the end of the 

second route directly and Fig. 4 (b) depicts the case where the first route is appended to the end of 

the second route via a recharging station.  
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Fig. 5. Local search operators 

Fig. 5. Alt Text: Figure 5 illustrates the working mechanism of the Merge neighborhood operators. 

The illustrations on the left and on the right show the routes before and after the operator has been 

applied, respectively. Fig. 5(a) shows 2-Opt operator that prevents the formation of crisscross arcs 

in a route and Fig. 5(b) depicts the 2-Opt* operator as an inter-route move adapted from 2-Opt. Fig. 

5(c) presents the 1-AddRecharge move that inserts a recharging visit in the route and Fig. 5(d) 

illustrates the 1-DropRecharge move that removes the recharging visit from the route. 

Fig. 6. Visualization of the routes in the current single delivery location setting 

Fig. 6. Alt Text: This figure shows the geographical locations of 40 customers selected in the 

Nottinghamshire, Derbyshire, Lincolnshire, and Loughborough counties and the routes when each 

has specified a single delivery location. Five vehicles perform the deliveries and two of them 

recharge en-route. The total distance travelled is 583.22 km. 

Fig. 7. The geographical locations of the depot and each customer alternative locations 

Fig. 7. Alt Text: This figure shows the alternative delivery points associated with the same 40 

customers. 15 customers have two alternative delivery locations, 20 customers have three locations, 

whereas the remaining five customers still have single delivery location.  

Fig. 8. Visualization of the solution obtained by VNS/GTS 

Fig. 8. Alt Text:  This figure depicts the deliveries to the 40 customers whose flexible delivery 

points are illustrated in Fig.8. The yellow nodes show the locations where deliveries are made. 

Four vehicles perform the deliveries and two recharges occur en-route. The total distance travelled 

is 447.96 km.  

Fig. 9. Visualization of the routes for recharging in public stations 

Fig. 9. Alt Text: This figure illustrates the solution of the same problem but by allowing vehicles 

to recharge at available public charging stations. Charger icons indicate the locations of four 

stations. The yellow nodes show the locations where deliveries are made. Three vehicles perform 

the deliveries and eight recharges occur en-route. The total distance travelled is 228.73 km.   
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Appendix A   

Table A.1 and Table A.2 present the results for the first and second set of VRPRDL instances, 

respectively, in comparison with the optimal solutions obtained by the branch-price-and-cut 

algorithm of Tilk et al. (2021).  

Table A.1. Results of the first set of VRPRDL instances 

    VNS/GTS 

Instance n Optimal  Best Avg  Best Δ% Avg Δ% 

1 15 901  901 901  0.00 0.00 
2 15 1286  1286 1286  0.00 0.00 
3 15 991  991 991  0.00 0.00 
4 15 1062  1062 1062  0.00 0.00 
5 15 1832  1832 1832  0.00 0.00 
6 20 1294  1294 1294  0.00 0.00 
7 20 1155  1155 1155  0.00 0.00 
8 20 1455  1455 1455  0.00 0.00 
9 20 1260  1260 1260  0.00 0.00 
10 20 1684  1684 1684  0.00 0.00 
11 30 1922  1922 1923  0.00 0.05 
12 30 2324  2324 2326  0.00 0.09 
13 30 1747  1747 1751  0.00 0.23 
14 30 1273  1273 1275  0.00 0.16 
15 30 1694  1694 1697  0.00 0.18 
16 30 1938  1938 1939  0.00 0.05 
17 30 1965  1965 1967  0.00 0.10 
18 30 1827  1827 1827  0.00 0.00 
19 30 2083  2083 2083  0.00 0.00 
20 30 1822  1822 1822  0.00 0.00 
21 60 3761  3765 3768  0.11 0.19 
22 60 2828  2828 2835  0.00 0.25 
23 60 4440  4445 4449  0.11 0.20 
24 60 3378  3381 3385  0.09 0.21 
25 60 3161  3166 3168  0.16 0.22 
26 60 4536  4536 4537  0.00 0.02 
27 60 2865  2870 2874  0.17 0.31 
28 60 4173  4176 4183  0.07 0.24 
29 60 3964  3966 3970  0.05 0.15 
30 60 4107  4115 4118  0.19 0.27 
31 120 4935  4940 4941  0.10 0.12 
32 120 5258  5290 5292  0.61 0.65 
33 120 5061  5098 5102  0.73 0.81 
34 120 5218  5230 5237  0.23 0.36 
35 120 5498  5545 5548  0.85 0.91 
36 120 6498  6498 6502  0.00 0.06 
37 120 4830  4863 4867  0.68 0.77 
38 120 5604  5619 5620  0.27 0.29 
39 120 5841  5890 5892  0.84 0.87 
40 120 4995  5057 5059  1.24 1.28 

Average  3061.65  3069.83 3071.93  0.16 0.23 
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Table A.2. Results of the second set of VRPRDL instances 

    VNS/GTS 

Instance n Optimal  Best Avg  Best Δ% Avg Δ% 

41_v1 40 3203  3203 3204  0.00 0.03 
41_v2 40 2133  2135 2136  0.09 0.14 
42_v1 40 2799  2801 2802  0.07 0.11 
42_v2 40 1946  1946 1948  0.00 0.10 
43_v1 40 2603  2615 2617  0.46 0.54 
43_v2 40 1966  1969 1971  0.15 0.25 
44_v1 40 2261  2261 2262  0.00 0.04 
44_v2 40 1610  1610 1613  0.00 0.19 
45_v1 40 3217  3217 3219  0.00 0.06 
45_v2 40 2478  2482 2483  0.16 0.20 
46_v1 40 2805  2805 2806  0.00 0.04 
46_v2 40 2469  2469 2471  0.00 0.08 
47_v1 40 3339  3339 3341  0.00 0.06 
47_v2 40 1946  1946 1949  0.00 0.15 
48_v1 40 3325  3330 3332  0.15 0.21 
48_v2 40 2380  2380 2381  0.00 0.04 
49_v1 40 3534  3534 3536  0.00 0.06 
49_v2 40 2492  2498 2499  0.24 0.28 
50_v1 40 2752  2759 2762  0.25 0.36 
50_v2 40 2443  2448 2450  0.20 0.29 

Average  2585.05  2587.35 2589.10  0.09 0.16 
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Appendix B 

Table B.1 through Table B.3 present the detailed information of customers and associated delivery 

locations used in the case study. 

Table B.1. Customer data 

Customer Demand Latitude Longitude TW 

1 2 53.00217 -1.28443 2PM-6PM 
2 5 52.93966 -1.20719 7AM-1PM 
3 4 52.95683 -1.19696 2PM-6PM 
4 2 53.00071 -1.13181 7AM-1PM 
5 2 52.97144 -1.36236 7PM-11PM 
6 5 53.09691 -1.38011 2PM-6PM 
7 2 53.19792 -1.39174 7AM-1PM 
8 3 52.97007 -1.45786 7PM-11PM 
9 4 52.91285 -0.98748 2PM-6PM 

10 3 53.05171 -1.40624 7PM-11PM 
11 3 52.92782 -1.27492 7AM-1PM 
12 3 52.92950 -1.29232 2PM-6PM 
13 4 52.92907 -1.22245 2PM-6PM 
14 5 52.90512 -1.25272 7AM-1PM 
15 5 52.96221 -1.07466 7PM-11PM 
16 1 52.91985 -1.48703 7AM-1PM 
17 4 53.07783 -0.95281 7PM-11PM 
18 4 52.92532 -1.53483 2PM-6PM 
19 4 53.01919 -1.62114 7PM-11PM 
20 3 52.92687 -1.54442 2PM-6PM 
21 1 52.90039 -1.51959 7AM-1PM 
22 2 53.02310 -1.06359 2PM-6PM 
23 3 52.94808 -0.94328 7PM-11PM 
24 1 53.10341 -1.25540 7AM-1PM 
25 5 53.10557 -1.33819 7PM-11PM 
26 2 53.11378 -1.11791 2PM-6PM 
27 3 52.97139 -1.09135 7AM-1PM 
28 5 53.04797 -1.60254 2PM-6PM 
29 5 52.96988 -1.62356 7PM-11PM 
30 5 52.77941 -1.20671 7AM-1PM 
31 5 52.82086 -1.25072 7AM-1PM 
32 3 52.98331 -0.96556 2PM-6PM 
33 4 52.81182 -1.47493 2PM-6PM 
34 4 53.02537 -1.17932 2PM-6PM 
35 2 52.92770 -1.10285 7AM-1PM 
36 4 52.83094 -1.14577 7PM-11PM 
37 3 52.78149 -1.33862 2PM-6PM 
38 3 52.94957 -1.03587 7AM-1PM 
39 5 53.16337 -1.41609 2PM-6PM 
40 4 53.17125 -1.25040 7AM-1PM 



53 

 

Table B.2. Location information in flexible delivery options 

 Location 1  Location 2  Location 3 

Customer ID TW   ID Latitude Longitude  TW  ID Latitude Longitude TW  

1 1 3PM-6PM  41 53.09626 -1.22699 9AM-12PM  76 52.80929 -1.10600 6PM-9PM 
2 2 9AM-12PM              
3 3 3PM-6PM  42 53.03011 -1.44171 6PM-9PM  77 52.97107 -0.90326 12PM-3PM 
4 4 9AM-12PM  43 53.08121 -0.91852 12PM-3PM  78 53.10935 -1.12126 6PM-9PM 
5 5 6PM-9PM              
6 6 3PM-6PM  44 53.05894 -1.05586 6PM-9PM        
7 7 9AM-12PM  45 52.83564 -1.12453 12PM-3PM  79 52.96269 -1.15291 3PM-6PM 
8 8 6PM-9PM  46 53.08383 -1.48204 3PM-6PM  80 53.04191 -0.95885 12PM-3PM 
9 9 12PM-3PM              

10 10 6PM-9PM  47 52.81720 -1.23571 9AM-12PM        
11 11 12PM-3PM  48 53.12089 -1.10063 6PM-9PM  81 52.83804 -1.10390 3PM-6PM 
12 12 3PM-6PM  49 52.86700 -1.20745 12PM-3PM  82 52.85318 -1.42980 9AM-12PM 
13 13 12PM-3PM              
14 14 9AM-12PM  50 53.01414 -1.41563 3PM-6PM        
15 15 6PM-9PM  51 53.13920 -1.36658 9AM-12PM  83 53.13659 -0.86192 3PM-6PM 
16 16 12PM-3PM  52 52.87752 -0.99272 3PM-6PM  84 53.00692 -0.82704 6PM-9PM 
17 17 6PM-9PM  53 52.95573 -1.34151 12PM-3PM        
18 18 3PM-6PM  54 53.13986 -1.19873 12PM-3PM  85 52.88936 -0.84884 9AM-12PM 
19 19 6PM-9PM  55 53.05936 -1.40255 9AM-12PM  86 53.11566 -0.86410 3PM-6PM 
20 20 12PM-3PM  56 53.09210 -1.45705 6PM-9PM        
21 21 9AM-12PM  57 53.13855 -0.93168 12PM-3PM  87 52.82618 -0.74856 6PM-9PM 
22 22 3PM-6PM  58 53.11500 -1.49520 6PM-9PM        
23 23 6PM-9PM  59 52.90712 -0.94585 3PM-6PM        
24 24 9AM-12PM  60 53.08817 -1.48212 3PM-6PM  88 52.87884 -1.41345 6PM-9PM 
25 25 6PM-9PM  61 52.81564 -1.22925 3PM-6PM        
26 26 3PM-6PM  62 52.84989 -1.40582 9AM-12PM  89 53.12416 -1.12897 12PM-3PM 
27 27 12PM-3PM  63 53.11762 -1.49738 3PM-6PM        
28 28 3PM-6PM  64 52.97871 -0.80742 12PM-3PM  90 53.09603 -1.14641 9AM-12PM 
29 29 6PM-9PM  65 52.81235 -1.24124 3PM-6PM        
30 30 9AM-12PM              
31 31 12PM-3PM  66 52.89660 -1.39492 9AM-12PM  91 52.87752 -0.79543 6PM-9PM 
32 32 3PM-6PM  67 53.06001 -1.37530 9AM-12PM        
33 33 3PM-6PM  68 52.80444 -1.27721 6PM-9PM        
34 34 12PM-3PM  69 53.11304 -1.24887 3PM-6PM  92 52.98724 -1.57150 9AM-12PM 
35 35 9AM-12PM  70 52.82948 -1.36113 6PM-9PM        
36 36 6PM-9PM  71 52.78731 -1.01779 12PM-3PM  93 53.14770 -0.94367 3PM-6PM 
37 37 3PM-6PM  72 53.08686 -1.46468 6PM-9PM        
38 38 9AM-12PM  73 53.14247 -1.04722 12PM-3PM  94 52.94063 -1.43525 3PM-6PM 
39 39 12PM-3PM  74 53.03643 -1.57259 6PM-9PM        
40 40 9AM-12PM  75 53.05870 -0.88808 6PM-9PM  95 53.09341 -1.65870 12PM-3PM 

Table B.3. Public station locations 

Station Latitude Longitude 

S1 52.9891175 -0.9780477 
S2 53.1354618 -1.2249143 
S3 53.0210944 -1.4870107 
S4 52.9047598 -1.4251326 
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Appendix C 

Table C.1 presents the detailed route plans in the case study under different settings.  In this table 

“D”, “R” and “S” denotes the depot, recharge en-route (recharging at depot), and public station, 

respectively. The last column reports the return time of the vehicle to the depot at the end of its 

tour. 

Table C.1. Route plans in the case study under different settings  

Current Setting: 

EV Delivery Route Distance Return Time 

1 D, 27, 35, 38, 9, 32, 23, 17, 15, D 99.09 10:36 PM 
2 D, 31, 30, 36, D 67.26 9:44 PM 
3 D, 2, 14, 11, 16, 21, 20, 18, 12, 13, 3, R, 1, 28, 19, 29, 8, 5, D 187.79 10:41 PM 
4 D, 4, 22, 26, 34, R, 37, 33, D 134.61 8:22 PM 
5 D, 24, 40, 7, 39, 6, 25, 10, D 94.47 10:00 PM 

Total  583.22  
    

Flexible Deliveries: 

EV Delivery Route Distance Return Time 

1 D, 30, 31, 49, 13, R, 34, 79, 3, R, 26, 93, 86, 75, 17, 44, D 173.11 7:58 PM 
2 D, 4, 35, 38, 9, 59, 52, 81, 61, 65, 68, D 99.64 8:00 PM 
3 D, 2, 14, 21, 18, 8, 5, D 79.79 7:54 PM 
4 D, 90, 41, 24, 67, 51, 39, 63, 58, 72, 56, D 95.42 8:40 PM 

Total  447.96  
    
Flexible Deliveries using Public Charging: 

EV Delivery Route Distance Return Time 

1 D, 62, 82, S4, 38, 9, 52, 59, 32, S1, 79, 3, R, 6, 56, 63, 58, 46, 72, S3, D 92.58  8:50 PM 
2 D, 4, 2, 13, 14, 11, 53, S4, 34, 54, 57, 93, 83, 86, 75, R, 28, 74, D 72.64  8:45 PM 
3 D, 41, S2, 24, 30, 47,  31, 65, 61, 68, 70, S4, 5, D 63.51  8:20 PM 

Total  228.73  

 


