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ABSTRACT
Ependymomas are glial tumors that originate in either intracranial or spinal 

regions. Although tumors from different regions are histologically similar, they are 
biologically distinct. We therefore sought to identify molecular characteristics of spinal 
ependymomas (SEPN) in order to better understand the disease biology of these 
tumors. Using gene expression profiles of 256 tumor samples, we identified increased 
expression of 1,866 genes in SEPN when compared to intracranial ependymomas. 
These genes are mainly related to anterior/posterior pattern specification, response 
to oxidative stress, glial cell differentiation, DNA repair, and PPAR signalling, and 
also significantly enriched with cellular senescence genes (P = 5.5 × 10-03). In 
addition, a high number of significantly down-regulated genes in SEPN are localized 
to chromosome 22 (81 genes from chr22: 43,325,255 – 135,720,974; FDR = 1.77 × 
10-23 and 22 genes from chr22: 324,739 – 32,822,302; FDR = 2.07 × 10-09) including 
BRD1, EP300, HDAC10, HIRA, HIC2, MKL1, and NF2. Evaluation of NF2 co-expressed 
genes further confirms the enrichment of chromosome 22 regions. Finally, systematic 
integration of chromosome 22 genes with interactome and NF2 co-expression data 
identifies key candidate genes. Our results reveal unique molecular characteristics of 
SEPN such as altered expression of cellular senescence and chromosome 22 genes.

INTRODUCTION

Ependymomas are primary tumors of the central 
nervous system (CNS) representing 3%−6% of all CNS 
tumor [1]. Histologically, they have been classified into 
three grades according to the World Health Organization 
(WHO): grade I (subependymomas and myxopapillary 
ependymomas), grade II (classic ependymomas), and 
grade III (anaplastic ependymomas) [2]. These tumors 
originate from either intracranial or spinal regions of 
the CNS. Spinal ependymoma (SEPN) constitutes 
approximately 34.5% of ependymomas and accounts for 
60% spinal cord gliomas, making them the most common 
glial tumors of the adult spine [3-7]. While 90% of all 
childhood ependymomas are intracranial, SEPN are more 
commonly found in adults of 20 to 40 years of age [7] 
where standard treatment of SEPN is aiming for complete 
resection. Although, SEPN generally have better prognosis 
than intracranial tumors, recurrence rate can be as high 

as 50%−70% without adjuvant therapy; however the 
beneficial role of adjuvant chemotherapy or radiotherapy 
in SEPN is controversial [4, 7]. Most currently known 
prognostic factors for SEPN are based on clinical and 
histological criteria, such as extent of tumor resection, and 
histological grade. The results of existing studies on these 
prognostic markers are contradictory. Therefore, there is a 
need to improve the understanding of the biology of SEPN 
in order to develop more accurate prognostic signatures 
and identify new therapeutic targets.

Few studies have examined the genetics of SEPN 
compared to intracranial ependymomas. Ebert et al 
found loss of heterozygosity (LOH) on chromosome 22q 
in grade II (6/14 cases) and grade III (1/3 case) SEPN, 
NF2 mutations in grade II SEPN (6/14 cases), and 
found no mutations in intracranial and myxopapillary 
ependymomas [8]. In a study with 52 tumors from 
45 patients, Lamsuzs et al detected LOH on chr22q 
more frequently in intramedullary SEPN (14/20 cases) 
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compared to intracranial ependymomas (6/25 cases) and 
found NF2 mutations in 5 out 20 cases of SEPN [9]. Singh 
et al found the NF2 gene deletion in 5/15 SEPN and loss 
of the NF2 gene product, merlin in 5 out of 27 cases, all of 
which were from spinal [10]. 

Microarray-based expression studies have also 
been used to compare SEPN with intracranial tumors and 
correlate molecular signatures with clinical and histologic 
characteristics. A study by Korshunov et al examined 39 
ependymal neoplasms including ten SEPN and detected 14 
genes that were more highly expressed in SEPN compared 
to intracranial ependymomas including HOXB5, PLA2G5 
and ITIH2 [11]. Lukashova-v Zangen et al reported 
five genes (TFAM, EDN1, GAS2L1, HUMRTVLH3 and 
ADAM9) that were preferentially expressed in SEPN 
by comparing grade II adult SEPN (n = 8) and adult 
intracranial ependymomas (n = 4) from a cohort of 47 
ependymoma patients [12]. By comparing tumor samples 
from 16 SEPN and 16 intracranial ependymomas, Palm et 
al reported the over-expression of HOX genes in SEPN 
and up-regulation of several genes of Notch, Hedgehog, 
and BMP signaling pathways in intracranial ependymoma 
[13]. Finally, Taylor et al compared gene expression 
microarrays of tumor samples from SEPN (n = 3), 
supratentorial (n = 5), and posterior fossa (n = 21), and 
identified the expression signature for SEPN that consisted 
of 184 genes including HOX genes HOXA7, A9, HOXB6, 
B7, HOXC8, C10, and IGF1 [14]. 

The aforementioned gene expression studies are 
limited to a small number of samples and are usually 

analysed in isolation. Meta-analysis approaches make it 
possible to combine multiple independent gene expression 
datasets and increase the statistical power for gene 
discovery. Such meta-analysis approaches have been 
successfully used to identify transcriptional signatures in 
cancer [15] and aging [16]. Individual gene expression 
studies are limited by systematic biases at both biological 
and technical levels, which hinder the broader application 
of their findings. Meta-analysis can control for such 
confounding factors by increasing the statistical power 
to detect consistent changes across multiple datasets. 
No systematic multi-cohort analysis has yet evaluated 
transcriptional alterations between SEPN and intracranial 
ependymomas. The present study uses microarray datasets 
from three independent cohorts to compare the biology 
of SEPN and intracranial ependymomas to identify 
unique molecular characteristics of SEPN such as altered 
expression of cellular senescence and chromosome 22 
genes.

RESULTS

We applied two different meta-analysis approaches 
to the normalized expression data from three independent 
studies to find differentially expressed genes. A total of 
3,182 genes were identified as significantly differentially 
expressed (FDR < 0.05) between SEPN and intracranial 
ependymomas by both methods (Supplementary Table 1).

Table 1: Enrichment of KEGG pathways among significantly up-regulated 
genes in spinal ependymomas. 

Pathway N FDR
Protein processing in endoplasmic reticulum 28 5.44 × 10-06

Tight junction 21 4.06 × 10-04

Nucleotide excision repair 10 1.98 × 10-03

Cell adhesion molecules (CAMs) 19 2.01 × 10-03

Pyrimidine metabolism 15 3.25 × 10-03

Pyruvate metabolism 9 4.17 × 10-03

RNA transport 19 6.02 × 10-03

Purine metabolism 20 6.11 × 10-03

PPAR signaling pathway 11 1.69 × 10-02

Proteasome 8 1.70 × 10-02

Adherens junction 11 1.79 × 10-02

Oxidative phosphorylation 16 2.04 × 10-02

Focal adhesion 21 2.54 × 10-02

Enrichment P values for KEGG pathways were calculated using the Hyper-geometric 
test and corrected for multiple testing using Benjamini & Hoachberg method. The 
pathways with adjusted P values < 0.05 were selected. N: number of genes in the 
pathway; FDR: false discovery rate.
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Expression analysis highlights diverse processes 
and pathways among over-expressed genes in 
SEPN

Of the 3,182 differentially expressed genes between 
SEPN and intracranial ependymomas, 59% (1866) were 
consistently up-regulated in SEPN (Figure 1A). The 
most significantly up-regulated genes included HOXB7 
(pooled effect size on log2, ES = 2.74, FDR = 1.41 × 
10-31), CTFR (ES = 3.52, FDR = 5.33 × 10-22), HOXB5 
(ES = 2.13, FDR = 3.72 × 10-19), and CTTNBP2 (ES = 
1.77, FDR = 4.29 × 10-16). Other interesting genes that 
have increased expression in SEPN included EZH1, IDH3, 
NEFL, and NELL2. Of the 27 HOX genes annotated in 
the microarrays, 22 were significantly up-regulated in the 
SEPN (Figure 1B). Gene ontology (GO) analysis of over-
expressed genes showed significant overrepresentation of 
genes involved in anterior/posterior pattern specification 
(27 genes; FDR = 9.37 × 10-10), apoptotic process (72 

genes; FDR = 6.70 × 10-08), cell cycle (52 genes; FDR = 
1.68 × 10-05), cilium assembly (13 genes; FDR = 5.64 × 10-

05), and cell proliferation (35 genes; FDR = 2.62 × 10-03), as 
well as genes involved protein folding, DNA replication, 
mitochondrial electron transport, NADH to ubiquinone, 
response to oxidative stress, and cell redox homeostasis 
(Supplemental Table 2). In addition, genes involved in 
DNA repair processes such as nucleotide-excision repair 
and double-strand break; genes in signaling pathways 
such as positive regulation of I-kappaB kinase/NF-
kappaB cascade, positive regulation of MAPK cascade; 
and glial cell differentiation were significantly enriched 
in SEPN (Supplemental Table 2). Our pathway analysis 
identified Protein processing in endoplasmic reticulum as 
the top canonical pathway followed by pathways involved 
in DNA repair, cell adhesion, metabolism, and PPAR 
signaling (Table 1). 

Table 2: Top 25 genes that are highly correlated with NF2 gene expression. 
Gene Location ES SE FDR

MIEF1 22q13 0.91 0.09 8.34 × 10-19

NDUFA6 22q13.2 0.73 0.12 4.54 × 10-08

ASCC2 22q12.1 0.73 0.20 1.78 × 10-03

ADSL 22q13.2 0.69 0.17 2.66 × 10-04

PITPNB 22q12.1 0.68 0.08 5.06 × 10-14

RPS19BP1 22q13.1 0.68 0.09 7.94 × 10-12

UFD1L 22q11.21 0.64 0.10 9.85 × 10-09

MTMR3 22q12.2 0.63 0.15 1.69 × 10-04

TCF20 22q13.3 0.61 0.06 1.58 × 10-18

DRG1 22q12.2 0.61 0.13 5.14 × 10-05

DGCR2 22q11.21 0.61 0.08 1.20 × 10-11

EIF3D 22q13.1 0.61 0.16 1.20 × 10-03

SAMM50 22q13.31 0.61 0.09 1.24 × 10-09

SRRD 22q12.1 0.61 0.19 5.65 × 10-03

ITPK1 14q31 0.60 0.06 6.35 × 10-18

EIF4ENIF1 22q11.2 0.60 0.18 3.37 × 10-03

MTHFD1 14q24 0.60 0.08 2.20 × 10-10

TTC38 22q13 0.60 0.06 1.46 × 10-17

UBE2L3 22q11.21 0.59 0.16 1.13 × 10-03

THOC5 22q12.2 0.58 0.17 1.96 × 10-03

TTLL12 22q13.31 0.58 0.06 6.14 × 10-17

EIF3L 22q 0.58 0.08 3.51 × 10-10

ATXN10 22q13.31 0.58 0.24 3.19 × 10-02

FCHSD2 11q13.4 0.57 0.09 4.51 × 10-09

NOL12 22q13.1 0.56 0.06 9.44 × 10-16

Pearson correlation coefficients (r) between each gene expression and 
NF2 expression were calculated in each data set and combined using the 
DerSimonian-Laird random-effect meta-analytical approach by calculating 
Z-mean of r (ES) and its standard error (SE). Location: Chromosome location; 
ES: Effect size; SE: standard error; FDR: false discovery rate.
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Figure 1: Gene expression profiles define unique molecular characteristics of SEPN. A. Volcano plot showing the number 
of significantly differentially expressed genes in SEPN (FDR < 0.05). The x-axis represents the pooled effect sizes that are estimated from 
three independent microarray datasets by the meta-analysis of random-effects model and the y-axis represents –log10 of false discovery 
rate (FDR). B. Heatmap depicting expression profiles of HOX gene that are significantly enriched in SEPN. The normalized value of each 
gene is indicated by colour intensity, with red/green representing high/low expression.
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Cellular senescence genes are over-expressed in 
SEPN

Cancer incidence and mortality increases with age 
and thus age is considered as a prime risk factor for several 
types of cancers, including gliomas [17, 18]. In addition, 
emerging evidences indicate that aging and cancer are 
closely related and mechanisms underlying the cellular 
senescence (CS) program may link these two processes 
[19]. To determine whether similar processes are shared 
between SEPN and CS, we compared the genes associated 
with CS with up-regulated genes in SEPN. We obtained 
a set of 261 candidate genes that are involved in CS 
from the published study [20]. The CS list is a manually 
curated set of candidate genes implicated by genetic or 
RNA interference (RNAi) interventions (gene knockout, 
partial or full loss-of-function mutations, RNAi-induced 
gene silencing, overexpression), which reportedly cause 
cells to induce, inhibit or reverse CS, and genes shown 
to be markers of CS. Among the up-regulated genes in 
SPEN there was a significant enrichment for the CS-
associated genes (hypergeometric test, 34 genes; P = 5.5 × 
10-03), which includes oncogenes (BCL2, CDK6, MDM2, 
and NR4A3), cytokines and growth factors (AGT, CYR61, 
FGF1, and IGF1), transcription factors (MECP2, PCGF2, 
PER2, and TP63), member of RAS superfamily of small 
GTP-binding proteins (RAC1), and genes involved in 
the oxidative stress pathway (SOD1) (Figure 2 and 
Supplementary Table 3). 

Chromosome 22 genes are under-expressed in 
SEPN

One of the most frequent genomic alterations 
detected in sporadic ependymomas was the loss of 
chromosome 22, with the frequency ranging from 26% 
to 71% [8, 9]. In addition, loss of heterozygosity (LOH) 
on chromosome 22q has been found more frequently 
in intramedullary SEPN and more often in adults than 
the pediatric ones [21, 22]. To investigate whether 
chromosome loss alter expression of endogenous genes, 
we identified differentially expressed genes that are 
significantly down regulated in SEPN (1316 genes at 
FDR < 0.05, Supplementary Table 1) and tested for the 
enrichment of chromosomal regions. The positional gene 
enrichment analysis revealed that many down-regulated 
genes in SEPN localized to specific chromosomal regions 
rather than genes randomly distributed in the genome. 
Most prominently, a high number of genes were localized 
to a 92.4 Mbp region (81 genes from chr22: 43325255 – 
135720974; FDR = 1.77 × 10-23) and a 32.5 Mbp region 
(22 genes from chr22: 324739 – 32822302; FDR = 2.07 
× 10-09) of the chromosome 22 (Supplementary Table 

4). To confirm these observations, we also performed 
enrichment analysis of cytogenetic bands with the 
GSEA method. We observed that 51 genes located in 
chr22q13 (hypergeometric test, FDR = 1.41 × 10-27), 27 
genes in chr22q12 (FDR = 5.88 × 10-13), and 40 genes 
in chr22q11 (FDR = 4.54 × 10-11) were highly enriched 
among genes that were significantly down-regulated 
in SEPN (Supplementary Table 4). Furthermore, genes 
located in cytogenetic bands chr19p13 (59 genes; FDR = 
5.88 × 10-13), chr19q13 (59 genes; FDR = 1.34 × 10-09), 
and chr20q13 (25 genes; FDR = 2.01 × 10-06) were also 
enriched among down-regulated genes (Supplementary 
Table 4). Strikingly, 84% of genes located on chromosome 
22 (271 out of 321 chr22 genes that were detected in the 
meta-analysis) were under expressed and 125 of them were 
significantly down-regulated in spinal when compared to 
intracranial ependymomas (Figure 3A). These included 
several cancer-associated genes such as MKL1, EP300, 
NF2, and HIC2 and chromatin binding genes BRD1, 
HIRA, and HDAC10 (Figure 3B). 

NF2-associated genes in ependymoma are located 
on chromosome 22 

Our analysis of differential expression in relation 
to chromosome 22 identified a tumor suppressor gene, 
neurofibromin 2 (NF2), which is located at chromosome 
22q12.2 and showed decreased expression in SEPN (ES 
= -1.05, FDR = 8.75 × 10-04). Higher incidence of spinal 
ependymomas in patients with neurofibromatosis type 2 
and frequent of loss of the NF2 gene in SEPN have been 
reported in numerous studies [23, 24]. This led us to 
further investigate the effect of NF2 on the expression of 
other SEPN genes. We used three independent microarray 
datasets to identify potential co-expressed genes of NF2 
in an un-biased manner. The meta-analysis of correlations 
between NF2 gene expression and other genes resulted 
in 260 genes (Z mean of correlations, r > 0.4 and FDR 
< 0.05) (Supplementary Table 5). The most highly 
correlated gene with NF2-expression, the gene encoding 
the mitochondrial membrane protein MIEF1, was 
significantly down-regulated in SPEN (ES = -1.17, FDR 
= 4.68 × 10-08) (Table 2). Strikingly, enrichment analysis 
for the cytogenetic band revealed the marked enrichments 
in the NF2 co-expressed genes residing at 22q13, 22q12, 
22q11, 22q, 14q23, 14q24, and 1q25 (Supplementary 
Table 4). From a total of 260 NF2 co-expressed genes, 
148 (57%) were significantly down-regulated in SEPN 
(Supplementary Table 4). Out of fifteen genes that are 
physically located close to NF2 (flanking region of 500 
Kb), fourteen were down-regulated in SEPN and nine 
of them were significantly correlated with NF2 gene 
expression (Supplementary Table 5). 



Oncotarget6www.impactjournals.com/oncotarget

Table 3: Prioritization of Chromosome 22 genes by network and NF2 gene co-expression analyses.  

Correlation with NF2 gene 
expression

Symbol Gene name Location DAPPLE
P value ES SE FDR

EP300 E1A binding protein p300 22q13.2 0.002 0.45 0.19 0.039
HIRA Histone cell cycle regulator 22q11.21 0.015 0.46 0.14 0.004

MN1 Meningioma (disrupted in balanced 
translocation) 1 22q12.1 0.017 0.10 0.08 0.223

SGSM3 Small G protein signaling modulator 3 22q13.1-q13.2 0.021 0.54 0.06 1.04 × 10-14

SUSD2 Sushi domain containing 2 22q11-q12 0.023 0.21 0.06 0.004

SREBF2 Sterol regulatory element binding 
transcription factor 2 22q13 0.025 0.52 0.06 1.20 × 10-13

RASD2 RASD family, member 2 22q13.1 0.033 0.26 0.07 5.56 × 10-04

LZTR1 Leucine-zipper-like transcription regulator 1 22q11.21 0.044 0.42 0.07 1.59 × 10-07

Figure 2: Increased expression of cellular senescence genes in SEPN.  Box plots showing log2 expression levels (y-axis) of six 
cellular senescence genes (BCL2, MDM2, RAC1, TP63, IGF1, and SOD1) from spinal (SP) and intracranial ependymomas. Expression 
values from three different studies: CBTRC, Toronto, and Heidelberg are displayed for each gene.
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Prioritisation of Chromosome 22 genes by 
integration of the interactome with NF2-
associated genes

We next reasoned that altered expression of 
chromosome 22 genes could help to identify potential 
candidate genes of ependymoma in addition to a NF2 
gene. To systematically evaluate and prioritize genes 
located on chromosome 22 that are associated with SEPN, 
we used the integration of protein-protein interaction (PPI) 
data with gene expression data. We first constructed the 
PPI network using significantly down regulated genes 
in SEPN that are located on chromosome 22 as seed 
genes excluding NF2. We found there were 11 of 125 
chromosome 22 genes participating in the direct network 
(Supplementary Figure 1). The changes in connectivity 
in the inferred network were calculated by comparing 
random networks of equal size and seed genes were 
ranked by P-value of increased connectivity. This analysis 
identified eight genes that were ranked by the network 
algorithm with a P value < 0.05 (Table 3). These eight 
candidate genes represent the most highly connected, and 
therefore, potentially most functionally important ones. 
In order to investigate the relevance of these genes with 
the known candidate gene, we combine the results of NF2 
gene co-expression analysis with the P-value ranking of 
the network analysis. All candidate genes except the MN1 
were significantly correlated with the expression profile 
of NF2 (Table 3). 

DISCUSSION

Understanding distinct molecular characteristics 
exhibited by ependymomas according to their tumor 
location in the brain is becoming more important. 
Systematic analysis of molecular data from ependymomas 
have long been sought, however, there currently exists few 
studies that compared ependymomas arising in the spine 
to those intracranial. Here we demonstrate through meta-
analysis approaches by combining multiple independent 
data sets that gene expression profiles of tumors from 
the spine display distinct patterns when compared with 
tumors from intracranial regions. To our knowledge, this 
is the first study that provides a comprehensive genome-
wide gene expression profile and integrative analysis of 
SEPN. Most, but not all, biological processes involved in 
the hallmarks of cancer are enriched with over-expressed 
genes in SEPN. Genes related to cellular senescence 
are also highly enriched in SEPN. In addition, we find 
that the majority of the genes from chromosomes 22 
relatively decreased expression levels in tumors from 
the spine. Overall, we provide a systematic analysis of 
comprehensive gene expression data for assessing specific 

biological processes of SEPN.
Our results showed that SEPN are characterized 

by diverse a set of known and novel biological processes 
and pathways. Previous work that used smaller study 
samples reported up-regulation of HOX genes in SEPN 
when compared with ependymomas from intracranial 
regions [13, 14]. In the current study, we identified the 
up-regulation of multiple homeobox family members that 
include ANTP class homeoboxes (HOX) not previously 
implicated in SEPN (HOXA: A2, A3, A5, and A10; HOXB: 
B2, B3, B5, and B8; HOXC: C8 and C13; HOXD: D8, D9, 
and D10, see Figure 1). The HOX genes, encode a family 
of evolutionarily conserved transcription factors that have 
fundamental roles in specifying anterior-posterior body 
patterning and development of the spine [25]. As they 
are involved in cellular fate determination and stem cell 
renewal, several studies investigated their role in other 
tumor types [26]. Particularly, HOX genes group 10 - 13 
play important roles in the normal development of the 
lumbosacral region [25]. Indeed, the most significant 
GO biological process detected in this study was the 
anterior/posterior pattern specification. The combined 
analysis of large samples in our study from heterogeneous 
ependymoma patients recruited from different clinical 
settings provides confirmatory evidence of the 
association of HOX genes in SEPN. Another important 
observation is the enrichment of genes involved in glial 
cell differentiation (DNER, ERBB2, IGF1, METRN, and 
NFIB) in SEPN. This observation is consistent with the 
emerging evidence that radial-glial cells are likely cells 
of origin for ependymomas [14]. The up-regulation of 
these glial cell differentiation genes and homeobox family 
of transcription factors may transform radial-glial cells 
into cancer stem cells in the development of SEPN. Our 
analysis also revealed novel biological processes such as 
antigen processing and presentation of antigen peptides 
via MHC class I, positive regulation of the IκB kinase/
NF-κB cascade, positive regulation of the MAPK cascade, 
and proteolysis that have genes with relatively increased 
expression in SEPN (Supplementary Table 1). These 
results provide data-driven hypotheses for future work, 
although we expect that further experimental evaluation 
will be necessary to understand the potential role of these 
biological processes in SEPN.

Among the up-regulated genes in SEPN were 
those that regulate DNA repair, DNA damage response, 
signal transduction by p53, response to oxidative 
stress, cell cycle, cell division, cell redox homeostasis, 
and mitochondrial electron transport (NADH to 
ubiquinone) (Supplementary Table 1). These genetic 
systems collectively play important roles in aging [27]. 
Several lines of evidence indicate that CS is a common 
process that links cancer and aging [19]. Senescent cells 
accumulate in ageing tissues, which may be due to an 
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Figure 3: Down-regulated genes of SEPN contributed to the enrichment of chromosome 22. A. Expression levels (log2) of 
chromosome 22 genes that are detected in our study. Genes are sorted according to their position on the chromosome (x-axis) and coloured 
according to the statistical significance of their expression level (y-axis). Significantly down-regulated genes in SEPN (FDR < 0.05) are 
marked with green, up-regulated ones with red, and non-significant ones with grey. Normalized log2 expression values (dots) and kernel-
smoothed expression values (purple line) are shown. B. Box plots showing log2 expression levels (y-axis) of key genes that are located on 
chromosome (EP300, HIRA, and NF2) from spinal (SP) and intracranial ependymomas. Expression values from three different studies: 
CBTRC, Toronto, and Heidelberg are displayed for each gene.
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increased senescence rate and/or decrease in the rate of 
clearance of senescent cells. The onset of CS in tumor 
cells can typically be activated by aberrant activation of 
oncogenes or loss-of-function of tumor suppressor genes, 
and also by several stressors, including DNA damage, 
oxidative stress, and signaling through either MAPK or 
IGF [19]. To determine a degree of CS convergence with 
SEPN, we compared the CS-associated genes with genes 
that are up-regulated in SEPN. Our analysis uncovered 
evidences of significant overlap between CS and SEPN 
at a molecular level, identifying core biological processes 
and genes they share. For example, oncogenes: CDK6 
and MDM2, tumor suppressor gene: CHEK2, oxidative 
stress genes: SOD1 (encoding a member of the p53 family 
of transcription factors) and TP63, and IGF signaling 
genes: IGF1, IGFBP5 and IGFBP7. Since the incidence 
of ependymomas from the spine increases with age, it 
is likely that the senescence pathway is involved in its 
development. Together, these findings add to the growing 
body of evidence that CS links cancer and ageing and that 
biological process in SEPN have a considerable degree of 
convergence with CS.

Loss of chromosome 22 and LOH have been 
frequently found in sporadic SEPN, and alteration of 
chromosome 22q is observed in 40% of SEPN [8, 13]. 
Analysis of gene expression profiles in the current study 
revealed the presence of many genes on chromosome 
22 that were down-regulated in SEPN, indicating the 
functional consequences of chromosome 22 loss. The 
observed 92.4 and 32.5 Mb large domains of repressed 
transcription of chromosome 22 that include ‘hotspots’ 
regions 22q11, 22q12, and 22q13 is a result of a gene 
dosage effect due to unbalanced chromosomal alterations 
in SEPN. Potential tumor suppressor genes located within 
22q12 include NF2, which exhibits markedly reduced 
mRNA expression in SEPN. The NF2 gene encodes the 
FERM domain protein Merlin, which is co-ordinately 
regulated by intercellular adhesion and attachment to 
the extracellular matrix [28]. Increased incidence of 
CNS tumors including schwannoma, meningioma, and 
ependymoma has been reported in Neurofibromatosis 
type 2 patients who carry a single mutated NF2 allele 
[23, 24]. The reduced expression of the tumor suppressor 
gene NF2 in SEPN raises the question of the significance 
of expression alterations in other genes. From our meta-
analysis of correlations with NF2 gene expression, it 
is likely that similar expression alterations may occur 
in genes located in close physical proximity to NF2. 
Interestingly, genes located on 22q13, 22q12, 22q11 are 
significantly enriched among NF2 co-expressed genes. 
Taken together these results further emphasize the loss of 
chromosome 22 in the transcriptional regulation of SEPN, 
and confirm the already reported importance of NF2 
transcriptional down-regulation.

The observed gene expression alterations over large 
regions of chromosome 22 suggest that these regions may 

harbour potential candidate genes commonly affected 
in ependymomas. To prioritize 125 significantly down-
regulated chromosome 22 genes in SEPN, we used the 
protein-protein interactions (PPI) network analysis with 
the assumption that proteins associated with disease tend 
to directly interact with each other. We thus identified 
19 directly interacting proteins and investigated whether 
these PPI could help identify candidate genes within any 
of the 125 chromosome 22 genes identified in the current 
study. Our analysis identified eight genes, EP300, HIRA, 
MN1, SGSM3, SUSD2, SREBF2, RASD2, and LZTR1, 
and all of them except MN1 are significantly correlated 
with NF2 gene expression. These convergent lines of 
evidence strongly suggest that the prioritized genes may 
have pivotal role in ependymomas susceptibility. The 
tumor suppressor gene, EP300 ranked highest among all 
eight genes, encodes histone acetyltransferase, p300 that 
have widespread genomic effects on chromatin structure 
and gene expression as well as non-genomic effects on 
protein function [29]. It participates in the regulation of a 
wide range of biological processes such as proliferation, 
cell cycle regulation, apoptosis, differentiation, and DNA 
damage response [29, 30]. The p300 protein functions 
primarily as a transcription cofactor for a number of 
nuclear proteins including known oncoproteins and 
tumor-suppressor proteins [29, 30]. An increasing body 
of evidence indicates that p300 may be important in 
cancer [31, 32]. Interestingly, p300 directly interacts 
with a transcription factor NF-κB as well as with the p65 
protein that encoded by a gene RELA. The detection of 
frequent C11orf95-RELA gene fusion in supratentorial 
ependymomas further supports the potential role of EP300 
in ependymomas. Further functional investigation of 
EP300 and other genes will provide pivotal information 
on the pathophysiology of ependymomas and potential 
therapeutic targets. 

In summary, this study provides a comprehensive 
and global view of genes altered in SEPN. Importantly, 
enrichment of anterior/posterior pattern specification, 
response to oxidative stress, and cellular senescence 
genes distinguish the SEPN from intracranial 
ependymomas. We prioritized all chromosome 22 genes 
altered in ependymoma by comprehensive integration 
of distinct lines of evidence from different sources. 
The identification of these candidate genes provides an 
evidence-based rationale for functional studies that will 
help to further interrogate the initiation and/or progression 
of ependymomas. 
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MATERIALS AND METHOD

Microarray data

Three independent microarray datasets comprising 
a total of 262 expression profiles from tumors of 
ependymoma patients were used in this study. The 
supplementary table 6 reports the sample size, mean age, 
age range, gender, and the GSE identifier of the dataset in 
the Gene Expression Omnibus (GEO) database. Dataset 1 
(CBTRC) contains tumor samples from intracranial (n = 
71) and spinal (n = 12) regions of ependymoma patients 
with mean age of 10.6 and 25.6 years [33]. The CBTRC 
data were generated using the Affymetrix Human Genome 
U133 Plus 2.0 arrays. Dataset 2 (Toronto) consists of 85 
intracranial tumors from patients with a mean age of 8.1 
and 19 spinal tumors from patients with a mean of age of 
35.6 years [34]. The Toronto data were generated using 
the Affymetrix human Exon 1.0 ST arrays. Dataset 3 
(Heidelberg) consists of tumor samples from intracranial 
(n = 65) and spinal cord (n =10) of patients with mean 
age of 18.7 and 35.3 years [34]. The Heidelberg data were 
generated using the Agilent microarrays.

Microarray data analysis

Pre-processing and normalization

Expression intensity values were calculated at 
probeset level for the 83 Affymetrix U133 Plus 2.0 CEL 
files using the robust multi-array average (RMA) method 
[35]. Probesets that are ‘absent’ (present / absent call 
using MAS5) in all samples were filtered out from the 
analysis. Expression values were mapped from probeset 
to unique gene and the probeset with the highest mean 
expression value was selected when multiple probesets 
were mapped to the same gene. The final filtering step 
left a total of 18,166 genes. For the Affymetrix Exon 1.0 
ST arrays, we used the Affymetrix Power Tools (APT) 
to generate gene-level (core meta-probeset) expression 
values from raw CEL files. Arrays were normalized using 
RMA, which included RMA background correction, 
quantile normalization, log transformation, and probeset 
summarization. Detection above background (DABG) 
was performed at both the probe and the probeset 
level using GC-matched background probes, and low 
variance probesets were excluded (17,001 genes). For the 
Heidelberg data set, the pre-processed data was directly 
obtained from the GEO database. Probes with more than 
30% missing values were filtered out and the probeset with 
the highest average expression value was retained when 
removing duplicate probesets for a gene (18,913 genes).

Differential expression analysis

Two different approaches were applied to the 
normalized data to identify differentially expressed genes 
between intracranial and spinal ependymomas. The first 
approach uses a meta-analysis that combines effect sizes 
from each dataset into a pooled effect size to estimate the 
amount of change in expression across all datasets. In each 
data set, the effect size was calculated for each gene using 
Hedges’ adjusted g. A random effects model was used to 
combine effect sizes to obtain the pooled effect size and 
its standard error [36]. The z- statistic was computed as a 
ratio of the pooled effect size to its standard error for each 
gene, and the result was compared to a standard normal 
distribution to obtain a nominal p-value. P- values were 
corrected for multiple hypotheses testing using Benjamini-
Hochberg correction. The second approach uses a 
non-parametric meta-analysis that combines p-values 
from individual studies. A moderated t-statistic based 
on empirical Bayesian method was calculated for each 
gene in each study [37]. Fisher’s sum of logs was used 
to combine the p-values obtained from each study and 
were corrected for multiple hypotheses using Benjamini-
Hochberg correction. The corrected P value, False 
Discovery Rate (FDR) less than 5% was used to select 
the differentially expressed genes between intracranial and 
spinal ependymomas.
NF2 gene correlation analysis

The correlation between NF2 gene expression and 
other genes was calculated using the Pearson correlation 
method for each data set separately. DerSimonian-Laird 
random-effect meta-analytical approach implemented in 
the metacor R package was used to combine correlation 
coefficients obtained from each individual datasets [38]. 
The correlation coefficients were transformed to Fisher’s 
z-scores. P values obtained from the meta-analysis were 
corrected with Benjamini-Hochberg method. We used the 
Z-mean of correlation coefficients > 0.4 and FDR < 0.05 
to select significantly correlated genes with NF2 gene 
expression.

Gene set enrichment and pathway analysis 

The over-representation analyses for Gene Ontology 
(GO) terms, Kyoto Encyclopedia of Genes and Genomes 
(KEGG), and Panther pathways, were carried out with 
GeneCodis [39]. The REVIGO software was used to 
summarize and visualize significant GO terms [40]. 
The overlap between differentially expressed genes 
and chromosomal positions (C1: positional gene sets 
collection) was investigated using the molecular signature 
database (MSigDB) version 4.0 [41]. The CS gene set was 
obtained from the published study [20]. The significance 
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of statistically enriched functional categories, pathways, 
and gene sets was estimated with hypergeometric test and 
the p-values were corrected for the multiple comparisons 
by estimating the FDR. 

Prioritization of down regulated genes located in 
chromosome 22

Network analysis of protein-protein interactions 
(PPI) was used to prioritize significantly down regulated 
genes in SEPN that are located in chromosome 22. The 
PPI networks (including direct and indirect) among these 
genes were extracted from InWeb, a well-characterized 
PPI database developed by Lage et al [42]. To evaluate 
whether down regulated genes located in chromosome 22 
are significantly connected via PPIs, permutation test was 
used to assess the significance of networks built from PPI 
data. Disease Association Protein-Protein Link Evaluator 
(DAPPLE) was used to assess the significance of PPI 
network with 10,000 permutations [43]. 
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