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Switzerland
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Schwinger showed 1 that electrically-charged particles can be produced in a strong electric

field by quantum tunnelling through the Coulomb barrier. By electromagnetic duality, if

magnetic monopoles (MMs) exist, they would be produced by the same mechanism in a suf-

ficiently strong magnetic field 2. Unique advantages of the Schwinger mechanism are that

its rate can be calculated using semiclassical techniques without relying on perturbation the-

ory, and the finite MM size and strong MM-photon coupling are expected to enhance their

production. Pb-Pb heavy-ion collisions at the LHC produce the strongest known magnetic

fields in the current Universe 3, and this article presents the first search for MM production

by the Schwinger mechanism. It was conducted by the MoEDAL experiment during the

5.02 TeV/nucleon heavy-ion run at the LHC in November 2018, during which the MoEDAL

trapping detectors (MMTs) were exposed to 0.235 nb−1 of Pb-Pb collisions. The MMTs were

scanned for the presence of magnetic charge using a SQUID magnetometer. MMs with Dirac

charges 1gD ≤ g ≤ 3gD and masses up to 75 GeV/c2 were excluded by the analysis. This pro-

vides the first lower mass limit for finite-size MMs from a collider search and significantly

extends previous mass bounds.

Magnetic monopoles (MMs) are hypothetical fundamental particles that carry isolated mag-

netic charge. Dirac formulated the first field theory of a point-like magnetic charge interacting with

quantum charged matter and showed 4 that the existence of a MM would necessitate the quanti-

zation of electric charge. MMs also appear as solutions of Grand Unified Theories (GUT) 5, 6. In

contrast to the Dirac monopole, GUT MMs are composites of the fundamental non-Abelian gauge

and Higgs fields that characterise the theory. Their expected masses are close to the GUT scale
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(1016 GeV/c2) and thus cannot be produced in a realistic collider experiment. Moreover, GUT

monopoles are expected to have been diluted by cosmic inflation, and hence it is unlikely that

they will be observed even in cosmic ray searches. String theories also predict MMs, which may

have masses significantly lower than the GUT scale, depending on the string scale. In recent years

composite finite-energy MM solutions of field theories beyond the Standard Model were also dis-

covered in various contexts, possibly with masses as low as a few TeV 7. This raises the prospects

for collider production of such objects, thus reviving interest in experimental searches for MMs.

All searches for the direct production of MMs at particle accelerators to date have focused

on collisions of elementary particles such as electrons, or quarks in the case of hadron collisions,

assuming production via fermion-antifermion annihilation (the Drell-Yan mechanism) or photon-

photon collisions. However, the strong coupling of the MM 4 makes it difficult to calculate the

production cross section. Indeed, it has been argued that the production of composite monopoles

from elementary particle collisions is exponentially suppressed by e−4/α, where α is the electro-

magnetic fine structure constant at the energy scale set by the MM mass 8, 9. However, the argu-

ments for exponential suppression are based on perturbative considerations, and it is not known

what a purely nonperturbative treatment, which is still lacking, could imply. Collider experiments

have nevertheless focused on interpreting searches in the context of point-like MMs 10, whereas

most MMs predicted by models considered in the literature are composite objects, including the

light MMs potentially accessible at the LHC 7.

A way to avoid these shortcomings is provided by searching for MM pair production via
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the Schwinger mechanism. In 1951, Schwinger 1 showed that electrically-charged particles could

be produced in a strong electric field by tunnelling through the Coulomb barrier. If MMs exist,

electromagnetic duality, supported by explicit calculations 2, 11, implies that they would also be

produced by the same mechanism in a sufficiently strong magnetic field. Unprecedented mag-

netic fields are present, fleetingly, in ultraperipheral heavy-ion collisions 3. In this case, the MM

production cross section can be computed without relying on the perturbation theory (i.e., nonper-

turbatively) using semiclassical techniques, including the effects of strong MM-photon coupling.

Due to the coherence of the magnetic field, the potential exponential suppression by e−4/α is absent

for MM production through the Schwinger mechanism. Additionally, in this approach, the finite

size and strong coupling of MMs enhances their production 11, 12.

Although Schwinger production of MMs in a constant, or slowly-varying, magnetic field is

well understood theoretically, and the production probability has been calculated accurately from

first principles 2, 11, the strong space and time dependence of the electromagnetic fields of LHC

heavy-ion collisions present additional theoretical challenges. Progress on this front is made possi-

ble due to the large charges of heavy ions, as a consequence of which the resulting electromagnetic

field can be approximated as a coherent classical field sourced by the ions’ charge distribution.

The strongest fields are generated in ultraperipheral collisions, for which the impact parameter is

approximately twice the nuclear radius. In the 2018 heavy-ion run at the LHC, the peak magnetic

field strength was 13 B ≈ 1016 T, with an inverse decay time ω ≈ 1026 s−1. This field strength

is about seven orders of magnitude greater than the critical field strength of quantum electrody-

namics, and more than four orders of magnitude higher than the strongest known astrophysical
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magnetic fields, which are present on the surfaces of magnetars 14.

We have considered two approximate approaches to the calculation of the overall MM pro-

duction cross section: the free-particle approximation (FPA) given by equation (2) in the Methods

section and the locally-constant field approximation (LCFA) given by equation (1). In the FPA,

the spacetime dependence of the electromagnetic field of the heavy ions is treated exactly, but

MM self-interactions are neglected. Conversely, in the LCFA, the spacetime dependence of the

electromagnetic field is neglected but MM self-interactions are treated exactly. In this way the

two approximations are complementary, with uncorrelated uncertainties. In addition, for the FPA,

the leading effects of MM self-interactions have been shown to enhance the cross section, and for

the LCFA the leading effects of spacetime dependence have also been shown to enhance the cross

section 13, 15. Thus, while neither approximation provides a complete calculation of the produc-

tion cross section, both are expected to yield conservative lower limits. We conservatively use the

smaller cross section in our final MM mass bounds.

In order to study experimentally the production of MMs created via the Schwinger mecha-

nism in Pb-Pb heavy-ion collisions at the LHC, one also needs to be able to calculate the kinematics

of the produced MMs, thus allowing the efficiency of their detection to be assessed. At LHC en-

ergies, the expected momentum distribution of MMs is primarily due to the time dependence of

the electromagnetic field of the ultrarelativistic heavy ions. The momentum distribution predicted

by the LCFA is narrower than what is allowed by the time-energy uncertainty principle, whereas

the FPA prediction saturates it 15. Thus, the LCFA is a less reliable approximation for calculating
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the kinematics of Schwinger-produced MMs compared to the FPA, so only the latter is used in this

work. The expression for this is given in equation (3) in the Methods section.

The Monopole and Exotics Detector at the LHC (MoEDAL) is optimized for the detection

of MMs and other highly-ionizing particles. MoEDAL has reported one of the strongest limits on

point-like MM production in proton-proton collisions 16, and has set more recently first limits on

the production of dyons (particles with both magnetic and electric charges) in a collider experi-

ment 17. Deployed in the LHCb VELO cavern around intersection point IP8, MoEDAL comprises

two independent, passive detectors – the Magnetic Monopole Trappers (MMTs) and Nuclear Track

detectors (NTDs). The MMTs consist of 800 kg of aluminium blocks deployed in the forward and

lateral regions around IP8. Because of its large anomalous magnetic moment, it is estimated that a

27
13Al nucleus (100% natural abundance) would bind a magnetically-charged particle with an energy

of 0.5–2.5 MeV 18–20. After exposure, the MMT blocks are scanned for trapped magnetic charges

with a SQUID magnetometer at the ETH Zurich Laboratory for Natural Magnetism. Figure 1

shows a schematic diagram of this search.

The mean expected rate of trapped MMs, Rexp, is defined as the mean number of MMs ex-

pected to be trapped during the Pb-Pb collision run. It is determined using a Monte Carlo (MC)

simulation that is described further in the Methods section. For each MM mass and magnetic

charge considered, the initial momenta are sampled from the Schwinger FPA kinematic distribu-

tion. The MMs are then propagated through the realistic geometry of the LHCb and MoEDAL

detectors using the GEANT4 toolkit 21. The MMT trapping efficiency, ε, is defined as the ratio of
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(Lint = 0.235 nb–1)

5.02 TeV/nucleon 
Pb–Pb Collisions

M
Monopole 
trapping

(a)

(d)(c)

(f)(e)

(b)

Superconducting coil

Figure 1: Schematic diagram of the search. (a) The MoEDAL experiment is located at the In-

teraction Point 8 of the LHC. (b) It has an array of MMT detectors around the Interaction Point.

(c) Peripheral Pb-Pb heavy-ion collisions produce strong magnetic fields. (d) These may produce

magnetic monopole-antimonopole pairs via tunneling through the potential barrier (the Schwinger

mechanism). (e) After production a magnetic monopole may be trapped in an MMT detector. (f)

Samples from the MMTs are passed through a superconducting coil, and the magnetic charge of a

trapped magnetic monopole will induce a signal in a SQUID detector.
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the number of MMs trapped by MMTs to the total number of generated MMs. The mean expected

rate is calculated for a given mass and magnetic charge as a product of the trapping efficiency, the

luminosity, and the production cross section.

The systematic uncertainty in the expected rate of trapped MMs due to the finite statistics of

the MC samples is < 2% for magnetic charge of 1 gD, increasing to 2-7% for 2gD and reaching

20% for 3gD. The systematics in the calculation of energy losses by GEANT4 are between 1-7

% 22, and the uncertainty in the luminosity is better than 5%. The dominant systematic uncertainty

arises from the efficiency calculation, and is mainly due to the uncertainty in the material budget,

which is determined by inspection and direct measurement. To estimate the related uncertainty,

two material geometry models – the minimal and maximal geometry variants – are utilized as

conservative limiting cases. For magnetic charges larger than 3gD all simulated MMs range out

in the default geometry before reaching the MMTs. A more detailed discussion of the uncertainty

calculation can be found in the Methods section.

Results

All the MMT volumes exposed to 0.235 nb−1 of 5.02 TeV per nucleon Pb-Pb collisions obtained

in November 2018 1 were scanned using the DC-SQUID magnetometer for the presence of trapped

magnetic charges. No statistically significant signal was observed. The existence of a MM with

| g | ≥ 0.5gD in the trapping volume was excluded at more than 3σ.

1The much smaller (less than 10 µb−1) Pb-Pb run in 2016 was not included in the analysis, in order to ensure

uniform beam conditions.
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Comparing with the calculated production cross section, we exclude MMs with masses up to

75 GeV/c2 to 70 GeV/c2 for magnetic charges from 1gD to 3gD, respectively, as shown in detail in

Table 1. The statistical significance of the limits take into account the uncertainty ofRexp due to the

systematics (see Tables 2– 6 in the Methods section) and Poisson statistics. The expected numbers

Table 1: 95% C.L. mass limits (GeV/c2) on MM pair production in LHC Pb-Pb collisions

Cross section approximation Magnetic Charge (gD)

1 2 3

FPA 90 70 70

LCFA 75 210 388

Conservative limit 75 70 70

of events decrease rapidly with increasing MM mass, so the limits are relatively insensitive to the

systematic uncertainties. Details of the measurement, calibration and statistical procedures are

provided in the Methods section. We note that the FPA mass bounds for |g| ≥ 2gD are lower than

for 1 gD, because the increase in the cross section is offset by the rapid decrease in efficiency for

higher magnetic charges. This is not the case for the LCFA, where the cross section grows for

higher magnetic charges faster than the efficiency drops.

Figure 2 shows the exclusion regions in the magnetic charge vs. mass plane for the FPA and

LCFA approximations. Our results exclude a significantly larger region of the parameter space than

previous limits from alternative production channels, including production in heavy-ion collisions

at the CERN SPS, interpreted in Ref. 23 in terms of the Schwinger mechanism. Figure 2 reports
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also limits from indirect searches of MMs produced close to the surface of neutron stars, as well

as from cosmological reheating and Big-Bang Nucleosynthesis 23.

1 2 3
Magnetic charge (gD)

100

101

102

103

104

M
as

s (
Ge

V/
c2 )

s  = 5.02 TeV
LIP8 = 0.235 nb 1

Reheating/BBN
Neutron Stars
Pb-Pb (SPS)
This work (FPA)
This work (LCFA) 

Figure 2: The 95% C.L. exclusion regions obtained using the FPA (blue) and LCFA (red) calcu-

lations of MM production via the Schwinger mechanism for 0.235 nb−1 of 5.02 TeV per nucleon

Pb-Pb collisions, with the conservative exclusion region shaded violet. Limits resulting from alter-

native production channels 23 are also shown for comparison.

The main result of this work (Figure 2) takes advantage of the recent progress in the calcu-

lation of the overall production rate of MMs in strong magnetic fields, which allows one to place

limits on MM masses. An alternative way to present the results is to interpret the zero observed rate

of MMs as a first experimental constraint on the cross section for the Schwinger mechanism for

MM production, assuming the FPA production kinematics. This approach is complementary and

free of potential theoretical prejudice on the overall production rate, relying only on the observed
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rate, measured luminosity, and MM trapping efficiency calculated under the FPA assumption. Fig-

ure 3 shows the 95% exclusion regions on the cross section for magnetic charges 1, 2, and 3 gD.
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Figure 3: The 95% C.L. exclusion regions on the cross section for MM production via the

Schwinger mechanism for 0.235 nb−1 of 5.02 TeV per nucleon Pb-Pb collisions, as functions

of the MM mass for magnetic charges 1gD (blue), 2gD (red), and 3gD (green).

Conclusions

The MoEDAL detector took 0.235 nb−1 of data in the 5.02 TeV per nucleon Pb-Pb heavy-ion run

that took place in November 2018, the last year of LHC’s Run-2. The MMT detectors exposed

during this run were scanned for the presence of trapped magnetic charge using the SQUID mag-

netometer. No signal candidates were observed. This allowed the exclusion of production via the
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Schwinger mechanism of MMs with Dirac charges 1gD ≤ g ≤ 3gD and masses up to 75 GeV/c2

at the 95% confidence level. This is the first limit from a collider experiment to be based on a

nonperturbative calculation of the MM production cross section. In addition, this is the first di-

rect search that is sensitive to MMs that are not point-like. The current study constitutes therefore

the first search in which finite-size MMs are potentially detectable, not subject to the exponential

suppression of their production cross section expected in Drell-Yan or photon-fusion production.

In the previous literature, exclusion mass limits spanning the 1725 – 2370 GeV/c2 range

were obtained assuming Drell-Yan or photon-fusion production for various spin assumptions and

magnetic charges up to 5gD 17, 24, which constrain light-monopole solutions of several theoretical

models. The exclusion mass limits obtained here are below the TeV range because the production

cross section is suppressed by the exponential of the MM mass. Nonetheless, the current search

is pioneering due to its use of nonperturbatively calculated cross sections and is, to the best of

our knowledge, the first to have sensitivity to composite monopole production at a collider. In

order to ensure the soundness of our lower mass bounds, we have consistently made conservative

assumptions. There is significant scope for future work to improve the accuracy of theoretical

calculations, and for future experimental searches at higher energy and luminosity, so as to ex-

tend the mass reach. The exclusion limits from the current search may guide both theorists and

experimentalists in their quest towards understanding the nature of magnetic charge.
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Methods

Monte Carlo simulation of the MoEDAL experiment The MM simulation code is developed in

GAUSS 25, which is the LHCb simulation framework that uses GEANT4 as the simulation engine.

MoEDAL simulations use a dedicated GEANT4 class that describes production and propagation

of MMs 26. The MM ionization energy losses, geometry and material content of the MoEDAL

detector and its vicinity are modeled in the simulation. The MMTs are described in GEANT4 as

sensitive detectors and produce hits when MMs are trapped in them. These hits are recorded in

simulation and analyzed for calculating efficiency and the expected rate of MMs detection. A

custom-made momentum distribution of MMs derived from Schwinger kinematics is implemented

and propagated through the MoEDAL geometry.

Cross section calculation The electromagnetic fields are approximated as coherent, classical,

event-averaged fields sourced by the heavy ions 27, 28. In this approximation the fields are de-

termined by integrating the Liénard-Wiechert potentials over the charge distribution of the ions,

which is modelled as a Woods-Saxon distribution with radius RPb = 6.62 fm and surface thick-

ness aPb = 0.546 fm 29. We focus on ultraperipheral collisions, in which the fraction of colliding

nucleons is small 29, and so do not attempt to model the effect of nucleon collisions on the field.

Note that the inclusion of event-by-event fluctuations 30 can be expected to significantly enhance

the overall monopole yield, due to the exponential form of the cross sections, shown below. We

leave this effect as a promising avenue for future work.

In the near vicinity of the collision center, the magnetic field is the largest component of the
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electromagnetic field, and it points perpendicularly to both the beam axis and the impact parameter.

The electric field cancels at the collision centre but in the near vicinity it has a nonzero component

parallel to the impact parameter: see Ref. 3 for a review.

Following Ref. 13, we calculate the electromagnetic fields on a lattice of points in the vicinity

of the collision centre, and perform a fit to the results. For lead-ion collisions at 5.02 TeV/nucleon,

we find the peak magnetic field strength is B = 7.6 ± 0.3 GeV2, from which the field decays

with inverse decay time ω = 73 ± 3 GeV, where we have used natural units, c = ~ = ε0 =

1. The uncertainty quoted on these values reflects the stability of the fit results with respect to

the underlying assumptions of the fit model. In particular, some model assumptions put more

weight on the agreement between the data and the theoretical computation in the region around the

collision origin, while others fit the asymptotic tails better. Since we do not know which aspects of

the data are most important for MM pair production, we take the differences between the fits as a

measure of the uncertainty and assume a uniform distribution within this range. The magnitude of

the peak magnetic field is in good agreement with Ref. 30, in which a Glauber-Model Monte-Carlo

was used to model event-by-event fluctuations and nucleon collisions.

In Ref. 13, the monopole production cross section for fixed impact parameter bwas calculated

in the LCFA and FPA approximations,

1

2πb

dσLCFA

db
≈ [gB(b)]4

18π3M4ω2(b)Ω2(b)
exp

(
− πM2

gB(b)
+
g2

4

)
,

1

2πb

dσFPA
db

≈ [gB(b)]4

18π3M4ω2(b)Ω2(b)
exp

(
− 4M

ω(b)

)
,

where Ω2(b) ≈ 2/(bRPb) is the product of the slow inverse decay lengths of the field perpendicular
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to the beam axis. Within these approximations, these equations are accurate up to a multiplicative

O(1) factor. This uncertainty should have only a small effect on our final MM mass bounds due to

the strong (exponential) dependence of the cross sections on the MM mass.

The total cross section in the LCFA is strongly dominated by impact parameters in the vicin-

ity of b = bmax ≈ 2RPb, at which the magnetic field is maximal. As a consequence, integration

over the impact parameter can be carried out using Laplace’s method, yielding

σLCFA ≈
2(gB)9/2R4

Pb

9π2M5ω2
exp

(
−πM

2

gB
+
g2

4

)
, (1)

where all parameters are evaluated at b = bmax. For the monopole masses we have studied, the

range of impact parameters that contribute significantly to the total cross section deviates from

bmax by less than about 1%.

The total cross section in the FPA is also dominated by impact parameters in the vicinity of

bmax, though less strongly so. The integration over impact parameters yields

σFPA ≈
[ ω
M

+ ccentral

] 2(gB)4R4
Pb

9π2M4ω2
exp

(
−4M

ω

)
, (2)

where all parameters are evaluated at b = bmax. In this expression, the first term inside the square

brackets arises from the contribution due to ultraperipheral collisions, with b ≥ bmax, and the

second term ccentral > 0 arises from integration over the contribution due to more central collisions

with b < bmax. Ignoring the effect of nucleon collisions on the production process results in

ccentral ≈ 2/7. However, in our analysis we make the conservative choice ccentral = 0, thereby

avoiding altogether the complications of the conducting quark-gluon plasma and its effect on the

electromagnetic fields, which remain an important source of uncertainty in predictions of the chiral
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magnetic effect 31, 32.

Both the FPA and the LCFA are semiclassical approximations, yielding exponential forms for

the cross section. For sufficiently light monopoles, e.g., M . 20 GeV in the FPA, the magnitude

of the exponent is less than one, indicating the breakdown of the semi-classical approximation and

consequently unsuppressed MM production.

For the distribution of momentum p we use the following result, based on the FPA, for the

relative probability 15

dσFPA(p)

dp

/
dσFPA(0)

dp
= exp

[
− 4

ω

(√
M2 + |p|2 −M

)]
. (3)

Within the FPA, there is a residualO(1) uncertainty regarding the pz-dependence which is not fully

accounted for by this expression. This will result in an O(1) uncertainty in the final efficiency,

which is subdominant compared to the uncertainty in the total cross section.

Efficiency calculation The trapping efficiency depends on the kinematics predicted by the MM

model, the MM mass and magnetic charge, the material traversed by the MMs, and the correspond-

ing energy losses. The efficiency is negligible for MMs with very low momentum, as slow-moving

MMs would lose their energy through ionization before reaching the detectors. The efficiency

increases almost linearly with increase in momentum until the MMs become energetic enough to

pass through the MMTs without getting trapped. The efficiency then decreases with momentum

above a threshold value that depends on the MM mass and magnetic charge. The Bethe-Bloch

equation modified for MMs with magnetic charge g = n · gD (n = 1, 2, 3...) that describes the
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ionization energy losses is given by:

dE

dx
=

4πe2g2

mec2
ne

[
1

2
ln

2mec
2β2γ2Tmax
2I2m

− K(|g|)
2
−B(|g|)− δ

2

]
,

where ne is the number of electrons per unit volume in the medium, Im is the mean ionization

potential for MMs, and K(|g|) = (0.406; 0.346 if g > 1gD), B(|g|) = (0.248, 0.672, 1.022, 1.243,

1.464) are correction terms for g = 1gD, ..., 5gD, respectively 33. Therefore, MMs with higher

magnetic charges (|g| > 1gD) are expected to have greater ionization losses and, as a consequence,

tend to range out before reaching the MMTs, predominantly stopping in the upstream material.

Also, keeping other parameters unchanged, MMs with lower masses have a higher velocity, leading

to more energy losses, and hence failure to reach the MMTs.

Uncertainties and statistical methods The mean Poisson rate, Rexp, gives the expected number

of MMs trapped in the MMTs during the MoEDAL Pb-Pb data-taking run. It is calculated as

the product of the MM cross section, the luminosity (exposure), and the trapping efficiency. We

exclude MM masses with non-zero expected events, based on the nonobservation of MM after

scanning the MMTs. The confidence level of exclusion (CLexc) is determined from the Poisson

statistics on Rexp, MC statistical errors, and systematic uncertainties on the detector geometry,

cross section (due to B and ω uncertainties), energy losses, and magnetometer response (false

negatives, discussed in the following section). The MC statistical uncertainties are confined to less

than 2 (7) percent for 1 (2) gD due to the large MC samples generated (∼5·107–1·1010, depending

on the MM mass and magnetic charge) but increase to ∼20% for 3gD due to the low trapping

efficiency (≈2.3·10−9). The false negative probability of the magnetometer response is 0.2% 16.

The dE/dx calculation results in a relative uncertainty in the range 1-7% 22. The uncertainty of B
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and ω is specified in the earlier Section. The remaining, dominant source of uncertainty is due to

the material budget. The error in the measurements of component materials present in the VELO

cavern is estimated by minimal and maximal geometry models, which encompass the uncertainties.

Generally, the VELO vacuum vessel is modelled with high precision, while the cables and pipes

present downstream of the VELO, as well as the inner regions of the vacuum pump and vacuum

manifold are not as well known. We model the cables and small pipes as a set of vertical stainless-

steel rods, which represent 2.3% of the radiation length on average. We vary the rods’ radius in the

simulation from 0.01 cm (minimal geometry) to 0.5 cm (maximum geometry). We also add a layer

of stainless steel to the inner region of the vacuum tank. The default geometry contains 2.64 mm

of stainless steel, representing 15% of added radiation length. The minimal geometry contains no

extra stainless steel. The maximal geometry, included as a conservative case, consists of 5.28 mm

of extra stainless steel, i.e., 30% of a radiation length.

Figure 4 shows an example of the dependence of the mean rate on the MM mass. The rate is

calculated for the FPA cross section, which gives the conservative limits used in the Results section.

Tables 2 – 6 show the efficiency and expected rate of trapped MMs produced by the Schwinger

mechanism for different values of the MM mass and magnetic charge. Cross section values are also

shown, with a spread corresponding to B and ω uncertainties. The spread in efficiency is between

the maximal and minimal geometry models. We note that, while the resulting spread of Rexp is

large, its impact on the mass limits is strongly suppressed due to the exponential dependence of

the cross section on the MM mass.

The efficiency and cross section uncertainties lead to a systematic spread in Rexp. The prob-
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ability to observe no MMs in the scanned MMTs given the range of Rexp, P (0|(Rmin
exp , R

max
exp )), is

calculated using the toy MC approach. A uniform probability distribution for the range of possible

efficiency values is assumed, reflecting no preference between the minimal and maximal geometry

models. For g = 3gD, the range’s left boundary is the upper limit on the efficiency for the maxi-

mal geometry. Likewise, a uniform distribution is assumed for the B and ω variables, which are

expected to be be 100% positively correlated. A toy value of the expected rate Ri
exp is calculated

using efficiency and cross section values based on random draws from their distributions. Then, a

toy observed rate Ri is randomly drawn from a Poisson distribution with µ = Ri
exp. The process is

repeated 105 times. The probability P (0|(Rmin
exp , R

max
exp )) is then defined as the fraction of Ri = 0

entries in the toyRi distribution. Finally, the CLexc is calculated as (1−P (0|(Rmin
exp , R

max
exp )))·100%.

In order to test the robustness of this approach against the choice of the distribution of the

efficiency, ε, additional choices are considered. In the first test, a Gaussian distribution with µ =

(εmax + εmin)/2 and σ = (µ − εmin)/2, truncated at εmin and εmax, is assumed. In the second

test, a skewed Gaussian distribution centered at ε corresponding to the default geometry, with

σ = (µ − εmin)/2 and skewness parameter set to 1 or 2, is assumed. The choice of a Gaussian

distribution reflects our expectation that the default geometry is the most likely one. The direction

of the skewness is dictated by the fact that the efficiency changes more rapidly when the material

is removed from the geometry, compared to when it is added. In all considered cases the resulting

CLexc agrees with or is slightly stronger than that for the uniform distribution of ε. Additionally,

for g = 3gD, the calculation was repeated using uniform distribution with the maximal geometry’s

efficiency assumed to be two orders of magnitude lower than the limit obtained with the finite MC

20



statistics (Tables 4 – 6). The mass limit decreases by ∼5 GeV/c2.

Magnetometer measurements The MoEDAL trapping detector array comprising 2400 samples

was exposed to 5.02 TeV/nucleon LHC Pb-Pb collisions during the 2018 run. These samples

were scanned for the presence of magnetic charges with a DC SQUID long-core magnetometer.

Each sample was scanned through the superconducting coil at least twice, and the magnetometer’s

response was recorded before, during, and after each passage. The current induced in the supercon-

ducting coil is directly proportional to the difference in magnetic flux in the direction of transport.

The magnetometer feedback, after multiplication by a calibration constant C is converted into a

magnetic pole strength S (in units of gD) . Two independent methods, the solenoid method and

the convolution method were used to perform calibration of the instrument 34. A magnetic charge

present in the sample would induce a persistent current in the superconducting coil, proportional to

its pole strength. The difference between the measured induced currents before (I1) and after (I2)

passage of the sample, while simultaneously adjusting for corresponding contributions (I tray1 and

I tray2 ) of the empty conveyer tray, is defined as the persistent current. We calculate the magnetic

pole strength as,

S = C[(I2 − I1)− (I tray2 − I tray1 )]

For a dipole, the currents induced by the north and south pole in a sample cancel out. The cur-

rent expected from a Dirac MM was emulated using a long solenoid. A MM present in the sample

would record a persistent current significantly different from zero. After passing through the super-

conducting coil, a sample was considered a MM candidate whenever the measured pole strength

diverged from zero by more than 0.4 gD. A number of 87 out of 2400 samples were identified
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as candidates. These candidates were scanned four or five times each. A sample with an actual

magnetic charge would yield the same persistent current in repeated measurements. However,

after multiple measurements on samples, whenever the first one diverged from zero, subsequent

measurements were consistent with zero. The measured outliers could be attributed to spurious

flux jumps occurring as a result of ferromagnetic impurities in the sample, noise currents in the

superconducting loop, variations in external magnetic fields, and other known instrumental and

environmental factors 22. An estimated false negative probability of less than 0.2% is obtained for

magnetic charges of 1 gD. Thus, the presence of a MM with | g | ≥ 0.5 gD was excluded in all

samples at more than 99.75% C.L.
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Extended Data
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Figure 4: The mean expected rate of MMs with 1 gD and 2 gD magnetic charge in the MMT as a

function of the MM mass in the FPA model. The black line corresponds to the default geometry.

The grey region corresponds to the systematic error, which is dominated by the material budget.

The 95% C.L. mass exclusion region is shown in blue.
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Table 2: Expected rate of MM trapping in the MoEDAL MMTs - 1gD FPA model

M (GeV/c2) | g | (gD) σ (µb) ε ·10−4 Rexp (min-max)

50

1

(2.0+0.5
−0.4)·104 1.19+1.46

−0.64 1.97·102–1.50·103

75 (6.6+2.0
−1.7)·102 1.34 +1.61

−0.72 7.13–59.5

80 (2.0+0.7
−0.6)·102 1.41 +1.66

−0.76 2.23–19.5

85 (1.2+0.3
−0.3)·102 1.45 +1.68

−0.78 1.30–11.5

100 (4.0+1.5
−1.2)·101 1.52 +1.57

−0.83 0.45–4.16

105 (2.4+0.9
−0.8)·101 1.57 +1.68

−0.82 0.29–2.51

Table 3: Expected rate of MM trapping in the MoEDAL MMTs - 2gD FPA model

M (GeV/c2) | g | (gD) σ (µb) ε ·10−7 Rexp (min-max)

50

2

(3.1+0.8
−0.7)·105 3.3 +43

−3.0 1.9–4.1·102

65 (3.7+1.0
−0.9)·104 3.8 +48

−3.5 0.2–57

70 (2.0+0.6
−0.5)·104 3.8 +50

−3.5 0.1–32

75 (1.1+0.3
−0.3)·104 4.5 +51

−4.2 0.1–18

80 (5.8+1.8
−1.6)·103 4.3 +49

−4.0 0.0–9.5

85 (3.3+1.1
−0.9)·103 4.4 +50

−4.1 0.0–5.6
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Table 4: Expected rate of MMs trapping in the MoEDAL MMTs - 3gD FPA model

M (GeV/c2) | g | (gD) σ (µb) εmin−max Rexp (min-max)

50

3

(1.6+0.4
−0.4)·106 < 1·10−10–1.2·10−6 0.0–5.3·102

65 (1.9+0.6
−0.5)·105 < 1·10−10–1.3·10−6 0.0–75

70 (9.9+2.9
−2.5)·104 < 1·10−10–1.2·10−6 0.0–35

75 (5.3+1.6
−1.4)·104 < 1·10−10–1.2·10−6 0.0–19

80 (2.9+0.9
−0.8)·104 < 1·10−10–1.3·10−6 0.0–11

85 (1.7+0.6
−0.5)·104 < 1·10−10–1.3·10−6 0.0–6.6

Table 5: Expected rate of MM trapping in the MoEDAL MMTs - 4gD FPA model

M (GeV/c2) | g | (gD) σ (µb) εmin−max Rexp (max-min)

50

4

(5.0+1.2
−1.1)·106 < 2·10−9–3.5·10−7 0.0–5.1·102

65 (6.0+1.7
−1.5)·105 < 2·10−9–3.9·10−7 0.0–69

70 (3.1+0.9
−0.8)·105 < 2·10−9–3.4·10−7 0.0–32

85 (1.7+0.5
−0.4)·105 < 2·10−9–2.8·10−7 0.0–14

80 (9.3+2.9
−2.5)·104 < 2·10−9–3.6·10−7 0.0–10

85 (5.2+1.7
−1.5)·104 < 2·10−9–3.6·10−7 0.0–5.8
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Table 6: Expected rate of MM trapping in the MoEDAL MMTs - 5gD FPA model

M (GeV/c2) | g | (gD) σ (µb) εmin−max Rexp (max-min)

50

5

(1.2+0.3
−0.3)·107 < 2·10−9–1.0·10−7 0.0–3.7·102

60 (2.9+0.8
−0.7)·106 < 2·10−9–1.1·10−7 0.0–93

65 (1.5+0.4
−0.4)·106 < 2·10−9–1.4·10−7 0.0–60

70 (7.6+2.2
−1.9)·105 < 2·10−9–1.1·10−7 0.0–25

75 (4.1+1.3
−1.1)·105 < 2·10−9–1.0·10−7 0.0–12

80 (2.3+0.7
−0.6)·105 < 2·10−9–0.9·10−7 0.0–6.4
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