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ABSTRACT

We analyze a quantum observer who falls geodesically toward the Cauchy horizon of a (1þ 1)-dimensional eternal black hole spacetime
with the global structure of the non-extremal Reissner–Nordstr€om solution. The observer interacts with a massless scalar field, using an
Unruh–DeWitt detector coupled linearly to the proper time derivative of the field, and by measuring the local energy density of the field.
Taking the field to be initially prepared in the Hartle–Hawking–Israel (HHI) state or the Unruh state, we find that both the detector’s transi-
tion rate and the local energy density generically diverge on approaching the Cauchy horizon, respectively, proportionally to the inverse and
the inverse square of the proper time to the horizon, and in the Unruh state the divergences on approaching one of the branches of the
Cauchy horizon are independent of the surface gravities. When the outer and inner horizons have equal surface gravities, the divergences
disappear altogether in the HHI state and for one of the Cauchy horizon branches in the Unruh state. We conjecture, on grounds of compar-
ison with the Rindler state in 1þ 1 and 3þ 1 Minkowski spacetimes, that similar properties hold in 3þ 1 dimensions for a detector coupled
linearly to the quantum field, but with a logarithmic rather than inverse power-law divergence.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1116/5.0073373

I. INTRODUCTION

It is a great pleasure to dedicate this paper to Roger Penrose, who
realized the instability of the Cauchy horizons that occur inside
charged and rotating black hole solutions.1 The nature of the instabil-
ity is a topic of ongoing research, classically and in the presence of
quantized fields. This paper addresses transitions in a time-and-space
localized quantum system, coupled to an ambient quantum field,
when the system falls geodesically toward a Cauchy horizon.

Causality is a concept at the core of physics. Classically, causality
is formulated as the well-posedness of the initial value problem: a solu-
tion to the dynamical equations is fully determined by the initial con-
ditions specified on a spacelike hypersurface. In quantum theory,
causality may be formulated in terms of an algebra of observables: The
commutator of two observables whose respective supports have space-
like separation must vanish. In both cases, the physical meaning is that
any two causally disconnected observables have no influence on each
other.

In geometric terms, causality is protected by global hyperbolic-
ity.2,3 Every globally hyperbolic spacetime is stably causal, since global
hyperbolicity implies the existence of a global time function that

provides the stable causality condition. In turn, this implies strong cau-
sality, which prevents any causal curve from coming arbitrarily close
to intersecting itself. Moreover, the dynamical equations of classical
fields admit a well-posed initial value problem on the whole manifold
whenever suitable data are specified on a Cauchy hypersurface of a
globally hyperbolic manifold. With quantum fields, global hyperbolic-
ity allows one to establish a rigorous quantization scheme for free
fields,4,5 which provides the starting point for a perturbative expansion
in interacting theories.6

However, many important solutions in General Relativity are not
globally hyperbolic: They contain Cauchy horizons, which are bound-
aries of the maximal Cauchy development of an achronal hypersur-
face. This includes most members of the analytically extended
Kerr–Newman family.

There is a significant history of work addressing the stability of
Cauchy horizons in General Relativity. In the classical theory, work by
Simpson and Penrose led to the strong cosmic censorship conjecture,1

which states that for generic initial data the spacetime is inextendible
beyond the maximal Cauchy development. Support for this conjecture
came from Chandrasekhar and Hartle’s observation that the
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(electromagnetic or gravitational) classical radiation felt by an observer
diverges as the Reissner–Nordstr€om horizon is approached.7 Later
work has however revealed that the sense of inextendibility in the con-
jecture is subtle. On the one hand, given polynomially decaying initial
data for the Einstein–Maxwell-scalar system, settling down to a
Reissner–Nordstr€om black hole, the spacetime is C0-extendible past
the Cauchy horizon; on the other hand, not all the geometric invari-
ants remain finite and, in particular, the Hawking mass diverges at the
Cauchy horizon. This is known as the mass inflation scenario.8–12

When the theory is extended to include quantized fields, new
issues arise from the renormalized stress-energy tensor near the
Cauchy horizon, and from the back-reaction of this stress-energy on
the spacetime. There is evidence that the back-reaction of the quantum
fields tends to make Cauchy horizons generically unstable even in sit-
uations where classical surface gravity considerations would suggest
stability.13–17

In this paper, we shall address another facet of the singular
behavior of quantized fields near a Cauchy horizon: the experiences of
a time-and-space localized quantum system as it falls geodesically
toward the Cauchy horizon. Interaction with the ambient quantum
field causes transitions between the internal states of the localized
quantum system. Does the probability of these transitions change rap-
idly, perhaps even divergently, as the system approaches the Cauchy
horizon? If so, is there a correlation between the rapid changes in tran-
sition probabilities and any divergent behavior that the field’s stress-
energy tensor may exhibit near the Cauchy horizon?

We shall consider a class of (1þ 1)-dimensional eternal black
hole spacetimes whose global structure mimics that of the non-
extremal Reissner–Nordstr€om solution, with an asymptotically flat
region, an outer bifurcate Killing horizon, and an inner bifurcate
Killing horizon,2 but allowing the “radial” profile function in the met-
ric to remain otherwise arbitrary, and in particular allowing the outer
and inner horizons to have arbitrary nonvanishing surface gravities.
As the ambient quantum field, we consider a massless scalar field, pre-
pared initially in the Hartle–Hawking–Israel (HHI) state18,19 or in the
Unruh state.20 As the local quantum system, we consider a spatially
pointlike two-level system known as the Unruh–DeWitt (UDW)
detector,20,21 in a variant that couples linearly to the proper time deriv-
ative of the field. The reason to include the derivative is that this makes
the detector’s transition probabilities independent of the scalar field’s
infrared ambiguity.

We work within first-order perturbation theory. We assume the
detector to be switched on and off instantaneously, and we address not
the transition probability itself but the transition rate, defined as the
derivative of the transition probability with respect to the switch-off
proper time. While this amounts to ignoring a technically divergent
“additive constant” contribution to the transition probability from the
instantaneous switching,22–27 it allows us to isolate the singular effects
due to the approach to the Cauchy horizon, which effects are the focus
of this paper.

We find that as the geodesic detector approaches the Cauchy
horizon, the transition rate diverges whenever the outer and inner
horizons have differing surface gravities, on all parts of the Cauchy
horizon. In the exceptional case of equal surface gravities, the transi-
tion rate remains bounded in the HHI state on all parts of the Cauchy
horizon, and in the Unruh state on the branch of the Cauchy horizon
that is opposite to the exterior with respect to which the Unruh state is

defined. When the divergence occurs, it is proportional to the inverse
of the proper time separation from the Cauchy horizon, except that in
the Unruh state, for a geodesic approaching the Cauchy horizon bifur-
cation point, the divergence is slightly weaker when the outer horizon
has twice the surface gravity of the inner horizon.

We also find that these results for the transition rate are in signifi-
cant qualitative and quantitative agreement with the divergences in the
energy density seen by an observer on the geodesics. The main differ-
ence is that the energy density generically diverges proportionally to the
inverse square, rather than the inverse, of the proper time separation
from the Cauchy horizon; however, in the energy density averaged over
the trajectory, the divergence is again proportional to the inverse of the
proper time separation from the Cauchy horizon. The divergence in the
stress-energy tensor, including the special role of the equal surface grav-
ity case therein, has been studied in the context of back-reaction, in both
1þ 1 dimensions and in 3þ 1 dimensions.15–17

Finally, we perform a similar analysis for a geodesic detector
approaching the Rindler horizon in (1þ 1)-dimensional Minkowski
spacetime, with the field prepared in the Rindler vacuum, and we con-
trast the results with a similar analysis in 3þ 1 dimensions,26 for a
detector coupled linearly to the value (as opposed to the derivative) of
the scalar field. Based on this comparison, we conjecture that in 3þ 1
spacetime dimensions, a detector coupled linearly to the value of the
scalar field, and approaching a Cauchy horizon, generically has a tran-
sition rate that diverges in proper time but only logarithmically.

We begin in Sec. II by presenting our (1þ 1)-dimensional eternal
black hole spacetime, discussing its similarities with the (3þ 1)-
dimensional non-extremal Reissner–Nordstr€om solution, presenting
adapted coordinate systems, and recording properties of timelike geo-
desics that approach the Cauchy horizon. Section III introduces the
massless scalar field and records its Wightman functions in the HHI
and Unruh states. Section IV starts with a concise conceptual review
of Unruh–DeWitt detectors as space-and-time localized quantum sys-
tems by which the quantum field is probed, specializes then to a detec-
tor whose coupling to the field includes a time derivative, and focuses
finally on the detector’s instantaneous transition rate, treated in first-
order perturbation theory.

Our main results, for the detector’s transition rate on approach-
ing the Cauchy horizon, are presented in Sec. V, deferring technical
aspects to three appendixes. Section VI presents the corresponding
results for the energy density on a geodesic, and Sec. VII presents a
comparison with the Rindler horizon, in 1þ 1 and 3þ 1 dimensions.
Section VIII gives a summary and concluding remarks.

We use units in which c ¼ �h ¼ kB ¼ 1. In asymptotic expan-
sions, OðxÞ denotes a quantity such that OðxÞ=x is bounded as
x ! 0, o(x) denotes a quantity such that oðxÞ=x! 0 as x ! 0, Oð1Þ
denotes a quantity that is bounded in the limit under consideration,
and o(1) denotes a quantity that goes to zero in the limit under
consideration.

A subset of our results was announced previously in a conference
proceedings contribution.28 The key result given therein as formula
(3.10), for the transition rate of a detector approaching the “left”
branch of the Cauchy horizon when the field is in the HHI state, is our
formula (5.3a). The formulas have the same content, given the differ-
ing surface gravity conventions: In the present paper, the surface gravi-
ties of both inner and outer horizons are by definition positive,
following the conventions of Refs. 15–17, whereas in Ref. 28 the inner
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horizon surface gravity was defined to be negative. For the stress-
energy, the present paper focuses on the energy density at a given
moment on the trajectory, allowing a sharper asymptotic localization
than the time-averaged energy density discussed in Sec. 4 of Ref. 28.

II. THE GENERALIZED REISSNER–NORDSTR €OM BLACK
HOLE IN 1þ 1 DIMENSIONS

In this section, we introduce a class of (1þ 1)-dimensional eter-
nal black hole spacetimes that generalize the constant angles sections
of the non-extremal Reissner–Nordstr€om spacetime. We also write
down the equations of geodesics approaching the Cauchy horizon in a
convenient form.

A. Metric and global structure

Let F : Rþ ! R be a smooth function such that

Fðr�Þ ¼ FðrþÞ ¼ 0; (2.1)

where r6 are constants satisfying 0 < r� < rþ,

FðrÞ > 0 for rþ < r <1; (2.2a)

FðrÞ < 0 for r� < r < rþ; (2.2b)

and

F0ðrþÞ ¼ 2jþ > 0; (2.3a)

F0ðr�Þ ¼ �2j� < 0; (2.3b)

where j6 are positive constants. We also assume that FðrÞ ! 1 as
r !1. Further information about F(r) for r < r� will not be needed,
but we note that it follows from the above that F(r)> 0 when
r 2 ða; r�Þ for some a < r�.

To summarize, FðrÞ ! 1 as r !1, and F has simple zeroes at
r ¼ r6.

We consider the spacetime metric

ds2 ¼ �FðrÞdt2 þ dr2

FðrÞ ; (2.4)

where, to begin with, r > rþ. We refer to (t, r) as Schwarzschild-like
coordinates. This metric is static, with the timelike Killing vector
n¼: @t , and it is asymptotically flat at r !1.

The metric has a smooth continuation across the coordinate sin-
gularity at r ¼ rþ, and further a smooth continuation across the coor-
dinate singularity at r ¼ r�. These continuations may be found by
adapting the standard procedure for the Reissner–Nordstr€om metric,2

for which FðrÞ ¼ ðr � rþÞðr � r�Þ=r2, and the continuations are real
analytic when F is real analytic. There is a bifurcate Killing horizon of
n at r ¼ rþ, of surface gravity jþ, and part of this Killing horizon
forms the black hole event horizon with respect to theIþ of the origi-
nal asymptotically flat region. On continuing to the past and to the
future, there are further bifurcate Killing horizons of n at r ¼ r�, of
surface gravity j�, and they form past and future Cauchy horizons for
the four regions joined by the original r ¼ rþ Killing horizon. The pat-
tern continues to the past and to the future. What happens at r < r�
depends on the behavior of F(r) there, and will not be needed here.
The parts of the conformal diagram that are relevant for us are shown
in Fig. 1, in the Reissner–Nordstr€om-like case in which F(r)> 0 for
r < r� and FðrÞ ! 1 as r ! 0.

B. Coordinates

We shall write down three coordinate systems that cover (at least)
the original exterior region and the black hole interior region, and are
adapted to the quantum states that we shall describe in Sec. III.

1. Kruskal-like coordinates

We denote the “original” r > rþ region of (2.4) by region I. In
region I, define first the tortoise coordinate r� 2 R by

dr� ¼
dr
FðrÞ ; (2.5)

making some arbitrary choice for the additive constant in r�, and then
the Eddington–Finkelstein double null coordinates ðu; vÞ 2 R2 by

u ¼ t � r�; (2.6a)

v ¼ t þ r�; (2.6b)

and finally the Kruskal(–Szekeres)-like coordinates ðU;VÞ 2 R�

�Rþ by

U ¼ �e�jþu; (2.7a)

V ¼ ejþv: (2.7b)

The metric takes the form

ds2 ¼ FðrÞ
j2
þUV

dU dV ; (2.8)

FIG. 1. Part of the conformal diagram of the extended spacetime. Region I is
the original exterior (2.4), connected by the bifurcate Killing horizon at r ¼ rþ to
the black hole interior II, the white hole interior II0 and the second exterior I0 . The
Kruskal-like coordinates (U, V) cover regions I, II, II0, and I0 , with the Killing horizon
r ¼ rþ at UV¼ 0. Regions II and II0 are bounded in the future/past by the future/
past Cauchy horizons at r ¼ r�. The dotted lines, bounding regions III and III0, are
singularities that occur behind the Cauchy horizons when F(r)> 0 for r < r� and
FðrÞ ! 1 as r ! 0; other structure behind the Cauchy horizons can occur under
different behavior of F(r) for r < r�. The diagram extends to the past and future.
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where r is determined as a function of U and V from

�UV ¼ e2jþr� : (2.9)

It follows from the assumptions about F that the metric given by
(2.8) with (2.9) can be smoothly extended from region I, where
ðU ;VÞ 2 R� �Rþ, to ðU ;VÞ 2 R�R, as summarized in Table I
and illustrated in Fig. 1: The extension covers regions I, II, II0, and I0 as
shown in Fig. 1, and the boundaries at which they are joined. We call
this spacetimeMK . In regions II and II0, where UV> 0, r 2 ðr�; rþÞ
is determined as a function of U andV from

UV ¼ e2jþ~r � ; (2.10)

where the relation between r and ~r� is determined by

d~r� ¼
dr
FðrÞ ; (2.11)

with the additive constant in ~r� chosen so that the extension of the
metric function FðrÞðj2

þUVÞ
�1 in (2.8) across UV¼ 0 is smooth. If F

is real analytic, the extended metric is real analytic. Note that n extends
smoothly from region I toMK , having the formula n ¼ jþð�U@U
þV@VÞ, and n has a bifurcate Killing horizon at UV¼ 0, where
r ¼ rþ.

The coordinates (U, V) do not extend to r ¼ r�. Another set of
Kruskal-type coordinates can be introduced to cover the four regions
joined at the Killing horizon r ¼ r�; these coordinates will however
not be needed for what follows.

2. Hybrid coordinates

Consider the region where �1 < U <1 and 0 < V <1. In
Fig. 1, this consists of regions I and II and their joint boundary, the
black hole horizonHF. We call this spacetimeMU .

Given the Kruskal-like coordinates ðU;VÞ 2 R�Rþ inMU ,
we introduce the new coordinates ðU; vÞ 2 R�R inMU by (2.7b).
We refer to these as the hybrid coordinates, being Kruskal-like in U
and Eddington–Finkelstein-like in v. The metric takes the form

ds2 ¼ FðrÞ
jþU

dU dv; (2.12)

where r is determined as a function of U and v from

�Uejþv ¼ e2jþr� for U < 0; (2.13a)

Uejþv ¼ e2jþ~r � for U > 0; (2.13b)

with r related to r� and ~r� as above. The black hole horizon HF is at
U¼ 0.

3. Eddington–Finkelstein coordinates

For completeness, we record here how the standard ingoing
Eddington–Finkelstein coordinates are related to the coordinate sys-
tems introduced above.

InMU , starting from (2.12) and replacing U by r puts the metric
in the Eddington–Finkelstein form

ds2 ¼ �FðrÞdv2 þ 2dv dr; (2.14)

where r� < r <1 and v 2 R. This metric can be extended to
0 < r <1, covering also HF

� and region III in Fig. 1. The usual way
to obtain (2.14) is to start from region I with the metric (2.4), set
dt ¼ dv� dr=FðrÞ, and then allow 0 < r <1.

C. Timelike geodesics approaching the Cauchy horizon

We are interested in timelike geodesics in the black hole interior,
region II in Fig. 1.

It is convenient to introduce in region II the interior
Schwarzschild-like coordinates ð~t ; rÞ, in which the metric reads

ds2 ¼ dr2

FðrÞ � FðrÞd~t 2; (2.15)

where now F(r)< 0, r 2 ðr�; rþÞ is a timelike coordinate decreasing
to the future, and ~t 2 R is a spacelike coordinate increasing to the
right. These coordinates may be obtained from (2.14) by writing
dv ¼ d~t þ dr=FðrÞ, or from (2.8) by writing first

U ¼ ejþ~u ; (2.16a)

V ¼ ejþ~v ; (2.16b)

where ðU;VÞ 2 Rþ �Rþ and ð~u;~vÞ 2 R�R, and then

~u ¼ ~r� �~t ; (2.17a)

~v ¼ ~r� þ~t ; (2.17b)

and finally using (2.11) to replace ~r� by r.
From (2.15), it is now straightforward to verify that the timelike

geodesics are the integral curves of the system

_~t ¼ E
FðrÞ ; (2.18a)

_r ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � FðrÞ

p
; (2.18b)

where the overdot denotes derivative with respect to the proper time,
increasing to the future, and E 2 R is a constant of integration. In the
coordinates ð~u;~vÞ, the system (2.18) reads

_~u ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � FðrÞ

p
� E

; (2.19a)

_~v ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � FðrÞ

p
þ E

: (2.19b)

All these geodesics hit the Cauchy horizon at r ¼ r� in finite
proper time. A geodesic with E> 0 travels toward decreasing ~t , cross-
ing the Cauchy horizon’s left branch HL

� into region III, as is perhaps
most easily seen in the Eddington–Finkelstein coordinates (2.14); simi-
larly, a geodesic with E< 0 travels toward increasing ~t , crossing the

TABLE I. The four subregions of the Kruskal-type chart (U, V), in the labeling of Fig.
1. The last three columns indicate the signs of U, V, and nan

a in each of the
subregions.

Region r domain U V nan
a

I Original exterior rþ < r <1 � þ �
II Black hole r� < r < rþ þ þ þ
II0 White hole r� < r < rþ � � þ
I0 Second exterior rþ < r <1 þ � �
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Cauchy horizon’s right branch HR
� into region III0. A geodesic with

E¼ 0 crosses the bifurcation point where HL
� andHR

� meet, entering a
new region in which r 2 ðr�; rþÞ.

We note that a geodesic with E> 0 continues in the past to
region I, having fallen in from there, a geodesic with E< 0 has fallen
in from region I0, and a geodesic with E¼ 0 has emerged from region
II0, the white hole, through the bifurcation point where regions I, I0, II,
and II0 meet. We shall however not consider these geodesics beyond
region II, in the past or in the future.

III. QUANTUM SCALAR FIELD

Let / be a real massless scalar field, with the field equation

�/ ¼ 0: (3.1)

InMK , it follows from the conformal invariance of the massless
scalar field, and the conformally flat form of the metric given in (2.8),
that / has a Fock quantization based on the input encoded in the
Kruskal coordinates. The field equation reads

@U@V/ ¼ 0; (3.2)

and a Fock quantization is obtained by defining positive frequencies in
terms of @U and @V . The corresponding vacuum state is known as the
Hartle–Hawking–Israel (HHI) state j0Hi.18,19 The Wightman function
in j0Hi is given by

WHðx; x0Þ ¼: h0H j/ðxÞ/ðx0Þj0Hi

¼ � 1
4p

ln ð�þ iDUÞð�þ iDVÞ½ �; (3.3)

where we have written x ¼ ðU ;VÞ and x0 ¼ ðU 0;V 0Þ, with DU ¼ U
�U 0 and DV ¼ V � V 0. The logarithm denotes the branch that is
real-valued for positive argument, and the limit �! 0þ is understood.

InMU , it follows from the conformally flat form of the metric
given in (2.12) that / has a Fock quantization based on the input
encoded in the hybrid coordinates, and this quantization is inequiva-
lent to that obtained by restriction of the above Fock quantization in
MK . The field equation reads

@U@v/ ¼ 0; (3.4)

and a Fock quantization is obtained by defining positive frequencies in
terms of @U and @v. The corresponding vacuum state is known as the
Unruh state j0Ui.20 TheWightman function in j0Ui is given by

WUðx; x0Þ ¼
: h0Uj/ðxÞ/ðx0Þj0Ui

¼ � 1
4p

ln ð�þ iDUÞð�þ iDvÞ½ �; (3.5)

where the notation is as in (3.3) but now with Dv ¼ v� v0. The loga-
rithm denotes again the branch that is real-valued for positive argu-
ment, and the limit �! 0þ is understood.
j0Hi is by construction regular in MK and j0Ui is regular in

MU , in the sense that the short distance behavior of both WH and
WU satisfies the Hadamard condition.29 Observers at constant r in
region I experience j0Hi as a thermal equilibrium state, in the local
Hawking temperature THðrÞ ¼ jþ=ð2p

ffiffiffiffiffiffiffiffiffi
FðrÞ

p
Þ,18,19 whereas these

observers experience j0Ui as a state in which the ingoing part of the
field is in a vacuum-like state but the outgoing part is in the local

Hawking temperature TH.
20 j0Ui mimics the late-time properties of a

state that ensues from the collapse of an initially static star.20,30,31

BothWH andWU have an infrared ambiguity, characteristic of a
massless field in 1þ 1 dimensions, and we have resolved this ambigu-
ity as shown in (3.3) and (3.5). WH is invariant under the isometry
generated by n. WU is invariant under this isometry only up to an
additive constant; further, our formula (3.5) forWU contains dimen-
sionally inconsistent notation in that U is dimensionless but v has the
dimension of length. However, in the rest of the paper we shall probe
WH and WU by means that involve derivatives: Under this probing,
bothWH andWU will give answers that are invariant under the isom-
etry generated by n, and the dimensional inconsistency of (3.5) will
drop out. A similar issue in the (1þ 1)-dimensional Schwarzschild
spacetime was discussed in Refs. 27 and 31.

IV. UNRUH–DEWITT DETECTOR: TRANSITION
PROBABILITY AND TRANSITION RATE

In this section, we first briefly review the technical and conceptual
aspects of probing a quantum field with time-and-space localized
quantum systems known as Unruh–DeWitt (UDW) detectors.20,21

We then specialize to a spatially pointlike detector, coupled linearly to
the proper time derivative of the scalar field, and treated to first order
in perturbation theory.

A. A quantum detector localized in time and space

We wish to probe the quantum field with a time-and-space local-
ized quantum system known as an Unruh–DeWitt (UDW) detec-
tor:20,21 a quantum system that moves through the spacetime on the
timelike worldline xðsÞ, parametrized by the proper time s. What
needs to be specified is the detector’s internal dynamics, the sense of
localization, and the coupling.

For the internal dynamics, we assume that the detector is a two-
level system. The Hilbert space is spanned by two orthonormal states,
with the respective eigenenergies 0 and x 2 Rnf0g, defined with
respect to s. For x > 0, the state with eigenenergy 0 is the ground state
and the state with eigenenergy x is the excited state; for x < 0, the
roles of the states are reversed.

Generalizations to detectors with multiple levels could be consid-
ered. For example, a detector that has the dynamics of a harmonic
oscillator is convenient when the coupling between the field and the
detector is analyzed nonperturbatively.32,33 Multiple-level systems
however reduce to two-level systems when treated in first-order per-
turbation theory, and this is what we shall do below.

For the localization in space, we assume that the detector’s spatial
size is negligible, as in the detector model introduced by DeWitt:21 the
detector is restricted strictly to the worldline xðsÞ. This will make the
coupling between the field and the detector slightly singular, but the
singularity will not produce infinities in the first-order perturbative
treatment that we shall follow below. Allowing the detector to have a
nonzero spatial size, as in the detector model originally introduced by
Unruh,20 would present a technical challenge for formulating the
notion of a spatial profile when the spacetime is curved, or even in flat
spacetime when the detector’s motion is non-inertial;22,23,34–36 further,
a finite spatial size would raise questions about the relativistic
consistency of the coupled system, and about the sense in which the
two-level detector approximates an underlying more fundamental
detection described by quantum fields.37–40
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For the localization in time, we assume that the detector operates
for a finite interval of proper time. As we wish to consider a strongly
time-dependent situation, we shall consider the limit in which the
switch-on and switch-off are instantaneous. While this limit creates a
divergence in the detector’s transition probability, the divergence is a
pure switching effect, and the time-dependent features can be
extracted by considering the transition rate, rather than the transition
probability, as we shall discuss below in Sec. IVB.

For the coupling between the field and the detector, a frequently
considered choice is to couple the detector linearly to /ðxðsÞÞ, that is,
to the value of the field / at the location of the detector: This model is
known to capture the essential features of light–matter interaction
when angular momentum interchange is negligible.41,42 In our case of
a massless field in 1þ 1 spacetime dimensions, this choice however
inherits the infrared ambiguity of the Wightman function. We there-
fore couple the detector linearly to @s/ðxðsÞÞ, that is, to the proper
time derivative of / at the location of the detector, which will cure the
infrared ambiguity. A selection of previous work on a derivative-
coupled detector in a range of contexts is available in Refs. 27, 31, and
43–56.

Nonlinear couplings could be considered, but they would typi-
cally require additional regularization.57 We shall consider the linear
coupling to @s/ðxðsÞÞ.

B. Spatially pointlike detector with a linear derivative
coupling

To recap, we consider a spatially pointlike two-level detector, on
the timelike worldline xðsÞ, parametrized by the proper time s, cou-
pled linearly to @s/ðxðsÞÞ.

Working to first-order perturbation theory in the coupling
between the detector and the field, the probability of the detector to
make a transition from the eigenenergy 0 state to the eigenenergy x
state is a multiple of the response function FðxÞ, given by

FðxÞ ¼
Ð
ds0 ds00 vðs0Þvðs00Þ e�ixðs0�s00Þ � @s0@s00Wðs0; s00Þ; (4.1)

where Wðs0; s00Þ ¼ hWj/ðxðs0ÞÞ/ðxðs00ÞÞjWi is the pullback of the
scalar field’s Wightman function to the detector’s worldline, jWi
denotes the initial state of the field, and the real-valued switching func-
tion v specifies how the interaction is turned on and off. When jWi is
a state satisfying the Hadamard short-distance condition,29 Wðs0; s00Þ
is a well-defined distribution under mild assumptions about the detec-
tor’s trajectory,58,59 and FðxÞ is well defined under mild assumptions
about v; for example, taking v to be smooth and of compact support
suffices. As the factor relating FðxÞ to the probability depends only
on the detector’s internal structure, we refer to FðxÞ as the transition
probability, with a minor abuse of terminology. Note that the deriva-
tives in (4.1) are responsible for making the infrared ambiguity of W
drop out of F .

The response function FðxÞ (4.1) depends not just on the quan-
tum field’s initial state jWi and the detector’s trajectory, but also on
the switching function v. To consider the response of the detector as it
approaches the Cauchy horizon, we consider a v that cuts off at a
sharply defined moment of proper time, shortly before the trajectory
reaches the horizon. This creates a technical issue: If the detector is
switched on sharply at proper time s0 and off at proper time s > s0,
so that vðuÞ ¼ Hðs� uÞHðu� s0Þ; FðxÞ becomes divergent, due to

the large contributions from the switch-on and switch-off moments;
the issue for a derivative-coupling detector in 1þ 1 dimensions is the
same as for a non-derivative-coupling detector in 3þ 1 dimen-
sions.22–27 To circumvent this issue, we shall not consider the sharp
switching limit of the transition probability FðxÞ, but we consider
instead the transition rate, the derivative of this probability with
respect to the switch-off moment, which has a finite limit when the
switching becomes sharp. Denoting the transition rate by _F ðx; s; s0Þ,
where s0 and s are, respectively, the switch-on and switch-off proper
times, we have27

_F ðx;s;s0Þ¼�xHð�xÞþ 1
p

cosðxDsÞ
Ds

þjxjsiðjxjDsÞ
� �

þ2
ðs

s0

ds0Re e�ixðs�s0Þ @s@s0Wðs;s0Þþ
1

2pðs�s0Þ2
� �� �

;

(4.2)

where Ds¼: s� s0 and si is the sine integral function.60 Note that the
integrand in (4.2) is nonsingular at s0 ! s because of the Hadamard
property of the Wightman function.29

We shall use (4.2) to address the behavior of _F ðx; s; s0Þ near the
Cauchy horizon in Sec. V.

V. DETECTOR NEAR THE CAUCHY HORIZON

We now specialize to a detector on a geodesic in region II, as
described in Sec. II C, and we specialize to the HHI and Unruh states
as described in Sec. III. We shall find the leading behavior of the tran-
sition rate as the detector approaches the Cauchy horizon.

Let sh be the value of the proper time at which the trajectory hits
the Cauchy horizon. In the notation of (4.2), we then have
s0 < s < sh, where s0 is the switch-on moment and s is the switch-off
moment. For concreteness, we assume that the switch-on moment s0
is in region II, for all trajectories and all states. We consider the asymp-
totic behavior of _F ðx; s; s0Þ (4.2) as s! sh, with s0 fixed.

Note first that the terms outside the integral in (4.2) are of order
Oð1Þ as s! sh. Also, note that by (3.3) and (3.5), the imaginary part
ofWðs; s0Þ is a constant for s0 < s. We hence have

_F ðx; s; s0Þ ¼ 2
ðs

s0

ds0 cos ðxðs� s0ÞÞ

� @s@s0Wðs; s0Þ þ
1

2pðs� s0Þ2
� �

þOð1Þ: (5.1)

Integrating by parts gives

_F ðx; s; s0Þ ¼ � 2 cos xDsð Þ@sWðs; s0Þ

þ2 lim
s0!s

@sWðs; s0Þ þ
1

2pðs� s0Þ

� �

�2x
ðs

s0

ds0 sin ðxðs� s0ÞÞ @sWðs; s0Þ þ
1

2pðs� s0Þ

� �
þOð1Þ; (5.2)

where the second term on the right-hand side is well defined and finite
by the Hadamard property of the state.29

What remains is to estimate (5.2) as s! sh, for the HHI and
Unruh states, and for a detector approaching the Cauchy horizon on
the left branch HL

�, on the right branch HR
�, and at the bifurcation
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point. We address the three different parts of the Cauchy horizon in,
respectively, Appendixes A, B, and C. We collect the outcomes here.

In the HHI state, we find

_F L
Hðx;s;s0Þ¼ _F R

Hðx;s;s0Þ¼
1

4pðsh�sÞ
jþ
j�
�1þoð1Þ

� �
; (5.3a)

_F 0
Hðx; s; s0Þ ¼

1
2pðsh � sÞ

jþ
j�
� 1þ oð1Þ

� �
; (5.3b)

where the superscripts L, R, and 0 indicate, respectively, HL
�; H

R
�, and

the bifurcation point. When jþ 6¼ j�, the leading term hence diverges
proportionally to 1=ðsh � sÞ, in all three cases, with an overall sign that
differs for j� < jþ and jþ < j�. That the responses on approaching
HL
� and HR

� are identical follows from the left–right symmetry of the
HHI state, and the divergence for HL

� (respectively, HR
�) comes only

from the right-moving (respectively, left-moving) part of the field. The
divergence on approaching the bifurcation point gets contributions
from both parts of the field, leading to the double strength in (5.3b).

In the special case j� ¼ jþ, the leading term in (5.3) vanishes.
In this case, the error terms in (5.3) can be tightened, as shown in
Appendixes A, B, and C, with the outcome that the transition rate
remains bounded on approaching the horizon.

In the Unruh state, we find

_F L
Uðx; s; s0Þ ¼

1
4pðsh � sÞ

jþ
j�
� 1þ oð1Þ

� �
; (5.4a)

_F R
Uðx; s; s0Þ ¼ �

1þ oð1Þ
4pðsh � sÞ ; (5.4b)

_F_0
U x; s; s0ð Þ ¼

1
4p sh � sð Þ

jþ
j�
� 2þ o 1ð Þ

� �
: (5.4c)

The divergence on approaching HL
� is as in the HHI state, but the

divergence on approaching HR
� is independent of the surface gravities,

and has always a negative sign. The divergence on approaching the
bifurcation point is the sum.

In the special case j� ¼ jþ, the leading term in (5.4a) vanishes,
and we show in Appendix A that _F L

U remains bounded on approach-
ing HL

�. In the special case jþ ¼ 2j�, the leading term in (5.4c) van-
ishes, and we show in Appendixes B and C that

_F 0
Uðx; s; s0Þ ¼

1þ oð1Þ
2pðsh � sÞð�ln ðsh � sÞÞ ; (5.5)

which diverges on approaching the bifurcation point, but less quickly
than 1=ðsh � sÞ.

VI. ENERGY NEAR THE CAUCHY HORIZON

In this section, we compare the transition rate results of Sec. V to
the energy density seen by a geodesic observer.

A. HHI state

Recall from (2.8) that in the Kruskal coordinates (U, V), we have

ds2 ¼ X2
Kð�dU dVÞ; (6.1)

where

X2
K ¼ �

F
j2
þUV

; (6.2)

and r is determined as a function of r by (2.9) for UV< 0 and by
(2.10) for UV> 0. As the HHI state is built on the positive frequency
definition provided by @U and @V , conformal invariance of the field
shows that the renormalized stress-energy tensor TH

ab in the HHI state
is given by30,61,62

TH
abðxÞ ¼ NabðxÞ �

RðxÞ
48p

gab; (6.3)

where

NUU ¼ �ð1=12pÞXK@
2
UX�1K ; (6.4a)

NVV ¼ �ð1=12pÞXK@
2
VX�1K ; (6.4b)

NUV ¼ NVU ¼ 0; (6.4c)

and R is the Ricci scalar.
The energy density on a timelike worldline parametrized by the

proper time s is given by

EH ¼ _xa _xbTH
ab

¼ _U
2
NUU þ _V

2
NVV þ

R
48p

¼ �
_~u
2 þ _~v

2
� �

192p
F02 � 2FF00 � 4j2

þ
� �

þ R
48p

; (6.5)

where the overdots denote derivative with respect to s, and the last
expression, using the coordinates ð~u;~vÞ, assumes the worldline to be
in region II. Near the Cauchy horizon, we have

F02 � 2FF00 ¼ 4j2
� þ Oððr � r�Þ2Þ; (6.6)

and the Ricci scalar remains bounded. For a geodesic approaching the
Cauchy horizon, it then follows from the estimates given for
_~uðsÞ; _~vðsÞ, and rðsÞ in Appendixes A, B, and C that

ELHðsÞ ¼ ERHðsÞ

¼ ð1þOðsh � sÞÞ
48pðsh � sÞ2

j2
þ

j2
�
� 1

 !
þOð1Þ; (6.7a)

E0HðsÞ ¼
1

24pðsh � sÞ2
j2
þ

j2
�
� 1

 !
þOð1Þ; (6.7b)

where the superscripts L, R, and 0 indicate whether the geodesic
approaches the Cauchy horizon at HL

�; H
R
�, or the bifurcation point.

Note that when jþ ¼ j�, the energy density remains bounded in all
three cases.

B. Unruh state

We proceed similarly with the Unruh state. In the hybrid coordi-
nates (U, v), the metric (2.12) reads

ds2 ¼ X2
Uð�dU dvÞ; (6.8)

where

X2
U ¼ �

F
jþU

; (6.9)

and r is determined as a function of U and v from (2.13). The renor-
malized stress-energy tensor TU

ab in the Unruh state is given by
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TU
abðxÞ ¼ WabðxÞ �

RðxÞ
48p

gab; (6.10)

where

WUU ¼ �ð1=12pÞXU@
2
UX�1U ; (6.11a)

Wvv ¼ �ð1=12pÞXU@
2
vX
�1
U ; (6.11b)

WUv ¼ WvU ¼ 0: (6.11c)

The energy density on a timelike worldline parametrized by the
proper time s is now given by

EU ¼ _xa _xbTU
ab

¼ _U
2
WUU þ _v2Wvvþ

R
48p

¼�
_~u
2

192p
F02� 2FF00 � 4j2

þ
� �

� _v2

192p
F02� 2FF00ð Þþ R

48p
; (6.12)

where the last expression assumes the worldline to be in region II. For
a geodesic approaching the Cauchy horizon, proceeding as with (6.7)
and using the same notation, we find

ELUðsÞ ¼
ð1þOðsh � sÞÞ
48pðsh � sÞ2

j2
þ

j2
�
� 1

 !
þOð1Þ; (6.13a)

ERUðsÞ ¼ �
1þOðsh � sÞ
48pðsh � sÞ2

; (6.13b)

E0UðsÞ ¼
1

48pðsh � sÞ2
j2
þ

j2
�
� 2

 !
þOð1Þ: (6.13c)

Note that ELU remains bounded when jþ ¼ j�, E0U remains
bounded when jþ ¼

ffiffiffi
2
p

j�, and ERU diverges for all values of jþ
and j�.

C. Comparison

Comparing (5.3) with (6.7), and (5.4) with (6.13), we see that
there is a significant qualitative and quantitative agreement between
the divergence of the detector’s transition rate and the divergence of
the observer’s energy density on approaching the Cauchy horizon.

For both the HHI and Unruh states, neither quantity diverges on
HL
� when jþ ¼ j�, whereas both quantities diverge for jþ 6¼ j�,

and the sign of the divergence agrees, being positive for j� < jþ and
negative for jþ < j�. On HR

�, the situation for the HHI state is simi-
lar, whereas for the Unruh state there is always a divergence with a
negative overall coefficient. The Cauchy horizon bifurcation point
interpolates between the two branches; in the Unruh state, the thresh-
old between positive and negative divergence occurs at jþ ¼ 2j�
with the transition rate and at jþ ¼

ffiffiffi
2
p

j� with the energy density.
When a divergence occurs, it is proportional to ðsh � sÞ�1 in the

transition rate and proportional to ðsh � sÞ�2 in the energy density.
In the integral of the energy density over a finite proper time interval,
the divergence is proportional to ðsh � sÞ�1.

VII. THE RINDLER HORIZON

In this section, we consider the transition rate and the energy
density in the closely analogous situation of an inertial observer
approaching the Rindler horizon in (1þ 1)-dimensional Minkowski

spacetime, coupled to a massless scalar field in its Rindler state. We
also contrast this situation with known results in (3þ 1)-dimensional
Minkowski spacetime.

A. 1þ 1 Rindler

We consider (1þ 1)-dimensional Minkowski spacetime with the
metric

ds2 ¼ �dt2 þ dx2; (7.1)

and therein the right-hand-side Rindler wedge, jtj < x, and therein
the geodesic

ðt; xÞ ¼ ðs; shÞ; (7.2)

parametrized by the proper time s, where sh is a positive constant, and
the range of s within the Rindler wedge is �sh < s < sh. As s! sh,
the trajectory approaches the future Rindler horizon.

We take the scalar field to be in the Rindler state, for which the
positive frequencies are defined with respect to the boost Killing vector
x@t þ t@x . The Wightman function reads62

WRðx; x0Þ ¼ �
1
4p

ln ð�þ iDuÞð�þ iDvÞ½ �; (7.3)

where the coordinates (u, v) are defined by u ¼ �ln ðaðx � tÞÞ and
v ¼ ln ðaðx þ tÞÞ; Du ¼ u� u0 and Dv ¼ v� v0; the �-notation
specifies the branches of the logarithm as in Sec. III; and a is a positive
constant of dimension inverse length that we have included for dimen-
sional consistency. In the coordinates (u, v), the geodesic (7.2) reads

uðsÞ ¼ �ln ðaðsh � sÞÞ; (7.4a)

vðsÞ ¼ ln ðaðsh þ sÞÞ: (7.4b)

Following the notation of Sec. V, we denote the detector’s switch-
on moment by s0 and switch-off moment by s, where
�sh < s0 < s < sh, and we consider the asymptotic behavior of the
transition rate _F ðx; s; s0Þ (4.2) as s! sh, with s0 fixed.

Proceeding as in Sec. V, we find that the Dv-dependent part of
WR (7.3) remains bounded as s! sh, whereas, by comparison of
(7.4a) and (B2), the contributions from the Du-dependent part obey
the same estimates that were found in Appendix B for approaching
HR
� in the Unruh state. We find

_F Rðx; s; s0Þ ¼ �
1

4pðsh � sÞ þ
1þ oð1Þ

2pðsh � sÞð�ln ðsh � sÞÞ ; (7.5)

where the subscript R refers to the Rindler state.
The renormalized stress-energy tensor TR

ab in the Rindler state
can be evaluated by the conformal scaling technique as in (6.3) and
(6.10), and is well known.63 The energy density seen by an observer on
the trajectory (7.2) evaluates to

ER ¼ _xa _xbTR
ab

¼ � 1
48p

1

ðsh � sÞ2
þ 1

ðsh þ sÞ2
� �

: (7.6)

We see that the divergences in the transition rate (7.5) and the
energy density (7.6) are similar to those on approaching the HR

�
branch of the Cauchy horizon in the black hole spacetime when the
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field is in the Unruh state, found in Secs. V and VI, including the sign
of the divergence and the power law of the divergence.

B. 3þ 1 Rindler

In 3þ 1 spacetime dimensions, an inertial detector approaching
the Rindler horizon was analyzed in Ref. 26, taking the field to be in
the Rindler state and assuming that the detector’s coupling to the field
does not include a derivative. In our notation of (7.2), the result for the
transition rate reads

_F R;3þ1ðx; s; s0Þ ¼
1

8p2sh

(
ln 1� s

sh

� �

þ2 ln �ln 1� s
sh

� �
þOð1Þ

� �)
: (7.7)

The energy density seen by this inertial observer can be found
using the Rindler state stress-energy tensor given in Ref. 63, with the
result

ER;3þ1 ¼ _xa _xbTR;3þ1
ab

¼ � 3s2h þ s2

1440p2ðs2h � s2Þ3
: (7.8)

C. Comparison of 1þ 1 and 3þ 1

One might have expected an agreement in the leading divergen-
ces of the transition rate _F R (7.5) and _F R;3þ1 (7.7), given the differing
short-separation divergences of the Wightman function in 1þ 1 and
3þ 1 dimensions,29 and the inclusion of time derivative in the cou-
pling in 1þ 1 dimensions but not in 3þ 1 dimensions. Yet the diver-
gences do not agree: Instead, the leading divergences of _F R agree with
the divergences of the s-derivative of _F R;3þ1.

These properties of the Rindler state suggest the conjecture that
in 3þ 1 spacetime dimensions, a detector coupled linearly to the value
(as opposed to the derivative) of the scalar field, and approaching a
Cauchy horizon, may have a transition rate that diverges only logarith-
mically in proper time. We leave the investigation of this conjecture to
future work.

VIII. CONCLUSIONS

We have investigated the internal transitions in a space-and-time
localized quantum system on geodesics that approach the Cauchy
horizon in a (1þ 1)-dimensional eternal black hole spacetime whose
global structure mimics that of the non-extremal Reissner–Nordstr€om
solution. The quantum system was a spatially pointlike
Unruh–DeWitt detector, coupled linearly to the proper time derivative
of a massless scalar field, which was prepared initially in the HHI state
or the Unruh state. Working in first-order perturbation theory, we
found that the detector’s transition rate generically diverges on
approaching the Cauchy horizon, proportionally to the inverse proper
time to the horizon. The exception was when the surface gravities of
the two horizons are equal: In this case, the transition rate remains
bounded on all parts of the Cauchy horizon in the HHI state, and on
one branch of the Cauchy horizon in the Unruh state. We also saw
that these properties of the detector’s transition rate have a close

qualitative and quantitative similarity with the energy density seen by
an observer falling toward the Cauchy horizon. Finally, by comparison
with results for the Rindler state and Rindler horizon, we conjectured
that a similar but weaker divergence may be present in 3þ 1 spacetime
dimensions in the transition rate of a detector coupled linearly to the
value (rather than to the proper time derivative) of the quantum field.

That horizons with equal surface gravities emerge as the excep-
tionally regular special case may not be surprising: That this case is
special was already known from consideration of the stress-energy ten-
sor,15–17 and similar observations arise with “lukewarm” black holes,
in which two Killing horizons bound a spacetime region in which the
Killing vector in question is timelike.64,65 It is however notable that in
the HHI state, the overall sign of the leading divergence is determined
by which of the two surface gravities is greater, in precisely the same
way for both the detector’s transition rate and for the energy density
seen by an observer. In comparison, for a detector falling to the singu-
larity of the (1þ 1)-dimensional Schwarzschild spacetime, the leading
divergence in the detector’s transition rate has always a positive sign,
both in the HHI state and in the Unruh state.27 This highlights the dif-
ferences between a Cauchy horizon and a Schwarzschild-type
singularity.

We emphasize that a negative transition rate is not as such physi-
cally pathological, given the operational definition of the transition
rate in terms of ensembles of detectors, switched off at different
times.26,34 That the integral of the transition rate can diverge to nega-
tive infinity may be more disconcerting, but this is just an artifact of
our passing to the sharp switching limit, and dropping the concomi-
tant infinite additive constant from the transition probability. If the
sharp switching is replaced by a smooth switching, all probabilities are
by construction non-negative, but disentangling the switching effects
from the spacetime effects becomes less transparent, as exemplified by
a smoothly switched detector that falls in the (3þ 1)-dimensional
Schwarzschild black hole.66

Our techniques can be extended to more general spacetimes with
horizons, such as degenerate horizons,67 or to spacetimes in which
spacetime singularities have been resolved by nonlinear effects68 or by
quantum gravity effects.69 We leave such extensions subject to future
work.
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APPENDIX A: _F NEAR HL
2

In this appendix, we perform the estimates that lead from (5.2)
to the results stated in Sec. V for the asymptotics of _F near HL

�.

1. Preliminaries

Recall that the geodesic is by assumption in region II, where
ðU ;VÞ 2 Rþ �Rþ and ð~u;~vÞ 2 R�R. The geodesic is an inte-
gral curve of the system (2.18), or equivalently (2.19). Differentiating
(2.19) gives

€~u ¼ � 1
2

_~u
2
F0ðrÞ; (A1a)

€~v ¼ � 1
2

_~v
2
F0ðrÞ; (A1b)

which will be useful below.
From (3.3) and (3.5) we have, for s0 < s,

WHðs; s0Þ ¼ �
1
4p

ln UðsÞ � Uðs0Þ
	 


� 1
4p

ln VðsÞ � Vðs0Þ
	 


� i
4
;

(A2a)

WUðs;s0Þ¼�
1
4p

ln UðsÞ�Uðs0Þ
	 


� 1
4p

ln vðsÞ�vðs0Þ
	 


� i
4
; (A2b)

and hence

@sWHðs; s0Þ ¼ �
jþ
4p
�

_~u sð Þ
1� Uðs0Þ=UðsÞ �

jþ
4p
�

_~vðsÞ
1� Vðs0Þ=VðsÞ ;

(A3a)

@sWUðs; s0Þ ¼ �
jþ
4p
�

_~uðsÞ
1� Uðs0Þ=UðsÞ �

1
4p
�

_~vðsÞ
~vðsÞ � ~vðs0Þ :

(A3b)

Expanding (A3) in s� s0, using (2.19) and (A1), we find

lim
s0!s

@sWHðs; s0Þ þ
1

2pðs� s0Þ

� �

¼
_~uðsÞ þ _~vðsÞ
	 


F0ðrðsÞÞ � 2jþ
	 

16p

; (A4a)

lim
s0!s

@sWUðs; s0Þ þ
1

2pðs� s0Þ

� �

¼
_~uðsÞ F0ðrðsÞÞ � 2jþ

	 

þ _~vðsÞF0ðrðsÞÞ

16p
: (A4b)

2. Geodesics approaching HL
�

We now specialize to the geodesics approaching HL
�, which are

those with E> 0. It follows from (2.18b) that rðsÞ ! r� smoothly
and with a nonvanishing derivative as s! sh. As s! sh; ~v
increases smoothly to a finite value and V increases smoothly to a
finite positive value, whereas ~u !1, logarithmically in sh � s, and
U !1, as an inverse power law in sh � s.

Given the above observations, and setting s0 ¼ s0 in (A3), we
see that the only contributions to _F ðx; s; s0Þ in (5.2) that may be
potentially unbounded as s! sh come from those terms in (A3)
and (A4) that involve _~u , and these terms are the same for the HHI
and Unruh states. We may hence drop the reference to the state.

3. First boundary term in (5.2)

Let B1ðs; s0;xÞ denote the first term on the right-hand side of
(5.2),

B1ðs; s0;xÞ¼
: � 2 cos ðxDsÞ@sWðs; s0Þ: (A5)

ForWðs; s0Þ, (A3) with s0 ¼ s0 gives

@sWðs; s0Þ ¼ �
jþ _~uðsÞ
4p

1þO Uðs0Þ
UðsÞ

� �� �
þOð1Þ: (A6)

To estimate _~u , we write

FðrÞ ¼ �2j�ðr � r�Þ þ Oððr � r�Þ2Þ; (A7)

by which (2.19a) gives

_~u ¼ E
j�ðr � r�Þ

þ Oð1Þ; (A8)

and (2.18b) gives

r � r� ¼ Eðsh � sÞ þ Oððsh � sÞ2Þ; (A9)

whence

_~uðsÞ ¼ 1
j�ðsh � sÞ þ Oð1Þ: (A10)

For Uðs0Þ=UðsÞ, we have

Uðs0Þ
UðsÞ ¼ exp jþð~uðs0Þ � ~uðsÞÞ½ �

¼ exp �jþ

ðs

s0

ds0 _~uðs0Þ
" #

¼ exp � jþ
j�

ðs

s0

ds0
1

sh � s0
þ Oð1Þ

� �" #

¼ exp
jþ
j�

ln
sh � s
sh � s0

� �
þOð1Þ

� �

¼ sh � s
sh � s0

� �jþ=j�
� eOð1Þ

¼ Oððsh � sÞjþ=j�Þ: (A11)

Collecting, we have

B1ðs; s0;xÞ ¼
cos ðxDsÞ
2pðsh� sÞ

jþ
j�
þOðsh � sÞ þOððsh� sÞjþ=j�Þ

� �
:

(A12)

4. Second boundary term in (5.2)

Let B2ðs; s0;xÞ denote the second term on the right-hand side
of (5.2). From (A4), we have

B2ðs; s0;xÞ ¼
_~uðsÞ F0ðrðsÞÞ � 2jþ

	 

8p

þOð1Þ: (A13)

Using (A7), (A9), and (A10), we obtain

B2ðs; s0;xÞ ¼ �
1

4pðsh � sÞ
jþ
j�
þ 1

� �
þOð1Þ: (A14)
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5. Integral term in (5.2)

Let Jðs; s0;xÞ denote the integral term on the right-hand side
of (5.2). As the contribution from the term ðs� s0Þ�1 sin ðxðs
�s0ÞÞ in the integrand is Oð1Þ, using (A3) gives

Jðx; s; s0Þ ¼
jþx
2p

_~uðsÞIðx; s; s0Þ þ Oð1Þ; (A15)

where

Iðx; s; s0Þ¼:
ðs

s0

ds0
sin ðxðs� s0ÞÞ
1� Uðs0Þ=UðsÞ : (A16)

We shall show that the leading contribution in Iðx; s; s0Þ is Oð1Þ
and evaluate this contribution.

Changing variables in (A16) by s0 ¼ s� s gives

Iðx; s; s0Þ ¼ I1ðx; s; s0Þ þ I2ðx; s; s0Þ; (A17a)

I1ðx; s; s0Þ ¼
ðsh�s0

0
ds

sin ðxsÞ
1� Uðs� sÞ=UðsÞ ; (A17b)

I2ðx; s; s0Þ ¼ �
ðsh�s0

s�s0

ds
sin ðxsÞ

1� Uðs� sÞ=UðsÞ ; (A17c)

where in I1 (A17b), the upper limit of integration has been extended
from s� s0 to sh � s0, and I2 (A17c) has been introduced to com-
pensate for this. The extension is well defined provided sh � s is so
small that the detector’s trajectory may be extended from proper
time s0 backward to proper time s0 � ðsh � sÞ, still in region II,
which we may assume without loss of generality.

For I2 (A17c), we have

jI2j �
ðsh�s0

s�s0

ds
1� Uðs� sÞ=UðsÞ

�
ðsh�s0

s�s0

ds
1� Uðs0Þ=UðsÞ

¼ sh � s
1� Uðs0Þ=UðsÞ

¼ Oðsh � sÞ; (A18)

using that U is a positive and increasing function of its argument.
For I1 (A17b), we shall show below in Subsection 7 of

Appendix A that

I1ðx; s; s0Þ ¼
1� cos ðxðsh � s0ÞÞ

x
þ oð1Þ

¼ 1� cos ðxDsÞ
x

þ oð1Þ; (A19)

where in the second equality sh has been replaced by s at the
expense of an Oðsh � sÞ error, covered by the o(1) term.

Collecting, and using (A10), we have

Jðx; s; s0Þ ¼
ðjþ=j�Þ
2pðsh � sÞ 1� cos ðxDsÞ þ oð1Þ½ �: (A20)

6. Combining

Adding (A12), (A14), and (A20) gives

1
4pðsh � sÞ

jþ
j�
� 1þ oð1Þ

� �
; (A21)

which is the result shown in (5.3a) and (5.4a).

7. Interlude: Estimate for I1 (A17b)

We now establish the estimate (A19) for I1 (A17b).
Recall that U is a positive and strictly increasing function of

the proper time along the geodesic, with the asymptotics (A11) near
the Cauchy horizon. It follows that we can write

I1ðx; s; s0Þ ¼ Kðsh � s; sh � s0Þ; (A22)

where

Kð�;m;xÞ¼:
ðm
0
ds

sin ðxsÞ

1�Hð�þ sÞ
Hð�Þ

; (A23)

such that HðxÞ ¼ x�A ~HðxÞ, A ¼ jþ=j� is a positive constant, ~H is
a smooth positive function on ½0;R� for some R> 0, H0 < 0 on
ð0;R�, 0 < m < R and 0 < � < R�m. We consider m and x as
parameters and wish to find lim�!0 Kð�;m;xÞ.

For fixed positive s, the ratio Hð�þ sÞ=Hð�Þ in (A23) tends to
zero as �! 0. If the limit �! 0 can be taken under the integral, we
hence have

lim
�!0

Kð�;m;xÞ ¼
ðm
0
ds sin ðxsÞ

¼ 1� cos ðxmÞ
x

; (A24)

from which the first equality in (A19) follows. We shall show that tak-
ing the limit under the integral is justified by dominated convergence.

From HðxÞ ¼ x�A ~HðxÞ and the properties of ~H , it follows that
there exists �1 2 ð0;R=2Þ such that @2x ln ðHðxÞÞ > 0 for 0 < x
< 2�1. This implies that we have

@

@�
1�Hð�þ sÞ

Hð�Þ

� �
¼ Hð�þ sÞ

Hð�Þ
H0ð�Þ
Hð�Þ �

H0ð�þ sÞ
Hð�þ sÞ

� �
< 0; (A25)

for s 2 ð0; �1� and � 2 ð0; �1Þ.
Taking from now on � 2 ð0; �1Þ, we split (A23) as

Kð�;m;xÞ ¼ K<ð�;m;xÞ þ K>ð�;m;xÞ; (A26a)

K<ð�;m;xÞ ¼
ð�1
0
ds

sin ðxsÞ

1� Hð�þ sÞ
Hð�Þ

; (A26b)

K>ð�;m;xÞ ¼
ðm
�1

ds
sin ðxsÞ

1� Hð�þ sÞ
Hð�Þ

: (A26c)

By (A25), the integrand in (A26b) is bounded in absolute value by

sin ðxsÞ

1�Hð�þ sÞ
Hð�Þ

�������
�������
� j sin ðxsÞj

1� Hð�1 þ sÞ
Hð�1Þ

; (A27)

which is independent of � and integrable over s 2 ð0; �1Þ. The inte-
grand in (A26c) is bounded in absolute value by

sin ðxsÞ

1�Hð�þ sÞ
Hð�Þ

�������
�������
� 1

1� Hð�þ �1Þ
Hð�Þ

� 1

1�Hð2�1Þ
Hð�1Þ

; (A28)
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where the first equality comes because H is decreasing and the last
inequality comes by (A25). The last expression in (A28) is indepen-
dent of � and integrable over s 2 ð�1;mÞ. This completes the domi-
nated convergence argument.

8. Special case jþ ¼ j�
We now consider the special case jþ ¼ j�, in which the lead-

ing term in (A21) vanishes. We show that the transition rate
remains bounded as s! sh.

The contributions from the parts involving _~v in (A3) and (A4)
remain bounded as s! sh. The O-terms in B1ðs; s0;xÞ (A12) now
combine to Oðsh � sÞ. What needs a better estimate is I1ðx; s; s0Þ,
given by (A22) and (A23), now with A¼ 1.

In (A23), setting A¼ 1 and isolating the leading behavior gives

Kð�;m;xÞ ¼ K0ðm;xÞ þ �K1ð�;m;xÞ; (A29a)

K0ðm;xÞ ¼
ðm
0
ds sin ðxsÞ ¼ 1� cos ðxmÞ

x
; (A29b)

K1ð�;m;xÞ ¼
1

~Hð�Þ

ðm
0
ds

sin ðxsÞ
s

� s
gð�þ sÞ � gð�Þ ; (A29c)

where gðxÞ¼: x=~HðxÞ for x> 0 and gð0Þ¼: 0. As g is smooth and
satisfies g 0ðxÞ > 0 for x 2 ½0;R�, there exists a positive constant k1,
independent of �, such that k1s � gð�þ sÞ � gð�Þ for s 2 ½0;m� and
sufficiently small �. Dominated convergence hence implies

lim
�!0

K1ð�;m;xÞ ¼
1

~Hð0Þ

ðm
0
ds

sin ðxsÞ
s

~HðsÞ; (A30)

which is finite.
Combining, it follows that _F ðx; s; s0Þ remains bounded as

s! s0.

APPENDIX B: _F NEAR HR
2

In this appendix, we perform the estimates that lead from (5.2)
to the results stated in Sec. V for the asymptotics of _F near HR

�.
The geodesics in question are those with E< 0 in (2.18) and

(2.19).
As the HHI state is invariant under right–left reflection,

ðU ;VÞ 7! ðV ;UÞ, the result for the HHI state is the same whether
the Cauchy horizon branch is HP

� or HF
�. This gives the result

shown in (5.3a).
For the Unruh state, the contributions from the parts in (A3b)

and (A4b) that involve _~u are smooth as s! s0. We need to con-
sider the contributions from the parts that involve _~v .

1. First boundary term in (5.2)

Consider the first term on the right-hand side of (5.2), given
by B1ðs; s0;xÞ (A5). ForWðs; s0Þ, (A3b) with s0 ¼ s0 gives

@sWUðs; s0Þ ¼ �
1
4p
�

_~vðsÞ
~vðsÞ � ~vðs0Þ

þ Oð1Þ: (B1)

Proceeding as with (A10) gives

_~vðsÞ ¼ 1
j�ðsh � sÞ þ Oð1Þ: (B2)

Hence

B1ðs; s0;xÞ ¼
cos ðxDsÞ

2pðsh � sÞð�ln ðsh � sÞ þ Oð1ÞÞ : (B3)

2. Second boundary term in (5.2)

For the second term on the right-hand side of (5.2),
B2ðs; s0;xÞ, (A4b) gives

B2ðs; s0;xÞ ¼
_~vðsÞF0ðrðsÞÞ

16p
þOð1Þ: (B4)

Proceeding as with (A14) gives

B2ðs; s0;xÞ ¼ �
1

4pðsh � sÞ þ Oð1Þ: (B5)

3. Integral term in (5.2)

Let Jðs; s0;xÞ again denote the integral term on the right-hand
side of (5.2). Proceeding as with (A15), using (A3b) gives

Jðx; s; s0Þ ¼
x _~vðsÞ
2p~vðsÞ

~Iðx; s; s0Þ þ Oð1Þ; (B6)

where

~Iðx; s; s0Þ¼
:
ðs

s0

ds0
sin ðxðs� s0ÞÞ
1� ~vðs0Þ=~vðsÞ ; (B7)

and we are assuming s to be so close to sh that ~vðsÞ is positive.
Proceeding as in (A17), we have

~Iðx; s; s0Þ ¼ ~I 1ðx; s; s0Þ þ ~I 2ðx; s; s0Þ; (B8a)

~I 1ðx; s; s0Þ ¼
ðsh�s0

0
ds

sin ðxsÞ
1� ~vðs� sÞ=~vðsÞ ; (B8b)

~I 2ðx; s; s0Þ ¼ �
ðsh�s0

s�s0

ds
sin ðxsÞ

1� ~vðs� sÞ=~vðsÞ : (B8c)

For ~I 2 (B8c), proceeding as in (A18) shows that
~I 2 ¼ Oðsh � sÞ.

For ~I 1 (B8b), we may proceed as in Subsection 7 of Appendix A,
using now the asymptotic behavior of ~v obtained from (B2) to
show that the limit s! sh can be taken under the integral, with
the result

~I 1ðx; s; s0Þ ¼
1� cos ðxðsh � s0ÞÞ

x
þ oð1Þ

¼ 1� cos ðxDsÞ
x

þ oð1Þ: (B9)

Hence

Jðx; s; s0Þ ¼
1� cos ðxDsÞ þ oð1Þ

2pðsh � sÞð�ln ðsh � sÞ þ Oð1ÞÞ : (B10)

4. Combining

Adding (B3), (B5), and (B10) gives

AVS Quantum Science ARTICLE scitation.org/journal/aqs

AVS Quantum Sci. 4, 013201 (2022); doi: 10.1116/5.0073373 4, 013201-12

VC Author(s) 2022

https://scitation.org/journal/aqs


� 1
4pðsh � sÞ þ

1þ oð1Þ
2pðsh � sÞð�ln ðsh � sÞÞ ; (B11)

which gives the result shown in (5.4b).

APPENDIX C: _F NEAR THE CAUCHY HORIZON
BIFURCATION POINT

In this appendix, we perform the estimates that lead from (5.2)
to the results stated in Sec. V for the asymptotics of _F near the
Cauchy horizon bifurcation point.

The geodesics are those with E¼ 0 in (2.18) and (2.19).
Proceeding as in Appendix A, we find that (A10) holds but the error
term can be improved to

_~uðsÞ ¼ 1þ pððsh � sÞ2Þ
	 


j�ðsh � sÞ ; (C1)

where p is a smooth function of a non-negative argument such that
pðxÞ ¼ OðxÞ, and similarly for _~v . It follows that the estimate (A11)
for Uðs0Þ=UðsÞ improves to

Uðs0Þ
UðsÞ ¼

sh � s
sh � s0

� �jþ=j�
� qððsh � sÞ2Þ; (C2)

where q is a smooth positive function of a non-negative argument.
We now need to consider in (A3) and (A4) both the terms that

involve _~u and the terms that involve _~v . For the terms that involve
_~u , all the estimates given in Appendix A still hold. For the terms
that involve _~v , all the estimates given in Appendix B still hold for
the Unruh state, while for the HHI state the outcome is the same as
with the terms involving _~u , by the left–right symmetry of the state.
Combining these observations leads to (5.3b) and (5.4c).

In the Unruh state, the case jþ=j� ¼ 2 is exceptional because
the leading term in (5.4c) vanishes due to cancelations. To find the
leading term in this case, we need a better estimate for Kð�;m;xÞ
(A23) with A¼ 2. It is here that we need the improved estimate (C2).

In (A23), setting A¼ 2 and isolating the leading behavior gives
now

Kð�;m;xÞ ¼ K0ðm;xÞ þ �K1ð�;m;xÞ; (C3a)

K0ðm;xÞ ¼
ðm
0
ds sin ðxsÞ ¼ 1� cos ðxmÞ

x
; (C3b)

K1ð�;m;xÞ ¼
1

~Hð�Þ

ðm
0
ds

sin ðxsÞ
s

�s

~g ðð�þ sÞ2Þ � ~g ð�2Þ
; (C3c)

where ~gðxÞ¼: x=~H
ffiffiffi
x
p� �

for x> 0 and ~g ð0Þ¼: 0. By the improved
estimate (C2), ~g is smooth and satisfies ~g 0ðxÞ > 0 for x 2 ½0;

ffiffiffi
R
p
�.

There thus exists a positive constant k1, independent of �, such that
2k1�s � k1ðð�þ sÞ2 � �2Þ � ~gðð�þ sÞ2Þ � ~g ð�2Þ for s 2 ½0;m� and
sufficiently small �. This provides a dominated convergence bound
that justifies taking the �! 0 limit of K1ð�;m;xÞ (C3c) under the
integral, and the limit is zero. Hence Kð�;m;xÞ ¼ K0ðm;xÞ
þ�oð1Þ as �! 0. This and (B11) give (5.5).
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